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ABSTRACT Road transportation accounts for significant percentages of urban energy consumption and
carbon emissions. Therefore, it is important to predict and analyze the fuel consumption and emissions
for on-road vehicles, which are varied under different conditions. Previous studies have shown that some
traffic elements such as road type and weather condition have considerable influence on transportation fuel
consumption and emissions. However, limited to the data availability, most of the existing studies focus
on specific routes or scenarios, and few of them consider the effects of road type and weather condition
systematically at large scale. In this research, a data-driven mesoscopic model was developed to investigate
the effects of road type and weather condition on the link-level fuel consumption and emission factors
based on big traffic data. This built model utilized the neural network for the prediction algorithm with
inputs including road type, weather condition, and link-level aggregated operation data obtained through
link-based segregation over trajectory snippets. The investigation was carried out with real-world big traffic
data collected from 10,944 taxis over a 2-month period of operation in Shenzhen, and produced reliable
predictions for four road types with clear and rainy weather conditions. Both statistical analysis and model
prediction results showed that fuel consumption and emission factors are lower in low-speed range for
freeway and expressway, and are lower in middle-speed range for main road and secondary road. In addition,
rainy weather condition tends to have lower fuel consumption and emission factors than clear weather
condition.

INDEX TERMS Fuel consumption and emission factors, mesoscopic model, neural network, road type,
weather condition.

I. INTRODUCTION
The urbanization process has become faster worldwide,
while intelligent transportation technology has significantly
improved. Urban road transportation is now an indispens-
able part of the daily lives of city dwellers. In some large
cities such as Beijing, road transportation is of the highest
demand among the trip modes [1]. At present, the motor
vehicles in China are responsible for 9% of the nation’s total
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energy consumption, as well as more than 40 million tons
of carbon monoxide and hydrocarbon pollutant emissions.
In some cities of China, automobile exhaust has become the
largest source of air pollution, contributing more than 50%
of the PM2.5 emissions [2], [3]. The situation in the U.S.
is similar, that the growth rates of the transportation-related
energy consumption and emissions were the highest out of
all the fields over the last 30 years, and the transportation
industry has become the second largest source of greenhouse
gas (GHG) emissions, following the power generating indus-
try [4]. Therefore, motor traffic has a significant influence on
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the total energy consumption and pollutant emissions, which
has promoted researchers from all around the world to study
how to solve or relieve this problem.

It is known that there are many aspects, including road
characteristic, weather condition, and traffic condition, that
can affect the fuel consumption and emission of vehicles. It is
found that different road types have varied emission contribu-
tions [5], [6] Faria, et al. [7] investigated data samples from
47 drivers, and found that Road grade and aggressive driving
impact fuel consumption rates significantly Tong, et al. [8]
studied the vehicle emissions and fuel consumption under
urban driving conditions, and found that different driving
modes led to different performances, with a transient driving
mode more polluting than steady-speed driving modes. Some
researchers have made efforts on the energy consumption
performance analysis with considering the influence factors
such as road characteristics, and driving behaviors in micro-
scopic, or for some specific vehicles [9]–[12]. Most of these
studies used data of limited scale, and the influences of the
aforementioned factors in city-level has not been addressed.
However, it is not easy to make field studies in real world
to analyze the effects of different factors, especially in large
scale. Fortunately, fuel consumption and emission models
provide a tool to better understand the correlations and fea-
tures of transportation fuel consumption and emissions from
different perspectives.

Over the past thirty years, there have been an increasing
number of studies related to transportation energy consump-
tion and emission models using various methods. Based on
the scale and purpose of such models, they can be clas-
sified into macroscopic models, mesoscopic models, and
microscopic models. The macroscopic models use average
aggregate network parameters to estimate and evaluate the
transportation energy consumption or emissions over a
wide area such as a city or district. Typical macroscopic
models include MEET, COPERT, ECOTRANSIT, EMFAC,
MOBILE, and MOVES [13]. Microscopic models have the
goal of providing a precise description of vehicle energy
consumption and emissions by relating the fuel consumption
and emission rate to vehicle operation over a series of short
time steps. Typical microscopic models include IFCM, VSP,
VT-Micro, CPFM, PHEM, and CMEM [13], [14]. Compared
to the macroscopic ones, these models focus on calculating
the instantaneous energy consumption and emission data of a
single vehicle based on instantaneous parameters. The micro-
scopic models can be accurate on the micro-scale, but are
not applicable for a large number of vehicles at the city scale
because of the extensive computation required.

For practical applications with the goal of reducing urban
transportation emissions in an ITS, such as dynamic eco-
guidance [15]–[17], temporal–spatial traffic emission eval-
uation [18]–[21], and the real-time low-carbon operation
management of urban transportation [22], [23], it is nec-
essary to estimate the energy consumption and emissions
of on-road vehicles. Therefore, researchers have introduced
mesoscopic models to calculate the link-level vehicle energy

consumption and emission factors by aggregating the oper-
ation states over trajectory snippets. Some researchers have
focused on energy consumption and emission estimations
of fixed route or restricted trips. Li, et al. [24] collected
vehicle history data by driving an experimental vehicle on
a fixed route, and then determine the transportation energy
consumption factor of a certain road in Beijing by applying
the history data to a microscopic model. Huang and Peng [25]
developed an eco-routing method based on data-driven fuel
consumption model. Xiaolin, et al. [26] studied the average
fuel consumption model of touring coach based on OBD
data. Liu, et al. [27] applied the data collected from taxies in
Shanghai to MOVES, and assessed the impact of transporta-
tion on air quality. Huang, et al. [28] evaluated vehicle energy
consumption and related emissions of the Guangdong-Hong
Kong-Macao greater BayArea, applying real-time traffic data
andMOVES. Li, et al. [29] analyzed the emission by combin-
ing the taxi trajectory data in Beijing and a microscopic emis-
sion model. In terms of freeway research, some researchers
have made contributions to energy and emission estimation
and control strategies for freeway transportation [30]–[32].
These studies have produced great achievements and laid the
foundation of mesoscopic transportation model research.

However, the previous studies of mesoscopic models
mainly focused on specific routes of certain road types. The
uncertainty in link-level energy consumption and emissions
caused by road characteristics of different road types and
weather conditions has not been fully evaluated because of
the lack of big data containing large and diverse sets of
information. According to the previous studies, the effects of
these factors are non-negligible.

Based on big traffic data, a data-driven method can be used
to investigate the inherent variability of the influential factors,
and provide a more efficient way to develop mesoscopic
models that consider more related factors. The massive data
involved in a data-driven method used to be costly, which led
to the use of a small scale for the source data in previous work.
New information technology makes it much easier to collect
traffic data, and the data volume has become much larger
than ever before. In addition, with the development of big
data technology, there have been numerous related tools and
technologies that can be applied in various of research fields
to have new improvements [33]. Artificial intelligence (AI)
is capable of dealing with big traffic data and many related
applications have emerged [34], especially the application
of machine learning and neural networks [35]–[37]. There
have been various works that investigate ITS with big data
techniques [38]. Some researchers have used the data from
mobile devices such as cell phones to estimate the vehicle fuel
consumption using a neural network [39] Alomari, et al. [40]
developed an efficient tool that is used for traffic-related event
detection from twitter data, which have broadened the data
sources and application mode for big data in traffic field.
For traffic prediction with big traffic data, Aqib, et al. [41]
proposed a traffic prediction model by bring four comple-
mentary cutting-edge technologies, which are big data, deep
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learning, in-memory computing, and high performance com-
puting, that can predict traffic flow, speed and occupancywith
big data of 11 years. The new findings and achievements of
algorithms in machine learning and neural networks make
them powerful tools for research involving big traffic data for
an ITS.

Most of the aforementioned studies on transportation fuel
consumption and emissions focus on small-scale modeling,
with few considerations on different impact factors. There-
fore, there exists a gap that few studies tend to evaluate the
effects of different influential factors at large-scale on urban
transportation fuel consumption and emissions. To bridge the
gap, this study proposed a data-driven methodology with a
neural network to estimate the link-level energy consumption
and emission factors for on-road vehicles at the city scale,
with consideration given to different road types and weather
conditions, and the influences of these factors are analyzed.
This study makes several contributions to the existing work.
1) A neural network-based mesoscopic transportation energy
consumption and emission model was developed with big
traffic data to estimate the link-level fuel consumption and
emission factors for running vehicles in urban areas with
considering road type and weather condition. 2) The model
was performed on the real-world big traffic data of Shenzhen,
which were collected from 10,944 light-duty vehicles oper-
ating for 2 consecutive months covering all the road types
throughout the city. 3) The impact of road type and weather
condition on predicting fuel consumption and emission fac-
tors were analyzed.

The remainder of this paper is organized as follows. The
detailed methodology is described in section 2, and the case
study of Shenzhen is introduced in section 3. The results and
some discussions are provided in section 4. Finally, the con-
clusions are presented in section 5.

II. METHODOLOGY
A. RESEARCH FRAMEWORK
The framework for this research consisted of three parts: data
collection and pre-processing, model development, influence
factor and performance analysis. For the data collection and
pre-processing, a massive amount of data was collected using
vehicle-mounted data collectors. Taxis might be the ideal
data acquisition vehicles because they tend to have long
and consecutive hours of operation and cover most of an
urban area. The operation status data was turned into tra-
jectories with map data through map matching. The invalid
data were detected and removed. The model development
applied the ComprehensiveModal EmissionModel (CMEM)
to generate the instantaneous fuel consumption and emis-
sions of vehicles based on the vehicle operation history
data. Then, a link-based segregation method was used to
obtain the link-based fuel consumption and emission factors
from the instantaneous data. The data features are analyzed
in terms of the influence of road type and rainy weather
condition. Following this, the neural network and nonlinear
regression methods were applied to learn and predict the

FIGURE 1. Research framework.

fuel consumption and emissions considering different road
types and weather conditions. Lastly, for the performance
analysis, the results predicted by the neural network method
and conventional nonlinear regression method were com-
pared and evaluated, and the predictions of fuel consumption
and emission factors under clear and rainy weather condi-
tions are assessed. In addition, a parametric study of the
various road types as well as weather conditions was con-
ducted to demonstrate their impacts on the fuel consumption
and emission factors. The research framework is shown in
FIGURE 1.

B. DATA PREPARATION
The modelling in this research used data-driven methodology
with real-world big data. Therefore, the data preparation was
important. Because the model was designed to analyze the
vehicle fuel consumption and emissions on different roads in
an urban area, the data had to cover as many different trip
histories as possible. Thus, normal test floating vehicle might
not meet the demand for a large database. Taxis make up
8% to 15% of total traffic flows on urban roads during the
daytime [27], and the difference of average speed between
taxis and private cars is acceptable. Although it is believed
that professional drivers have different driving characteristics
as non-professional drivers, the velocity features are not so
distinguished. Some researchers [42] conducted a compara-
tive study on professional and non-professional drivers, and
the results showed that significant differences exist in some
aspects, such as driving anger under various conditions, while
no significant difference is found in terms of preferred speed
on expressway (speed limit of 80km/h) and urban road (speed
limit of 60km/h). Similar results were obtained in other two
studies [43], [44] from Chen, et al., where data of simulated
driving tests of mid-age professional and non-professional
drivers are similar in terms of mean value of two indi-
cators, including standard deviation of speed and average
speed. Some researchers have tested data collected from
taxis, which were very effective for modelling [27]. The data
fields involved in this model were the vehicle ID, recording
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time, vehicle speed, vehicle acceleration (optional), vehicle
moving direction (optional), and vehicle GPS longitude and
latitude. To analyze the influence of weather condition, the
hourly history data of weather condition were integrated to
collected data records.

The map data were needed to match the vehicle data with
road links. In the map data, each link had to be defined with
the GPS coordinates of nodes on the link, as well as the road
type according to the traffic plan and the road’s purpose.

C. FUEL CONSUMPTION AND EMISSION MODEL
In this research, the CMEM [45], [46] was applied to cal-
culate the instantaneous fuel consumption and emission data
of the vehicles. This model was jointly developed by the
University of California Riverside, Center for Environmen-
tal Research and Technology, University of Michigan, and
Lawrence Berkeley National Laboratory, and was used to
predict the real-time energy consumption and emission values
of microscopic traffic.With the CMEM, the energy consump-
tion and emission rates of various kinds of vehicles with dif-
ferent features or performances, and operating under different
conditions, could be quickly calculated. All the vehicles in
the model were divided into 26 categories according to their
engine type, power and weight, and total mileage.

It has been shown that for each vehicle category, the fuel
consumption and emission rate calculated by the CMEM
accurately reflect the fuel consumption and emission values
of the corresponding vehicle the in real world, which gives the
model a good estimation performance. This research had the
goal of studying the energy consumption and emission factors
on urban roads with a medium scope. Thus, it was more
reasonable to use the parameters for a category of vehicles in
the calculations instead of the parameters of a specific vehicle
model. The method used for the category selection was based
on the CMEM User Guide [47].

D. LINK-BASED SEGREGATION METHOD
In mesoscopic models, the average velocity within a segre-
gated snippet is normally used to estimate the energy con-
sumption and emissions. Various segregation methods are
used in mesoscopic models, including trip-based, time-based,
distance-based, and link-based methods [24]. According to
some studies, a link-based method that segregates the data
by road links has the most reliable results. It is also more
sensitive to emission effects, and more appropriate and accu-
rate for an ITS [48]–[51]. Therefore, this study applied a
link-based segregation method to estimate the link-level fuel
consumption and emission factors. In the data processing
step, the data were segregated into small snippets based on the
link ID found in the GPS record (shown in FIGURE 2). Then,
the integral mean values for the velocity, fuel consumption
rate, and emission rate within each snippet were calculated
as the average velocity, average energy consumption rate,
and average emission rate of the road link, respectively. The
mathematical expressions (equations 1–3) for this process are

FIGURE 2. Schematic diagram of link-based segregation method.

shown as follows.

vij =

∑kmax−1
k=1

[(
tij,k+1 − tij,k

) (
vij,k+1 + vij,k

)
/2
]

tij,kmax − tij,1
, (1)

FRij =

∑kmax−1
k=1

[(
tij,k+1 − tij,k

) (
FRij,k+1 + FRij,k

)
/2
]

tij,kmax − tij,1
,

(2)

ERij =

∑kmax−1
k=1

[(
tij,k+1 − tij,k

) (
ERij,k+1 + ERij,k

)
/2
]

tij,kmax − tij,1
,

(3)

where v is the average velocity (km/h); t is the recording time
(s); v is the instantaneous velocity (km/h); FR is the average
fuel consumption rate (g/s); FR is the fuel consumption rate
(g/s); ER is the average emission rate (g/s); and ER is the
emission rate (g/s).

The subscript ij represents the data of the jth vehicle on the
ith road link; k means the kth record in the data sequence; and
kmax indicates the number of records in the data sequence.

E. PARAMETER DEFINITION
The previous research showed that some of the external
factors have impacts on the fuel consumption and emis-
sion values of a vehicle to some extent. These include the
traffic conditions, weather conditions, and driver’s behav-
ior [52], [53]. However, the velocity and the acceleration are
the two main decisive factors. According to the CMEM User
Guide [47], if the acceleration data cannot be acquired, valid
results may also be obtained using only the velocity data in
the calculation.

The IDs of road links are given in the map data file. Road
links are the basic units in a road network map, and usually
consist of sections of a road between adjacent traffic signal
lights, or road sections with uniform features (e.g. direction,
gradient, and curvature).

The fuel consumption condition is defined as the fuel
consumption factor. This is found by dividing the average fuel
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consumption rate by the average velocity (equation 4), and
represents the fuel consumption per unit of distance (1 km)
for a given vehicle on a given road link. The emission of
carbon dioxide was considered to be the key index in this
study, because it is the main substance in vehicle exhaust
and can represent the emission level. Thus, the emission
factor is defined as the average carbon dioxide emission rate
divided by the average velocity (equation 5), and represents
the emissions per unit of distance (1 km) for a given vehicle
on a given road link.

FF ij =
FRij
vij/3.6

, (4)

EF ij =
ERij
vij/3.6

, (5)

where FF is the average fuel consumption factor (kg/km);
FR is the average fuel consumption rate (g/s); EF is the
average emission factor (kg/km); ER is the average emission
rate (g/s); and v is the average velocity (km/h).

The subscript ij indicates the data for the jth vehicle on the
ith road link.

F. STATISTICAL ANALYSIS OF AGGREGATED DATA
The aggregated data set of link-level fuel consumption and
emission factors generated through link-based data segre-
gation contains those records from different road types and
weather conditions. To obtain the effects of road type and
weather condition on fuel consumption and emission, statis-
tical features are analyzed within data groups sectionalized
according to the corresponding data field.

For road type analysis, each group contains data from a
specific road type. The statistical analysis is operated within
each group, including speed distribution and fuel consump-
tion and emission factor distribution. All the records within a
group are divided into subgroups of 1km/h speed range (i.e.
(0km/h,1km/h], (1km/h, 2km/h], . . . , (n-1km/h, nkm/h]). The
descriptive statistical features including mean, median, upper
and lower bounds, and percentiles are obtained for each sub-
group. Then the comparison analysis among different groups
of road types is performed to determine the effects of road
type.

For weather condition analysis, a further grouping opera-
tion is implemented within each road type group according
to data field of weather condition (clear or rainy). Similarly,
the speed distribution, as well as the fuel consumption and
emission factor distribution are analyzed. The subgrouping
strategy is also set as 1km/h speed interval. The compari-
son analysis between clear and rainy weather for different
road types is performed to determine the effects of weather
condition.

G. PREDICTION METHODS
1) BACK PROPAGATION NEURAL NETWORK
The data fitting and prediction method used in this research
was a back propagation neural network (BPNN), which

FIGURE 3. Schematic model of neural network [55].

recognized the underlying relationships in a set of data after
training the system with the data. Compared to conventional
nonlinear regression, the most obvious feature of an artificial
neural network is that the function form is not needed in the
whole process. The neural network system iteratively trains
itself using the given data to learn the rules governing the data,
and then predicts the output for a new input that is the closest
to the expected value [54]. The basic structure of a neural
network is shown as FIGURE 3. It consists of an input layer,
a hidden layer, and an output layer. The output of each layer is
the input of the next layer. In a BPNN, the error between the
output from the network and the true value will be transferred
back to each layer to adjust the parameters of the network and
achieve better performance.

A 3-layer BPNN was designed for the data training and
prediction in this research. Although a BPNN can consist of
multiple hidden layers and a number of nodes, the increasing
of layers and nodes will make the training process much
more complex and time-consuming. It is known that a 3-layer
neural network can approximate any continuous functions on
compact subset of real numbers [56]. The input layer and
output layers had m and n nodes, respectively (depending
on the number of parameters to be input and predicted).
A sigmoid function (f (x) = 1

1+e−x ) was applied as the
activation function in the hidden layer of the BPNN. In addi-
tion, the BPNN was used to make continuous prediction
instead of being used for data classification or recognition
in this research. Therefore, a linear function was used for
the activation function in the output layer (f (x) = x). Mean
square error (MSE) of predicted results and labels is applied
as the loss function. The basic process for a 3-layer BPNN
can be described as follows:

Parameter setting

(w, b) = (w(l)
ij ,b

(l)
i ), (6)

where w(l)
ij is the weight value between node j in layer l and

node i in layer l + 1, and b(l)i is the bias of i in layer l.
Forward propagation

O(1)i = xi, (7)

I (2)i =
∑n

j=1
(w(1)

ij O
(1)
j + b

(1)
i ), (8)

O(2)
i = f2(I

(2)
i ), (9)
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I (3)i =
∑n

j=1
(w(2)

ij O
(2)
j + b

(2)
i ), (10)

O(3)
i = f3(I

(3)
i ), (11)

where: I (2)i and I (3)i are the input values of node i in the hidden
layer (layer 2) and output layer (layer 3), respectively. O(1)i ,
O(2)i , and O(3)i are the output values of node i in the input
layer (layer 1), hidden layer (layer 2), and output layer (layer
3), respectively. f2 and f3 are the activation functions of the
hidden layer (layer 2) and output layer (layer 3), respectively.
In this method, f2 (x) = 1

1+e−x , f3 (x) = x.
Back propagation
Loss function

E =
1
2

∑n

i=1
(O(3)i − yi)

2
, (12)

where E is the loss function used to evaluate the output
accuracy of the output layer, and yi is the target value of node
i.

For the output layer

∂E

∂w(2)
ij

= (O(3)
i − yi)O

(2)
j , (13)

∂E

∂b(2)i
= (O(3)

i − yi), (14)

For the hidden layer

∂E

∂w(1)
jk

= O(1)k O(2)j (1− O(2)
j )

∑n

i=1
(O(3)

i − yi)w
(2)
ij , (15)

∂E

∂b(1)j
= O(2)j (1− O(2)

j )
∑n

i=1
(O(3)

i − yi)w
(2)
ij , (16)

Update process

w(1)+
jk = w(1)

jk − η
∂E

∂w(1)
jk

, (17)

b(1)+j = b(1)j − η
∂E

∂b(1)j
, (18)

w(2)+
ij = w(2)

ij − η
∂E

∂w(2)
ij

, (19)

b(2)+i = b(2)i − η
∂E

∂b(2)i
, (20)

where the superscript+ indicates an updated value.
The stop criterion should be set as maximal iteration

reached or required loss value achieved. There have been
various studies on application of BPNNs. Please see the
related works for more details.

2) NONLINEAR REGRESSION
To evaluate the performance of the BPNN prediction method,
the conventional nonlinear regression (NR) method was
applied as a control group. In addition, to ensure the appli-
cation universality of the model, this research applied non-
linear functions with the same form to the data fitting for
different road links and different road types. According to a

previous study, a logarithmic function has good performance
in describing the relationship between the fuel consumption
factor and velocity [15], [24]. A test calculation proved that
the 6th order logarithmic function was very effective in the
data fitting with the given test data. The logarithm was taken
for both the fuel consumption factor and emission factor, and
then polynomial fitting was used to obtain the best result. The
function form used in the fitting process is shown as follows.

logFF = av6 + bv5 + cv4 + dv3 + ev2 + f v+ g (21)

logEF = av6 + bv5 + cv4 + dv3 + ev2 + f v+ g (22)

H. MODEL EVALUATION
To evaluate the performance of the model, coefficient of
determination (R2), MSE, and residual analyses were per-
formed with the original test data and data predicted using
both the BPNN and NR methods (equations 23–27). The
residual is defined as the following function:

Rel = yl − ŷl, (23)

R2 = 1−
SSE
SST

, (24)

SSE =
∑

l
Re2l , (25)

SST =
∑

l
(yl − y)2, (26)

MSE =
SSE
n
, (27)

where Re is the residual; y is the true value of the dependent
variable, which was fuel consumption factor or emission
factor in this research (kg/km); ŷ is the predicted value of the
dependent variable, which was the fuel consumption factor or
emission factor predicted by the NR or BPNN (kg/km); y is
the mean value of the dependent variable set (y); SSE is the
error sum of the squares; SST is the total sum of the squares;
MSE is the mean square error; and n is the length of the data
sequence.

The subscript l represents the lth data point in the data
sequence. If the model performs well, R2 will be as close as
possible to one, andMSE will be as close as possible to zero.

III. CASE STUDY IN SHENZHEN
Shenzhen is located in Guangdong Province and is one of the
biggest cities in southern China. It has an area of 1997 km2

and a population of over 13 million. The road network of
Shenzhen has a total length of more than 700 km, including
468 km of freeways and expressways, 1434 km ofmain roads,
and 1033 km of secondary roads. According to the ‘Annual
Report on Road Network Density in Major Chinese Cities’,
the road network density in the 181 km2 built-up area of
Shenzhen is 9.50 km/km2, putting it in 1st place among all the
major Chinese cities [57]. Data from the Transport Commis-
sion of Shenzhen Municipality show that the total number of
motor vehicles in Shenzhen was over 3.3 million at the end
of 2018. Thus, it can be inferred that road transportation is
quite important in Shenzhen.
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FIGURE 4. Road network map of Shenzhen.

A. DATA SOURCE
The big traffic data used in this research were obtained from
the Transport Commission of Shenzhen Municipality. The
data were collected from 10,944 taxis in Shenzhen that were
equipped with data acquisition equipment during a 2-month
operational period. The original data file is of csv format, with
fifteen data fields for each record and time intervals of 10 sec-
onds between each two consecutive records of a same taxi.
And the data volume of a file that includes all records in a sin-
gle day ranges from 913MB to 2.28GB, containing records of
6,301,381 to 16,216,790 pieces. The total number of records
for all the original data files is 780,718,195, and the total size
of them is 110GB. The data fields included the record ID,
vehicle ID, recording time, vehicle speed, moving direction,
and GPS longitude and latitude where the data were recorded
and other information. These unordered records spatially
cover more than 90% main road network in Shenzhen, which
are collected automatically without managing and clustering
operation. As previously discussed, the data characteristics
of taxis are similar to most private cars, and therefore in this
research, it is assumed that citywide operation states can be
determined with data from taxis.

The map data included the main road network of Shenzhen
City, with the roads grouped into four classes: freeways,
expressways, main roads, and secondary roads (as shown in
FIGURE 4). The urban branch roads were not considered in
the research because of the instability of the traffic flow and
complexity of the traffic conditions.

B. DATA PRE-PROCESSING
Some of the original data were invalid because of extensive
deviation from the normal data as a results of errors in the data
collection process and communication failures during the
transmission process, and had to be filtered out. To eliminate
the invalid and redundant data, a data filtering process is
applied with the main purpose of removing a) duplicated
records (which had the same record ID), b) incorrect veloci-
ties (outside the normal range), c) data duplicated because of
communication failure (data for the same time and vehicle),
d) data from vehicles that were not in operation (where the
speed was zero or the GPS data remained unchanged for
a long time), and e) data from vehicles were outside the
designated area (GPS data outside the range of the map data).
After deleting the invalid data, the desired parts of the data,
including the vehicle ID, recording time, velocity, and GPS
coordinates, were retained. The rest of the data were deleted

as redundant data. With the aforementioned pre-processing
operation, around 30% to 40% records are removed for each
day, and only seven data fields are kept for analysis in this
research, which reduced the data scale by 65% and made
computation more efficient. The map matching method in
this research was based on the hiddenMarkovmodel (HMM),
for which numerous studies have been conducted. For more
details about the map matching method based on the HMM,
please see the cited references[58]. The vehicle trajectories
were obtained through map matching, and the records were
connected to the corresponding road links, which allowed
the records to show the vehicle operations on the related
road links. Each road link is associated with an abbreviation
of road type. In this study, four road types are concerned
including freeway, expressway, main road and secondary
road. Another variable of weather condition was adhered to
the data records according to time stamp. The required data
of vehicle trajectory, road links of different road type, and
weather condition were prepared.

C. MODEL SETUP
In this case study, the model was used to predict the fuel
consumption and carbon dioxide emission levels of taxis and
similar light-duty vehicles in Shenzhen. Thus, in the CMEM,
with the vehicle condition and related parameters of the taxis,
all the vehicles were randomly defined as category 12 or
13 according to the CMEM category selection method. The
data segregation was based on the link IDs and data of vehi-
cles that were matched to the related links. After segregation
operation, 52,430,629 pieces of records were generated for
all the four road types.

In descriptive statistical analysis of aggregated fuel con-
sumption and emission factors, data are divided into groups
corresponding to velocity interval of 1km/h. Data features of
distribution are compared regarding to different road types
and weather conditions.

In the data fitting and prediction process, the BPNN was
set as a three-layer neural network. With the average velocity,
road type and weather condition as the input and fuel con-
sumption or emission factor as the predicted output. The test
training and parameter adjustment showed that using fifteen
to twenty nodes in the hidden layer was sufficient to obtain a
reliable prediction. All the data were divided into four groups
according to the road class. Then, pick 1000 samples out from
each group as the validation data set, and 70% of the rest
part was selected as the training data set, while the remaining
30% was used as the test data set. The stop criteria are set
as that the mean loss value of validation data set is smaller
than the threshold or the iteration time reaches the given
maximum value. After the BPNNwas iteratively trained with
the training data, the results were generated using the test
data.

IV. RESULTS AND DISCUSSIONS
In this section, the influences of road type and weather
condition on fuel consumption factor and emission factor
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FIGURE 5. Velocity distributions for (a) freeway, (b) expressway, (c) main
road, and (d) secondary road.

are analyzed. Firstly, the characteristic of average veloc-
ity distribution as well as the fuel consumption and emis-
sion factor distributions from different road types under two
weather conditions are discussed with aggregated data. Then,
the influences of road type and weather condition on fuel con-
sumption and emission factors are evaluated through BPNN
model, and the prediction performances of BPNN are evalu-
ated. And last but not least, some ideas for existing problems
and further study are presented in the discussion part.

A. DESCRIPTIVE STATISTICAL RESULTS FOR DIFFERENT
ROAD TYPES
In this study, as previously mentioned, the original aggre-
gated data were divided into four groups: freeway, express-
way, main road, and secondary road based on the road

FIGURE 6. Box-plot of average velocities on links of four road types.

classification from the traffic plan and design. The results
for the average speed distribution and statistical box plots
are shown in FIGURE 5 and FIGURE 6, respectively. Based
on the results, there were obvious differences in the average
velocity distributions for the four road types. The mean and
median values for the four road classes gradually decreased
based on the road features. The mean value for freeways is
the highest, with two extreme values of data density around
50 km/h and 100 km/h. For expressways, the mean value
is relatively high, with data concentrated around average
velocity of 75 km/h, which is close to the speed limit. The
results for the main roads and secondary roads are similar.
There are many records showing a velocity around zero as a
result of intersections and traffic signals, and the distribution
range for the main roads is mainly below 50 km/h, with much
lower values for the secondary roads.

To further analyze the differences in the features of the
four road types, density maps of the fuel consumption factor
(FIGURE 7) and emission factor (FIGURE 8) were gener-
ated. Here, the color of an area indicates the scatters den-
sity, with a brighter (light yellow) area indicating a higher
scatter density for the area. It can be seen that the density
distributions of the four road types have their own special
accumulation areas.

The four road types have very unique average velocity
distributions and density distributions for the fuel consump-
tion and emission factors. To compare the characteristic of
fuel consumption and emission factors for the four road
types, the detailed data distribution analyses are presented as
follows.

To analyze fuel consumption and emission factor distribu-
tion within each road type, the original data is processed with
the average velocity interval of 1km/h. In each 1km/h data
group, six indexes are obtained with original data, including
the mean value, median, upper and lower bound, as well
as 25 and 75 percentiles. The fuel consumption factor dis-
tribution is shown as FIGURE 9, in which the mean value,
upper and lower bound are shown in FIGURE 9-(a), while the
median, 25 and 75 percentiles are shown in FIGURE 9-(b).
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FIGURE 7. Density maps of fuel consumption factors for (a) freeway,
(b) expressway, (c) main road, and (d) secondary road.

FIGURE 8. Density maps of emission factors for (a) freeway, (b)
expressway, (c) main road, and (d) secondary road.

Within each 1km/h interval, all the records have similar
average velocity with difference less than 1km/h, while the
fuel consumption factors fall in a range, which is because of
the different driving behaviors, road link features and other
related aspects. Since that the speed and acceleration are the
two decisive parameters to estimate fuel consumption rate
and emission rate in CMEM, we assume that the main reason
for the various fuel consumption factors is different driv-
ing behaviors. Normally, the definition of aggressive driving
behaviors depends on the frequency of acceleration. While
in this research, according to the estimated fuel consumption
factors, the non-aggressive, moderate, and aggressive driving
behaviors are classified as the records within 0 to 25 per-
centiles, 25 to 75 percentiles, and over 75 percentiles respec-
tively. It is observed in FIGURE 9 that the lower bounds
for the four road types are similar, while within low-speed
range (average velocity less than 15km/h) the records of

FIGURE 9. Fuel consumption factor distribution of (a) mean and
upper/lower bound, (b) median and 25/75 percentiles for four road types.

freeway and expressway tend to accumulate in moderate area,
and those records of aggressive driving behaviors are of less
aggressiveness compared to main and secondary roads. The
records of freeway and expressway in middle-speed range
(average velocity from 20 to 80) tend to have higher fuel
consumption factors than records of main road and secondary
road. The reason of the trend can be explained as follows.
In low speed range, the traffic conditions of freeway and
expressway are seriously congested, which lead to the slow
movement of traffic flows. However, the situation of main
road and secondary road are quite different. The existing
of intersections and more complex traffic environment that
involves non-motor vehicles and pedestrians for main and
secondary roads lead to frequent acceleration-deceleration
process, and make vehicles consume more fuel than vehicles
on freeways and expressways. Then, in middle-speed range,
the traffic conditions of main and secondary roads are quite
clear, while the situations of freeways and expressways are
still with heavy traffic that make drivers push the braking
paddle frequently and caused higher fuel consumption. As a
result, the different driving behaviors for different road types
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FIGURE 10. Emission factor distribution of (a) mean and upper/lower
bound, (b) median and 25/75 percentiles for four road types.

under similar average velocity cause distinguishing features
of fuel consumption factors.

The same statistical analysis is operated with emission
factors, and the results are shown as FIGURE 10. The
trend of emission factor basically follows the same pattern
of fuel consumption factor. Records in middle-speed range
show that vehicles on freeways and expressways tend to
emit more GHG than those on main and secondary roads
of the same average velocity. However, the difference in
low-speed range is not as obvious as fuel consumption fac-
tor, which might because that the imperfect combustion of
engine generates more emissions such as HC and CO other
than GHG.

B. DESCRIPTIVE STATISTICAL RESULTS FOR CLEAR AND
RAINY WEATHER
Similar as the analysis of road type influences, the influences
of clear and rainy weather on fuel consumption and emission
factors are discussed with aggregated data. Compared to
normal clear weather, rainy weather brings two most chal-
lenging conditions for drivers, which are wet road surfaces
and affected visibilities. In this study, to analyze the impacts

FIGURE 11. Box-plot of average velocities on links of four road types
under rainy and clear weather conditions (∗∗ means the population mean
is significantly different at 0.01 level).

of rainy weather on fuel consumption and emission factors,
the historical hourly weather data is integrated to vehicle
trajectories, fuel consumption and emission data estimated
by CMEM according to timestamp of data records. In the
following analysis, the original data and estimated data for
rainy weathers are denoted as ‘wet’, while those from clear
weathers are denoted as ‘dry’.

The average speed distribution of original data from four
road types under rainy and clear weather conditions are
shown as FIGURE 11. It is observed that for freeway and
expressway, the average speed under rainy weather con-
ditions is lower than clear weather conditions, while the
influences on main and secondary road are slightly affected.
In addition, through the significance test, the mean value
of velocity distribution for dry and wet conditions are sig-
nificantly different at 0.01 level for all the four road types.
It can be explained as follows. For vehicles on freeways and
expressways, drivers tend to drive much faster than those on
main and secondary roads, which requires drivers to concen-
trate more on traffic environment. However, the rainy weather
lowers the visibility, and the wet road surface condition low-
ers the tire grip, which make the drivers be more careful and
less aggressive, in other words, drivers tend to drive slower
and more moderate under rainy condition than normal clear
weathers.

For fuel consumption factor under clear and rainy weather
conditions, the data distribution analysis is operated within
each 1km/h average velocity interval. Eight indexes are con-
cerned, including mean, median, upper and lower bound,
5 and 95 percentiles, 25 and 75 percentiles. The results of
four road types are shown as FIGURE 12. For all the four
road types, similar trends are observed that the lower bound,
5 percentiles and 25 percentiles are close for clear and rainy
weather conditions, while the mean, median, 75 percentiles,
95 percentiles and upper bounds show separation for the
two weather conditions. The values of fuel consumption fac-
tor of rainy weather condition are lower than clear weather
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FIGURE 12. Fuel consumption factor distribution under clear and rainy
weather conditions of (a) freeway, (b) expressway, (c) main road,
(d) secondary road.

condition in terms of data records distributed above median
within each velocity interval. It means that even drivers with
aggressive driving behaviors in clear weathers tend to drive
less aggressively under rainy weather conditions. And the
results show that the influences of rainy weather conditions
on fuel consumption factor are less significant for main road
than other three road types.

The results of emission factor distribution in FIGURE 13
show the same trend as fuel consumption factor, in which
the emission factors of rainy weather conditions are slightly
lower than clear weather conditions.

To further analyze the influence on fuel consumption
and emission factors of road type and weather condition,
the results of BPNN prediction model are discussed.

C. RESULTS OF BPNN PREDICTION MODEL FOR FOUR
ROAD TYPES
To quantitatively evaluate the influence of road type and
weather condition on fuel consumption and emission factors,
the BPNN model is applied to make predictions. The road
type is designed as categorical variable by one-hot code,
which introduces four binary variables to represent each road
type. Average velocity together with road type variable con-
stitute the five input values. According to the test samples,
twenty nodes in hidden layers are enough to produce accurate
prediction results. And the output values are fuel consump-
tion factor and emission factor in the BPNN model respec-
tively. To validate the prediction performance, the nonlinear
regression (NR) method that are commonly used in previous
studies [15], [24] are used as a benchmark. The comparative
results of BPNN prediction and NR prediction are shown in
FIGURE 14. It is observed that NR results have deviation at
initial and end segments of the average velocity.

FIGURE 13. Emission factor distribution under clear and rainy weather
conditions of (a) freeway, (b) expressway, (c) main road, (d) secondary
road.

FIGURE 14. Fuel consumption factor prediction results with NR and
BPNN model for (a) freeway, (b) expressway, (c) main road, and (d)
secondary road.

The coefficients corresponding to the NR models in
FIGURE 14 are presented in TABLE 1.

The prediction performance of BPNN and NR model are
evaluatedwith R2 andMSE, and the contrastive error analysis
is operated. The outlier ratio of error (EOR) indicates the
ratio of error values that fall out of the 1.5 times interquartile
range (IQR) of the error population. The key indexes of
performance evaluation for BPNN and NR models are listed
in TABLE 2. It is obvious that the BPNN model outperforms
NRmodel in terms of all the three indexes, especially for fuel
consumption factor prediction of main road and secondary
road.
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TABLE 1. Coefficients of fuel consumption factor NR model for four road
types.

TABLE 2. Key indexes for performance evaluation of BPNN and NR fuel
consumption factor prediction model.

FIGURE 15. Box-plot of BPNN and NR model predicted fuel consumption
factor error (∗∗ means the population mean is significantly different at
0.01 level).

The error distribution of BPNN and NR models for
fuel consumption factor of four road types is shown as
FIGURE 15. The mean value of error population generated
from the two methods for four road types are all signifi-
cantly different at 0.01 level. The error distribution of BPNN
model fall in a reasonable range, while the upper bound and
99 percentiles of NR model fall extremely far from zero. The
error analysis and key indexes including R2 and MSE show
that the BPNN model has better prediction performance than
conventional NR model.

The comparison of BPNN predicted results for the four
road types are shown in FIGURE 16. It is observed that

FIGURE 16. Comparison of BPNN predicted fuel consumption factor
results for four road types.

the BPNN predicted results follow the characteristics of the
aforementioned data distribution analysis. In the low-speed
range around 15km/h, freeway and expressway have a lower
fuel consumption factor than main and secondary road, while
in the middle speed range, the results turn to be just the
opposite. The difference between freeway and secondary road
around 50km/h is 10%, and up to 17% at 70km/h. However,
the results of freeway and expressway are close to each other,
while the results of main road and secondary road show the
same trends. It can be inferred from the results that freeway
and expressway have similar fuel consumption features, and
also main road and secondary road have the similar ones.
In addition, the fuel consumption factor is mostly determined
by the traffic condition. When the road traffic is clear and
drivers can drive closely at the speed limit of the corre-
sponding road type, the fuel consumption factor are similarly
low. At the middle-speed range, vehicles on main roads and
secondary roads are under quite clear traffic condition, while
the traffic condition on freeways and expressways are pretty
crowded that lead to frequent acceleration and deceleration
which cause a higher fuel consumption factor.

For emission factor, the predicted results of NR and BPNN
models are shown in FIGURE 17. Similar to the results of
fuel consumption factor, NR predicted results have obvious
deviation in initial and end segments of the average velocity
range.

The coefficients corresponding to the NR models in
FIGURE 17 are presented in TABLE 3.

Same as fuel consumption factor analysis, the prediction
performance of BPNN and NR model for emission factor
are evaluated with R2, MSE, and EOR. The key indexes
are listed in TABLE 4. It can be seen that BPNN model
has better emission factor prediction performance than NR
model, especially for main and secondary roads.

The error distribution of BPNN and NR models for emis-
sion factor of four road types is shown as FIGURE 18.
The mean value of error population generated from the two
methods for four road types are all significantly different at

VOLUME 9, 2021 62309



R. Shang et al.: Analyzing the Effects of Road Type and Rainy Weather on Fuel Consumption and Emissions

FIGURE 17. Emission factor prediction results with NR and BPNN model
for (a) freeway, (b) expressway, (c) main road, and (d) secondary road.

TABLE 3. Coefficients of emission factor NR model for four road types.

TABLE 4. Key indexes for performance evaluation of BPNN and NR
emission factor prediction model.

0.01 level. The error distribution of BPNN model fall in a
reasonable range, while the upper bound and 99 percentiles
of NR model fall extremely far from zero. The error analysis
and key indexes including R2 and MSE show that the BPNN
model has better prediction performance than conventional
NR model for emission factor estimation.

The comparison of BPNN predicted emission factor results
for four road types are shown as FIGURE 19. The results
basically follow the features of fuel consumption predic-
tions with some minor differences. In the low-speed range

FIGURE 18. Box-plot of BPNN and NR model predicted emission factor
error (∗∗ means the population mean is significantly different at
0.01 level).

FIGURE 19. Comparison of BPNN predicted emission factor results for
four road types.

(5-20km/h), secondary road has the highest emission factor,
while freeway and expressway has similarly low ones. And
in the middle-speed range (20-80km/h), with the average
speed increases, the difference among the four road types are
showing more divergences. However, the difference between
freeway and expressway, as well as the difference between
main and secondary road, are relatively small. In addition,
the emission factor of secondary road at 70km/h is 15%
lower than freeway, 10% lower than expressway, and similar
to main road. The reason of the differences is same to fuel
consumption factor, that the smooth traffic on main and sec-
ondary road at middle-speed range makes vehicles emit less,
while traffic condition on freeway and expressway at the same
speed range is congested to some extent. At low-speed range,
traffic condition on all four road types are crowded, while
traffic on main road and secondary road involves much stand-
ing start acceleration at intersections, that lead to a higher
emission factor. For smooth traffic condition that vehicles
operating around speed limit of the corresponding road type,
the emission factors are similarly low.
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FIGURE 20. BPNN model predicted fuel consumption factors under two
weather conditions for (a) freeway, (b) expressway, (c) main road,
(d) secondary road.

TABLE 5. Key indexes for BPNN prediction of fuel consumption factors
for four road types with weather condition.

D. RESULTS OF BPNN PREDICTION MODEL FOR CLEAR
AND RAINY WEATHERS
To investigate the influence of rainy weather condition on
fuel consumption and emission factors of four road types,
another binary variable that indicates the weather condi-
tion of rainy or clear is added into the BPNN inputs. The
results of BPNN predicted fuel consumption factor under
two weather conditions for four road types are presented
in FIGURE 20.

It is observed that for each road type, rainy weather con-
ditions have lower fuel consumption factor compared to
clear weather conditions. However, the degrees of impact of
weather condition for four road types are different. Gener-
ally, the BPNN predicted results follow the aforementioned
descriptive features of data distribution. The influences on
freeway results are mainly in middle-speed range where the
difference is up to 4.5%, and in high-speed range the fuel
consumption factor for clear and rainy conditions are almost
the same. For expressway, the fuel consumption factors in
middle- to high- speed range are all lowered in rainy weather,
with differences up to 5.9%. Rainy weather has the minimum

TABLE 6. Key indexes for BPNN prediction of emission factors for four
road types with weather condition.

impact on main roads among all the four road types, that
mainly happens in middle-speed range with difference less
than 3.9%. And for Secondary road, main difference is on
middle-speed range that up to 6.7%. It can be concluded that
rainy weather condition has influence on fuel consumption
factor in mainly middle-speed range, and expressway and
secondary road are most affected road types. From the results
of R2 and MSE listed in TABLE 5, it can be seen that com-
pared to the results of the four road types without considering
weather conditions, the prediction accuracy for clear weather
is quite similar, while for rainy weather, the R2 increases and
MSE decreases slightly. It can be inferred that considering the
weather condition in BPNNmodel can increase the prediction
accuracy for fuel consumption factor.

In the emission factor prediction, weather condition is
also considered in BPNN model. It is observed from
FIGURE 21 that the impact of rainy weather condition on
emission factor is mainly in middle-speed range. The dif-
ference ratio of emission factors for the two weather con-
ditions are varied with different road types. Secondary road
is the most affected road type with difference up to 5.2%,
followed by freeway of 4.7%. Main road and expressway
are less affected, with a difference ratio of 3.8% and 3.9%
respectively.

The key indexes that evaluate prediction performance of
BPNN model for emission factor are listed in TABLE 6.
Same trend as fuel consumption factor results exists in the
emission factor prediction. Considering weather condition
makes emission factor prediction with BPNN model perform
slightly better.

In general, from the BPNN model predicted results, it is
validated that road type and weather condition do influence
the fuel consumption and emission factor. The difference
between road types can be up to 17%, while the influence
of rainy weather condition for different types of roads ranges
from 3.8% to 6.7%.

The results of fuel consumption and emission factors under
clear and rainy weather conditions for four road types pre-
dicted by NRmodel are obtained as a comparison. The results
of R2 andMSE indicate that the performance of BPNNmodel
is much better than NR model. In addition, the NR model
failed to reflect the features shown in the descriptive statis-
tical results of freeway. The detailed information about NR
predicted results please see appendix.
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FIGURE 21. BPNN model predicted emission factors under two weather
conditions for (a) freeway, (b) expressway, (c) main road, (d) secondary
road.

E. DISCUSSIONS
In the aforementioned results and analysis, both descriptive
data features and BPNN predicted results show that rainy
weather condition mainly have influence on middle-speed
range. A possible reason is that traffic condition is quite
crowded in low-speed range, which makes drivers pay
much attention on road traffic; while many of those records
in high-speed range belong to aggressive driving behav-
iors (drives as fast as clear weather condition) that leads
to little difference between two weather conditions. How-
ever, since the records of rainy weather condition only
accounts for 10% to 15% in total records, and the records
in high-speed range are even less. The data sparsity for
records in rainy weather condition in high-speed range
might affect the data distribution and therefore conceal the
inherent characteristics. The impact of weather condition of
clear traffic in high-speed range needs to be further investi-
gated with more specific research plan and more collected
data.

In this research, the collected data from taxis are applied
to generate fuel consumption and emission information.
Although some driving behaviors of professional taxi drivers
look variant from private car users to some extent, the velocity
features are similar. The selected parameters in CMEMmatch
both taxis and most private vehicles, in terms of model year
and powertrain characteristics. The speed data were applied
as inputs for prediction, and the influence of particularity of
data source is reduced to some extent. In addition, we focused
on establishing a method to analyze the influence of road
type and weather condition on fuel consumption and emis-
sions with big traffic data, it is assumed that there is no
significant difference of aforementioned influential factors’
effects on different driver population. Also, it is stated in some
research [20], [59], [60] that taxi data can be used as floating

TABLE 7. Indicators of prediction performance and regression
coefficients of NR fuel consumption factor model for clear and rainy
conditions of different road types.

car data (FCD) to infer the traffic condition and analyze the
traffic related scientific issues such as emissions and fuel con-
sumption, and data collected from taxis can reflect the traffic
condition, which is considered to be a key reason for differ-
ences of fuel consumption and emission factors of different
road types. Therefore, the results in this research demonstrate
the situation of taxis because of the data availability, and it can
be a reference for different drivers despite that there are some
limitations. Indeed, for many studies performed with data
from taxis [29], [61], the researchers believe that the conclu-
sions can be extended to other population with further work.
In the future study, more data acquisition devices with higher
accuracy are planned to be implemented on floating vehicles
which are private cars, and further comparison including the
features of driving behaviors of private car owners and taxi
drivers would be studied.

It is also concerned that different type of vehicles such as
trucks and buses, which only accounts for a small portion
in urban road traffic, might have varied reactions in fuel
consumption and emission with regard to multiple road types
and weather conditions. So it is considerable to collect data
from more representative types of vehicles to generate better
results in the future.

V. CONCLUSION
In this paper, the influence of road type and rainy weather
condition on fuel consumption and emission of urban road
transportation is studied by developing a mesoscopic trans-
portation energy consumption and emission model. The
modelling method was based on big traffic data and used
link-based data segregation strategy and a neural network to
estimate the urban link-level fuel consumption and emission
factors for on-road vehicles. Amesoscopic transportation fuel
consumption and emission model of urban roads in Shen-
zhen, China was established. The model was based on the
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TABLE 8. Indicators of prediction performance and regression
coefficients of NR emission factor model for clear and rainy conditions of
different road types.

FIGURE 22. NR model predicted fuel consumption factors under two
weather conditions for (a) freeway, (b) expressway, (c) main road,
(d) secondary road.

instantaneous data collected from 10,944 taxis in operation
for 2 consecutive months in Shenzhen. The fuel consumption
and emission factor of four road types and two weather
conditions are analyzed. Themain conclusions reached in this
study can be outlined as follows:
(1) The fuel consumption factor and emission factor of

urban roads in Shenzhen were calculated and predicted
with both the NR and BPNN methods. The BPNN
model outperformed the NR method with the data in
this research.

(2) Different road types have varied fuel consumption and
emission factors, while freeway and expressway are
less distinguishing, main road and secondary road are

FIGURE 23. Box-plot of BPNN and NR model predicted fuel consumption
factor error under two weather conditions of four road types (∗∗ means
the population mean is significantly different at 0.01 level).

FIGURE 24. NR model predicted emission factors under two weather
conditions for (a) freeway, (b) expressway, (c) main road, (d) secondary
road.

similar. The difference ratio among four road types is
up to 17% for fuel consumption factor, and 15% for
emission factor according to BPNN predictions.

(3) In low-speed range, freeway and expressway have
lower fuel consumption and emission factors, while
main road and secondary road have lower ones in
middle-speed range. With clear traffic condition that
vehicles running around the speed limit, four road types
have similarly low fuel consumption and emission fac-
tors.

(4) In middle-speed range, rainy weather condition makes
driver behaviors less aggressive, and has fuel consump-
tion factor lower than clear weather condition by 3.9%
to 6.7% for different road types, and 3.8% to 5.2% in
terms of emission factor.

(5) The main reason for different features of the four road
types in low- andmiddle-speed range are that the traffic
conditions and driving patterns tend to vary much at
the same average speed for freeway, expressway, main
road, and secondary road.
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FIGURE 25. Box-plot of BPNN and NR model predicted emission factor
error under two weather conditions of four road types (∗∗ means the
population mean is significantly different at 0.01 level).

However, because of the limited data availability, there are
still potential improvements that can be made in the future
work. 1) More detailed data should be collected to generate
denser CMEM simulation results. 2) If the data could include
information from various types of vehicles, the model would
be more suitable for different kinds of on-road vehicles, and
would be more helpful in practice. Therefore, in a future
study, it is suggested that finer data from different vehicles
be added to the database to make the model more general and
applicable.

APPENDIX
See Tables 7 and 8. See Figures 22–25.
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