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ABSTRACT Manufacturing process and human operational errors may cause small-sized defects, such as
cracks, over-welding, and black edges, on solar cell surfaces. These surface defects are subtle and, therefore,
difficult to observe and detect. Accurate detection and replacement of defective battery modules is necessary
to ensure the energy conversion efficiency of solar cells. To improve the adaptability to the scale changes
of various types of surface defects of solar cells, this study proposed a multi-feature region proposal fusion
network (MF-RPN) structure to detect surface defects. In such a network, region proposals are extracted
from different feature layers of convolutional neural networks. Additionally, considering that multiple aspect
ratios and scale settings and the use of multiple RPNs, result in an overlap of candidate regions and lead to
information redundancy, we designed a multiscale region proposal selection strategy (MRPSS) to reduce the
number of region proposals and improve network accuracy. Owing to the complete learning of shallow-detail
texture information and deep semantic information, our multiscale RPN fusion structure can effectively
improve an object’s multiscale feature extraction ability for various scales and types of surface defects of
solar cells. Experimental results demonstrate that our method outperforms other methods by achieving a
higher detection accuracy.

INDEX TERMS Deep learning, defects detection, faster R-CNN, multiscale fusion, RPN, solar cell.

I. INTRODUCTION
Solar energy is a high-quality and environmentally friendly
energy source that does not require fuel consumption. Usable
solar energy is obtained from photovoltaic power generation
systems, which are a typical emerging energy technology
[1]–[3]. Widespread use of photovoltaic power generation
technology is expected to alleviate the environmental prob-
lems caused by non-renewable energy sources, such as
petroleum. However, certain factors decrease the power
generation efficiency of photovoltaic modules and shorten
their service life. These include the fragility of the solar
wafer substrate, manufacturing process defects, and artificial
misoperation, which causes hard-to-detect surface cracks,
over-welding, black edges, unsoldered areas, and other subtle

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Liu .

defects on the surface of solar cells. Therefore, detection
methods that are advanced, precise, and yield fast results are
an attractive but challenging research area for engineering
purposes. Moreover, an in-depth study of the surface defect
detection technology of solar cell modules [4], [5], especially
their automatic classification and detection, is theoretically
significant and invaluable in practical terms.

Currently, there are three main types of defect detec-
tion methods for solar cell surfaces: artificial visual, phys-
ical, and machine vision methods [6]–[8]. Among these,
the defect detection method based on machine vision has
attracted considerable developmental interest because of its
many advantages, such as real-time detection, accuracy,
speed, and operational convenience. From the perspective
of mathematical modeling, surface defect detection algo-
rithms are divided into image domain analysis (e.g., gra-
dient feature [9], [10], clustering [11], [12], and matrix
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decomposition [13]), transform domain analysis (e.g., Fourier
transform [14] and wavelet transform [8]), and deep learning
methods [15], [16].

In 2012, Hinton and Salakhutdinov [17] proposed the
use of a convolutional neural network (CNN) to extract
features that are more robust and expressive, and CNNs
are now widely used in computer vision. In 2013,
Girshick et al. [18] proposed regions with convolutional neu-
ral network (R-CNN) features to introduce deep learning
object detection. R-CNN uses a selection search algorithm
to generate candidate regions of objects, CNN for feature
extraction, support vector machine for convolutional feature
classification, and linear regression for object detection.
In 2015, Girshick [19] proposed the Fast R-CNN, as training
the R-CNNwas time-consuming, the test was slow and calcu-
lations were repeated. As GPUs lack high parallel computing
capabilities, Fast R-CNN has a low detection efficiency and
does not meet the needs of real-time applications. The Faster
R-CNN [20] proposed by Ren et al. uses a shared convolu-
tional network to form a region proposal network (RPN) to
generate region proposals, thereby substantially improving
the detection speed and accuracy. In 2017, Lin et al. proposed
the FPN [21] network, which designed a pyramid-shaped
multiscale feature structure to improve the network’s ability
to describe multiscale objects, and the performance of small
object detection was greatly improved without increasing the
calculation amount of the original model.

Inspired by the successful applications of deep learning,
deep learning methods for detecting surface defects on solar
cells are gradually advancing. Chen et al. [22] designed a
visual defect detection method based on multispectral deep
CNN, wherein the CNN model explores surface defect infor-
mation in images of different spectral bands with enhanced
recognition abilities for complex texture background and
defect features. Several other efforts have also been reported
in the literature, such as a deep learning-based classification
pipeline structure [23] introduced to perform preprocessing
(e.g., distortion correction, segmentation, and perspective
correction on electro-luminescence images), a deep CNN
designed for solar cell surface defect classification, and an
investigation on the influence of a few oversamples and
increase in data on system accuracy [24].

Generally, the surface defects of solar cells vary in shape
and scale; hence, it is necessary to use different layers of
neural network with different receptive fields to extract the
optimal features of various types of defects. Therefore, a fixed
convolutional layer cannot ensure that extracted features have
sufficient validity. This study aimed to enhance the feature
expression ability of the detection network for surface defect
detection of solar cells of different shapes and scales. Thus,
we proposed a multiscale RPN fusion network structure con-
sisting of three RPN networks in different feature layers of the
Faster R-CNN network structure. These RPN networks gen-
erate a certain proportion of region proposals for three sizes
of defects, and all the obtained region proposals are selected
by non-maximum suppression (NMS). The network structure

was modified to use both low-level and high-level features for
detection, thereby improving the network detection accuracy.
Additionally, considering that multiple aspect ratios, scale
settings, and the use of multiple RPNs cause a redundancy of
suggested regions, we designed a multiscale region proposal
selection strategy (MRPSS) to reduce the number of region
proposals and improve the accuracy of the output prediction
box.

II. METHODS
The surface defects of solar cells have diverse shapes and
large-scale variations. Their processing requires features
extracted from different receptive fields. Therefore, it is diffi-
cult to achieve desirable feature expression for diverse defects
using the features output from a fixed convolutional layer.
The Faster R-CNN is a classic algorithm among object detec-
tion deep learning algorithms, but it performs poorly when
directly detecting the surface defects of solar cells because of
the particularity of such defects.

To enhance the feature expression ability of the detection
network for solar cell surface defects of different shapes and
scales, we proposed a multiscale RPN fusion network struc-
ture. This network structure consists of three RPN networks
in different feature layers of the Faster R-CNN network struc-
ture, to generate region proposals with a certain proportion
of three defect sizes (i.e., large, medium, and small). The
obtained candidate regions are fused and filtered before they
are moved to the classification and regression module to
obtain the category label and location of the defect.

A. OVERALL NETWORK STRUCTURE
The overall network structure based on multiscale RPN
fusion proposed in this study (Fig. 1) comprises four parts:
feature extraction module, multiscale RPN fusion module,
region of interest (ROI) pooling layer, and classification
regression module.

Feature extraction module (Part 1, Fig. 1): After the defect
image to be analyzed is input to the network, it is extracted
by five feature extraction units to obtain the main feature
map of the defect image. Each feature extraction unit consists
of convolutional layers, activation functions, and a pooling
layer. To avoid the problem of gradient disappearance and
degradation caused by the deepening of the network, the iden-
tity mapping of ResNet is introduced, and a cross-layer con-
nection structure is adopted on the third, fourth, and fifth
feature extraction units.

Multiscale RPN fusion module (Part 2, Fig. 1): The feature
maps generated by the third, fourth, and fifth layers of the
CNN are used as the inputs to three RPN modules. The
candidate object regions are extracted from the feature maps
at different scales, and the three scale region proposals are
fused and filtered using the MRPSS strategy.

ROI pooling layer: The input of this layer includes not
only the feature maps generated by the third, fourth, and fifth
feature layers but also the region proposals generated by the
multiscale RPN fusion module. The ROI pooling layer can

62094 VOLUME 9, 2021



X. Zhang et al.: Surface Defect Detection of Solar Cells Based on Multiscale RPN

FIGURE 1. Overall network structure.

FIGURE 2. RPN structure.

convert inputs of different shapes into a vector feature output
of a fixed length.

Classification regression module (Part 3, Fig. 1): The out-
put of the ROI pooling layer is used as the input to this
module, the category of the suggested region is calculated
through the fully connected layer, and the bounding box
regression algorithm is used to obtain the final position of the
defects. In the whole process, the convolutional layer uses a
3 × 3 convolution kernel with a filling and step size of 1 each,
and all pooling layers use a 2 × 2 convolution kernel with a
step size of 2.

B. MULTISCALE RPN FUSION METHOD
Fig. 2 illustrates the RPN fusion network structure, and each
RPN network contains two branches. The top branch uses
the SoftMax classification rule to determine whether a region
proposal contains an object, and the other branch calculates
and obtains its location.

The proposal layer selects the suggested regions by elim-
inating those that are too small or beyond the boundary
based on the information from the previous branches, and
each region-generating network generates multiple ROIs.
The algorithm uses the NMS method to eliminate redundant
region proposals. First, sorting is performed according to the

confidence score, and then the region proposal that acts as
a positive sample corresponding to the highest confidence is
selected. Other regions are traversed to calculate the inter-
section over union (IOU) between the current region and the
positive sample, and the region proposals with an IOU value
greater than the threshold are discarded. A region proposal
with a relatively high confidence score is then obtained from
the suggested regions with an IOU value less than the thresh-
old, and the above steps are repeated until all regions are
processed.

C. MRPSS
In the RPN, the extraction of region proposals in the multi-
feature layer, and the multiscale and multi-aspect ratio setting
of anchor points cause an overlapping of suggested regions
and information redundancy on the same object. To reduce the
overlap, a MRPSS strategy is used to filter the redundancies.
In the training dataset, the defects with pixel dimensions less
than 128 × 128, those with dimensions between 128 × 128
and 256 × 256, and those with dimensions larger than
256 × 256 are defined as small-, medium-, and large-sized
defects, respectively. Fig. 3 illustrates the region proposal
selection flowchart of RPN1. In the specific fusion selection
method, as the region proposals in RPN1 are mainly used to
detect small defects, the large region proposal is judged as
invalid, and the ratio of the numbers of the reserved medium-
to small-sized proposals is α:1-α. In RPN2, region proposals
are only valid for medium-sized defects; therefore, small- and
large-sized proposals are discarded. In RPN3, the region pro-
posals aremainly for large- andmedium-sized defects. At this
point, the small-sized region proposals are discarded, and the
ratio of the number of the reserved medium- to large-sized
proposals is β:1-β. As the region proposals extracted from
different feature layers have different receptive fields, adapt-
ability to the changes in defect sizes is ensured.

D. EXPERIMENTAL ENVIRONMENT AND BASIC TRAINING
PARAMETERS
In this study, we implemented the proposed networks on
the Caffe deep learning framework. We collected pictures of
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TABLE 1. Statistical information of pixel dimensions of defects on solar cell images.

FIGURE 3. Multiscale region proposal selection strategy.

defective solar cells, calibrated the defect position manually
by a Labelimg software, and produced a data set in accor-
dance with the VOC2007 format. The training set contains
1461 solar cell surface images, and the test set contains
200 solar cell surface images. There are three types of defects:
broken cell, crack and unsoldered. Moreover, to learn the
defect characteristics, identify the defect types, and obtain the
defect location, we trained the Faster R-CNN, R-FCN, FPN,
YOLO series network, and the proposed network separately.
In the training process, the number of iterations was set to
120,000; the learning rate was 0.01; and the weight atten-

uation and momentum factors were 0.0005 and 0.9 respec-
tively [20]. In the testing phase, the outputs were the defect
categories, regression position, and confidence of the bound-
ing box.

1) FUSION FILTERING RELATED PARAMETERS
To select the appropriate fusion filtering parameters, we sta-
tistically analyzed the pixel dimensions of various defects
in 1,461 solar cell images (as shown in Table 1). There are
1743 defects in total. The size of solar cell images in the
data set is large and inconsistent. The resolution of solar
cell images in the data set is 5320 × 2720, while the size
of the defect area in the image is mostly in the range of
444 × 457. According to the statistical results of the size
of defects in the training data set, the 345 defects with a
pixel size smaller than 128 × 128 are defined as small-sized
defects; and the 1000 defects with a pixel size between
128 × 128 and 256 × 256 are defined as medium-sized
defects; and the 398 defects with a pixel size greater than
256 × 256 are defined as large-sized defects. The analysis
demonstrated that the proportions of small-, medium-, and
large-sized defects in the test images were 0.198, 0.574, and
0.228, respectively. In the RPN1 stage, the shallow network
is more suitable for small-scale defect detection because of
its smaller receptive field. In this experiment, α was set
to 0.4, meaning the suggested regions having 60% small-
sized and 40% medium-sized defects were reserved. In the
RPN2 stage, the network is suitable for medium-sized defect
detection; hence, we only reserved the suggested regions of
medium-sized defects in the experiment. In the RPN3 stage,
the deep network integrates semantic information more effi-
ciently and has a larger receptive field, making it suitable
for large-sized defect detection. In the experiment, β was
set to 0.4, which implies that the suggested regions of 40%
medium-sized and 60% large-sized defects were reserved.
This setting ensures that the overall proportion of small,
medium, and large sizes was 0.2:0.6:0.2, which is consistent
with its prior distribution of 0.198:0.574:0.228.

2) ANCHOR-RELATED PARAMETERS
In the training set, some of the images contained a single
defect, whereas some contained multiple defects, and each
solar cell image contained a different number of defects. For
cracks, broken cells, and unsoldered areas, using the 2562,
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TABLE 2. Anchor point-related parameter statistics.

1:1 anchor point setting of the traditional Faster R-CNN
enlarges the area of the most suggested bounding boxes
compared to the actual defect area. Owing to the minute
characteristics of the surface defects of solar cells, the anchor
points may be easily misjudged as negative samples or irrel-
evant samples and get discarded. In this study, the size and
proportion of the anchor points were changed according to the
statistics of the pixel dimensions of the defects in the training
set images. In the experiments, we re-set 25 (ratios × scale)
anchor points. There were five types of ratios and five types
of scales. Table 2 presents the statistics of specific parameters
and mean average precision (mAP) values.

III. EXPERIMENTAL RESULTS AND ANALYSIS
We analyzed the performance of the proposed method in
terms of the regression bounding box and classification
accuracies. Fig. 4 illustrates the local enlarged images of
the detection results of the same defect obtained using the
proposed method and Faster R-CNN. It can be observed
from Fig. 4 (a1 and a2) that a missed detection appears in
the results of Faster R-CNN, and the crack location is not
detected. However, our method accurately identified the
crack location and obtained a confidence level of 0.99.
As shown in Fig. 4 (b1 and b2), the proposedmethod obtained
a higher confidence level, and the position of the regres-
sion bounding box is more accurate and without any missed
detections. As also shown in Fig. 4 (c1 and c2), both meth-
ods detected the position of the unsoldered areas; however,
the regression bounding box in the results of Faster R-CNN
is larger with an expanded portion. Owing to the use of multi-
scale information, as well as the anchor point and aspect ratio
suitable for the surface defects of solar cells, our algorithm
performs better in terms of both the accuracy of the regression
bounding box and the confidence level.

To further verify the effectiveness of the proposed method,
we compared its detection results with those of several pop-
ular detection networks, such as YOLO, YOLO V2, YOLO
V3, Faster R-CNN, R-FCN, and FPN. Figs. 5–7 illustrate the
detection results of broken cells, crack, and unsoldered areas,
respectively, using different detection networks. It can be
also observed that the series of YOLO networks shows poor
regression accuracy, and the detection regression accuracies
are in the following order: YOLO < YOLO V2 < YOLO

V3 < Faster R-CNN < R-FCN < FPN < proposed method.
The regression accuracies of our method were higher than
those of other networks.

Additionally, we analyzed the quantitative performance of
different detection results. Tables III summarize the defect
detection results of different methods. As shown in Table 3,
compared to Faster R-CNN, the detection accuracy of our
method is improved because of the effective fusion of shallow
and deep features. Moreover, the false-positive (FPR) and
false-negative rates (FNR) are significantly reduced. Partic-
ularly, the number of false-positive (FP) images is signif-
icantly reduced. The number of false-positive (FP) crack
images detected using Faster R-CNN and our method are
16 and 4, respectively. The number of false-positive (FP)
broken cell images and false-positive (FP) unsoldered cell
images detected using Faster R-CNN are 9 and 21, respec-
tively, and the number of false-positive (FP) images detected
using our method is 3. Moreover, it can be observed from
Table 3 that the accurate detection rate of our method is
higher, while the false-positive (FPR) and false-negative
rates(FNR) are significantly decreased. Compared to Faster
R-CNN, the comprehensive accuracy of our method for the
three defects is improved by 6.5%. This shows that the multi-
scale features and multi-anchor points in our method enhance
the detection effect, especially for the detection of ultra-small
defects on solar cell surfaces.

In the experiment, we also analyzed the mAP value per-
formance of the detection results of different algorithms.
As shown in Table 4, YOLO unifies the multistage detection
into a simple neural network, and the detection speed is fast.
However, YOLO is not suitable for the detection of surface
defects of solar cells, and its defect detection mAP value is
low. YOLO V9000 and YOLO V3 are improved versions of
YOLO. Their detection accuracies are improved, but their
detection effects are inferior to our method. It can be observed
from Table 4 that the detection accuracy of our method is
improved by more than 2.5% compared to other algorithms.

To analyze the effect of the multiscale RPN fusion method,
we examined the performance of region proposals before and
after the operations of MRPSS. Generally, when there are a
few region proposals left in the region proposals selection
stage, the regression accuracy of defects detection is low.
However, too many calculations are encountered when there
are too many region proposals left. To effectively solve and
mitigate the increase in region proposals caused by a multi-
anchor and multi-RPN fusion structure, we first used the
NMS algorithm to remove a few redundant region propos-
als in each RPN. The region proposals selection strategy
was then used to filter all region proposals for a second
time. Figs. 8 and 9 show the schematics of the positions
of region proposals before and after the NMS algorithm
application, and the MRPSS strategy, respectively. It can
be observed that some redundant region proposals can be
removed using the fusion algorithm, further reducing the
computational burden. To evaluate the real-time performance
of the proposed algorithm, we measured the time taken to
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FIGURE 4. Partially enlarged images of the defect detection results obtained using Faster R-CNN and the proposed
method.

YOLO
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Faster R-CNN

Faster R-CNN R-FCN
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Our Method Ground Truth 

Ground Truth 
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FIGURE 5. Partially enlarged images of the bounding box for broken cells of different defect models.

YOLO
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Faster R-CNN

Faster R-CNN R-FCN
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Our Method Ground Truth 

Ground Truth 

FPN

FPN

FIGURE 6. Partially enlarged images of the bounding box for cracks of different defect models.

test 600 defective solar cell images using Faster R-CNN,
Faster R-CNNwith improved anchor points, and our method.
As shown in Table 5, the proposed multiscale detection algo-

rithm requires a longer average detection time and has a
poor real-time performance compared to the other algorithms.
In summary, while improving the accuracy of the regression
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YOLO
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FIGURE 7. Partially enlarged images of the bounding box for unsoldered areas of different defect models.

TABLE 3. The statistics of different detection results.

TABLE 4. mAP values of different methods.

TABLE 5. Test times of different algorithms.

bounding box, the calculation amount of our method did not
increase substantially, but the detection speed is sufficient for
practical applications.

TABLE 6. The statistical results of ablation experiments.

Finally, in order to further explore the reliability of the
proposed method and evaluate the effectiveness of MF-RPN
and MRPSS, we performed ablation experiments. Respec-
tively, we trained our method+ which adding only MF-RPN
into the backbone Faster R-CNN and our method++ which
adding both MF-RPN and MRPSS into the backbone Faster
R-CNN on the dataset, and analyzed the test results obtained
by different strategies. Table 6 shows the statistical results
of mAP values obtained by different strategies. As can be
seen from the table, our method++ achieved the highest mAP.
With the addition of MF-RPN, our method+ obtained an
mAP value which is not only 1.9% higher than that of Faster
R-CNN, but also 0.2% higher than that of FPN. With the
addition of MF-RPN and MRPSS, our method++ obtained
a considerable mAP which can reach to 85.0% and increase
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FIGURE 8. Schematic of region proposals before and after implementing the NMS algorithm.

FIGURE 9. Schematic of suggested bounding box before and after fusion filtering.

by 2.5% over the original Faster R-CNN. In summary, the
proposed method is effective on the detection of the solar cell
surface defects.

IV. CONCLUSION
The detection of surface defects of solar cells contributes
to the efficiency of solar cell generation and service life,
and has attracted considerable research interest. The surface
defects of solar cells vary widely both in shape and nature,
and the classic deep learning object detection network, Faster
R-CNN, has a poor detection accuracy. Hence, to improve
the detection accuracy, we proposed a neural network model
based on multiscale RPN fusion. Based on the original
Faster R-CNN structure, the multiscale region proposals are
extracted from different feature layers, and the selection and
fusion strategy of multiscale region proposals improve the
network’s adaptability to changes in the shape and scale
of detected objects. The experimental results demonstrated
that our proposed network model has a lower probability
of yielding false and missed detection for different types of
defects compared to the latest deep learning object detection
models. A limitation of this work is that the proposed network
model requires a longer detection time than other methods.
Hence, future studies should focus on reducing the detection
time, simplifying the algorithm complexity, and improving
the real-time application performance without compromising
the detection accuracy.
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