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ABSTRACT In this paper, a robust and safety distributed formation control with unknown external
disturbances is researched. For a multi-quadrotors system, a novel nonsingular terminal sliding mode control
strategy is studied to realize the formation control with collision avoidance and inter-quadrotor avoidance.
The formation controller is redesigned once the system reaches the small field of sliding surface to solve the
existence of singular of quadrotor formation and realize the fixed time convergence of singularity region.
Then, the position controller and attitude controller are designed to maintain formation configuration with
collision avoidance and track the desired angular rate with disturbances, respectively. The global fixed
time convergence of quadrotor formation is verified by Lyapunov theory with the fixed time convergence
characteristic of singularity region and nonsingular region. At last, simulation results are presented to
demonstrate the efficiency of the developed algorithm.

INDEX TERMS Adaptive systems, control theory, systems engineering and theory, sliding mode control,
adaptive control, air safety, fixed time convergence, quadrotor formation.

I. INTRODUCTION
In recent decades, the distributed formation control for
multi-quadrotors has received considerable attention, which
is not only because of the broad applications of quadrotor,
such as surveillance, attack, location and observation, but
also the reason of the superiority of multi-quadrotors than
the single quadrotor, such as better robustness and larger
service areas [1], [2]. The communication for each quadrotor
uses only the local information to maintain the large number
quadrotors into formation configuration and the quadrotor
is a typical multi-variable, nonlinear, strong coupled, and
underactuated system, which make the formation control a
great challenge [3].

In the formation of the quadrotor, due to the obstacles in
the environment, which will affect the safety of quadrotor
formation and may lead to damage, so formation control with
obstacle avoidance is an important issue [4]. An effective
way to realize formation safety control of quadrotor is to
establish a complete architecture that combines trajectory
planner and quadrotor controller [5]. One method is to adopt
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the artificial potential field (APF) method [6]–[11], and takes
obstacles or other quadrotors as the high potential point.
The integrated design of collision avoidance and formation
control is realized by using APF function, and the stability of
trajectory generation and formation control is proved. In the
course of obstacle avoidance, the collision between quadro-
tors will seriously threaten the formation safety. Therefore,
in the process of obstacle avoidance, the distance between
quadrotors also needs to be considered. By introducing an
APF method, the quadrotor is regarded as a high potential
point. When the quadrotor is too close to others, it will
generate thrust to keep the distance. At the same time, if the
quadrotors are too far apart, it can increase the opposite force
to close the distance, so that the quadrotors can keep the
formation. In most safety control literature, both asymptotic
stability [12] and finite time stability [13]–[17] have been
realized. Compared with the above stability characteristics,
for the quadrotor formation with high performance [17],
the fixed-time stability is more meaningful, because its con-
vergence time is independent of the initial expression. More-
over, in the process of formation flight, external disturbances
and model uncertainties are inevitable, always unknown and
rapidly changing, which may affect the stability of formation
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system and further improve the difficulty of formation
control [18].

Recently, many novel control methods have been proposed
for nonlinear system [19]–[23], such as backstepping method
[24], [25], output-feedback method [26], [27] and sliding
mode control [28]–[30], where slidingmode control is widely
used in the quadrotor control field due to its advantages of
robustness to disturbance and uncertainty and simplicity of
design. Terminal sliding mode(TSM) [31] control exhibits
various superior properties such as finite-time convergence
and smaller steady-state tracking errors. Compared with
TSM, fast terminal sliding mode control (FTSM) [32] makes
the errors be stabilized to zero in a shorter time. But due to
the existence of terms with negative fractional powers, these
control methods have the singularity problem. In order to
overcome this problem, a nonsingular terminal sliding mode
control(NTSM) [33] and nonsingular fast terminal sliding
mode control(NFTSM) [34] have been proposed. Compared
with NTSM, the convergence time of NFTSM control is
shorter when states far from the origin. However, the time
of these non-singular terminal sliding mode controls is not
independent of the initial state, which will lengthen the con-
vergence time of the quadrotor formation. A fixed-time non-
singular fast terminal sliding mode control is proposed [35].
Nevertheless, the convergence time to avoid singularity areas
is finite, which will prolong the formation convergence time.
To solve this problem, a controlmethod proposed in this paper
can guarantee the fixed time convergence in singularity areas.
Therefore, the quadrotor formation has a global fixed time
convergence characteristic.

Motivated by the above observations, this paper investi-
gates a nonsingular fixed time formation control method for
quadrotor formation considering the formation safety and
disturbances. The main contributions of this paper can be
summarized as:

1. Compared with the obstacle avoidance in [6],
a novel safety control strategy with obstacle avoidance and
inter-quadrotor collision avoidance in fixed time is proposed
with unknown bounds of disturbances.

2. Different from the method [35], the scheme proposed
in this paper have fixed time convergence in the singularity
region, which can guarantee the global fixed time of forma-
tion control.

The rest of the paper is organized as follows. In section II,
the graph theory, useful lemmas and mathematical model for
quadrotor formation are given. The novel safety strategy is
proposed in section III and adaptive nonsingular fixed time
formation control method is investigated to design the posi-
tion controller and attitude controller for quadrotor formation.
Simulation results and conclusion are given in section IV and
section V, respectively.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. PROBLEM FORMULATION AND SYSTEM MODEL
This paper mainly studies the formation control under one
leader and n followers. We use a finite index set to mark the

FIGURE 1. Physical structure of a quadrotor.

quadrotor. Mark each following node as 1,2,. . . ,n, with node
index j ∈ 0 = {1, 2, . . . , n}, and the leader-quadrotor is a
node labeled as zero.

A fixed and undirected graph G is pair (V , ι,A), where
V = (v1, v2, . . . , vn) is note set representing the quadrotor
and ι = V × V is the edge set. A is the weighted adjacency
matrix of G. If there is an edge between agent j and i, then,
in other cases. The neighbor set of quadrotor j is denoted as
Nj =

{
k : (vj : vk ) ∈ ε

}
. The out-degree of node vj is defined

as degout (vj) = dj =
n∑
i=1

aji =
∑
i∈Nj

aji. The degree matrix

of undirected graph G is D = diag {d1, . . . , dn} and the
Laplacian matrix of undirected graph G is L = D − A. The
path from vi to vj in graph G is a series of different nodes,
starting with vi and ending with vj, so that the continuous
nodes are adjacent. If there is a path between any two nodes,
then graph G is connected. If the jth follower is connected
with the leader quadrotor,then bj > 0, in other cases bj = 0.
For convenience, set B = diag {b1, . . . ., bn}.
Definition I
Define the function d1 : R3

→ R3, the sliding surface
is referred to as a fixed-time terminal sliding surface if the
following conditions hold

i) d ′1(•) 6= 0 for all y ∈ R\{0}
ii) d1(0) = 0
iii) limy→0(d ′1(•))

−1
= 0

iv) lim
y→0

d ′′1(•)
d ′1(•)3

= γ̃ ∈ R
Remark 1: The d1(•) function can be selected as d1(y) =√
arctan y, which can satisfy the above conditions.

B. PROBLEM FORMULATION
1) QUADROTOR FORMATION MODEL
Fig. 1 shows a basic quadrotor model. Let the subscript ‘‘j’’
(j = 1, 2, . . . , n) denote the jth quadrotor in the formation,
where n is the total number of the quadrotor. The rigid-body
dynamic model of the jth quadrotor is as follows:{

ṗj = vj
mjv̇j = mjge3 − TjR(Qj)T e3 + dFj

(1)
q̇j = 1

2 (ηjI3 + S(qj))ωj

η̇j = −
1
2
qTj ωj

Ifjω̇j = 0j − S(ωj)Ifjωj + d0j

(2)
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FIGURE 2. Obstacle avoidance model.

where pj =
[
xj yj zj

]T is the position coordinate of the cen-
troid of the quadrotor, and vj =

[
vxj vyj vyj

]T is the velocity
of quadrotor in the inertial frame. Qj =

[
qj1 qj2 qj3 ηj

]T
=[

qTj ηj
]T

is a quaternion used to indicate the direction of

quadrotor, which satisfy qTj qj + ηj
2
= 1. qTj ∈ R3 is the

vector part and ηj ∈ R is the scalar component. The mass of
the jth quadrotor is mj, and the acceleration component due
to gravity is g. E = {e1, e2, e3} represents the inertial frame,
in which e3 is the unit vector in the z-axis direction under the
inertial system. Bj =

{
bj1, bj2, bj3

}
represents the body-fixed

frame, in which bj3 = [ 0 0 1 ]T is the unit vector in the z-axis
direction, Tj is the thrust of the rotor in the bj3 direction. The
control torque if inner-loop is 0j. Ifj = diag(Ixxj, Iyyj, Izzj)
is the symmetric positive definite constant inertia matrix of
the jth quadrotor. R(Q) is the Rodriguez rotation matrix,
R(Q) = (η2 − ‖q‖2)I3 + 2qqT − 2ηS(q). dUj and d0j are
disturbance, which are environment on the quadrotor and the
uncertainty of the system model. S(•) is the skew-symmetric
matrix operator and defined as

S(q) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (3)

The multiplication between quaternions is defined as:

Q1 � Q2 =

(
η1q2 + η2q1 + S(q1)q2

η1η2 − qT2 q1

)
(4)

where � is a non-commutativ multiplication operator.

2) OBSTACLE AVOIDANCE AND INNER-QUADROTOR
AVOIDANCE
In this section, obstacle avoidance method and inter-
quadrotor collision avoidancemethodwill be introduced. The
relevant areas of the jth and ith quadrotors are shown in Fig. 2.
The target avoidance function is defined as

B̂(d; (Rmin,Rmax)) =



4(R2max − R
2
min)(R

2
max − d

2)

(d2 − R2min)
3 ,

ifd ∈ (Rmin,Rmax)
0,
otherwise

(5)

where d is the functional execution area, Rmax is the radius at
which the function comes into play, Rmax is ‘‘the threatening
radius’’, which means the quadrotors will avoid the target
before this range. The specific effects are shown in detail in
section IV.

For the obstacle avoidance, there is B̂1 = B̂(ljk ; (Rb,Ra)),
where ljk is the distance between obstacle and quadrotor,
defined as ljk =

∥∥pj − pbk∥∥(k = 1, 2, . . . ., n). pbk is the
position of obstacle. Once the jth quadrotor get into the avoid-
ance region 9a =

{
pj ∈ R3, pk ∈ R3,

∥∥pj − pbk∥∥ ∈ (Ra,
Rb)}, the quadrotor controller activates the obstacle avoid-
ance function to avoid collision.

For avoid inter-quadrotor collision avoidance, there is
B̂2 = B̂(mji; (Rd ,Rc)), where mji =

∥∥pj − pi∥∥ denotes the
distance between the jth and ith quadrotor. Once quadro-
tor jth and ith quadrotor get into the region of 9b ={
pi ∈ R3, pj ∈ R3,

∥∥pj − pi∥∥ ∈ (Rd ,Rc)
}
, it means that the

distance between the two quadrotors is too close, then
the quadrotor will activate the repulsion modes to increase
the distance between the quadrotors.

Once jth quadrotor and ith quadrotor get into the region
of 9c =

{
pi ∈ R3, pj ∈ R3,

∥∥pj − pi∥∥ ∈ (Rf ,Re)
}
it means

that the distance between the two quadrotors is too far, then
the quadrotor will activate the attraction module to reduce the
distance between the quadrotors. Similarly to the construction
of the target avoidance function, the controller will generate
a force of magnitude B̂3 = B̂(mji; (Rf ,Re)).
Remark 2: In this paper, for a quadrotor, the obstacles

and neighboring quadrotors are considered as high poten-
tial points by using artificial potential approach. When
the quadrotor approaches obstacles and other quadrotors,
the quadrotor will be pushed away from these objects so
as to avoid the obstacles and neighboring quadrotors. Com-
pared with the previous works, the proposed algorithm can
make the quadrotor formation reform the preset formation
configuration in a global fixed time after avoid obstacles and
neighboring quadrotors.

3) CONTROL OBJECTIVE
The main control objective of this article is to make the
control law of the quadrotor formation meet the following
conditions.

(1) The formation can track desired trajectory and the
quadrotor can avoid the obstacle and other quadrotors;

(2) The desired formation configuration can be achieved in
global fixed time;

(3) The singularity of the control method can be avoided in
the control process of quadrotor formation.
Lemma1 [36]: There exist positive real numbers α and β,

positive odd integers m, n, p, q with m > n, p < q such that

V̇ ≤ −αV
n/m(t) − βV

p/q(t). Then, the origin of system is
fixed-time stable and the setting time is bounded by

tf <
1
α

n
m− n

+
1
β

q
q− p

(6)
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Assumption 1: The quadrotor’s structure is symmetrical
and the its propeller structures are rigid.
Assumption 2: The external disturbance dFj and d0j are

assumed bounded with∣∣dFj ∣∣ < δFj,
∣∣d0j ∣∣ < δ0j, j = 1, 2, . . . , n (7)

III. MAIN RESULTS
In this section, an adaptive fixed time nonsingular terminal
sliding-mode control (AFTNTSC) for quadrotor formation
is proposed. The error function and terminal sliding surface
are designed for the inner-loop and outer-loop of quadrotor
formation. An AFTNTSC control is proposed to so solve
the singularity problem. And then, the singularity control
law is designed in the singularity region to realize the fixed
time convergence of singularity region, so as to guarantee the
global fixed time convergence of quadrotor formation.

A. THE OUTER-LOOP SYSTEM STABILITY ANALYSIS

Define the position tracking error as epj =
n∑
i=0

aji(pj−pi−Dji)

and the error of velocity is defined as evj =
n∑
i=0

aji(vj − vi).

ρj(t) is a sliding surface and defined as:

ρj(t) = evj + k1epj
∥∥epj∥∥+ k2epj∥∥epj∥∥− 1

2 − Ao

+ι1

[
Ŝ(d1′(y))

]−1
E1 (8)

where E1 = [ 1 1 1 ]T , Ŝ(•) : R3
→ R3×3 is the diagonal

matrix operator and defined as

Ŝ(q) =

 q1 0 0
0 q2 0
0 0 q3

 (9)

Ao denotes the safety function of the quadrotors and defined
as

Ao =
[
Ŝ(vj)

]−1 n̂∑
k=1

f1

∫ ‖pj−pbk‖
0

B̂1ljkdljkE1

+

[
Ŝ(vj − vi)

]−1 n∑
i=1

ajif2

∫ ‖pj−pi‖
0

B̂2mjidmjiE1

−

[
Ŝ(vj − vi)

]−1 n∑
i=1

ajif3

∫ ‖pj−pi‖
0

B̂3mjidmjiE1 (10)

y is a dynamic variable defined as

ẏ = evj + k1epj
∥∥epj∥∥+ k2epj∥∥epj∥∥− 1

2 − Ao (11)

Take the time derivative of (8), and submitting (1) to it, there
is

ρ̇j(t) =
n∑
i=0

aji(ge3 −
Uj
mj
+ dUj − v̇i)+ β1

+Ȧo + ι1
[
Ŝ(d1′(y))

]−2
Ŝ(d1′′(y))ẏ (12)

where

β1 = k1

[
I +

epjeTpj∥∥epj∥∥2
]∥∥epj∥∥ ėpj

+k2

[
I −

epjeTpj

2
∥∥epj∥∥2

]∥∥epj∥∥− 1
2 ėpj,

k1 > 0, k2 > 0 are constants and

Ȧo = −
n̂∑

k=1

f1B̂1(
∥∥pj − pbk∥∥)(pj − pbk )

+

v̇j
n̂∑

k=1
f1
∫ ‖pj−pbk‖
0 B̂1ljkdljk

vTj vj

+

n∑
i=1

ajif2B̂2(
∥∥pj − pi∥∥)(pj − pi)

−

(v̇j − v̇i)
n∑
i=1

ajif2
∫ ‖pj−pi‖
0 B̂2mjidmji

(vTj − v
T
i )(vj − vi)

−

n∑
i=1

ajif3B̂3(
∥∥pj − pi∥∥)(pj − pi)

+

(v̇j − v̇i)
n∑
i=1

ajif3
∫ ‖pj−pi‖
0 B̂3mjidmji

(vTj − v
T
i )(vj − vi)

(13)

To find out the special cases that exist during the sliding
process, let

ρ̇j(t) = ror (t)+ β1 +
n∑
i=0

aji
Uj
m

−

n̂∑
k=1

f1B̂1(
∥∥pj − pbk∥∥)(pj − pbk )

+

n∑
i=1

ajif2B̂2(
∥∥pj − pi∥∥)(pj − pi)

−

n∑
i=1

ajif3B̂3(
∥∥pj − pi∥∥)(pj − pi)

+ι1

[
Ŝ(d1′(y))

]−2
Ŝ(d1′′(y))ẏ (14)

where ror (t) is a continuous and twice differentiable term and
defined as

ror (t) =
n∑

k=0

ajk (ge3 + dUj − v̇k )

+

v̇j
n∑

k=1
f1
∫ ‖pj−pbk‖
0 B̂1ljkdljk

vTj vj

−

(v̇j − v̇i)
n∑
i=1

ajif2
∫ ‖pj−pi‖
0 B̂2mjidmji

(vTj − v
T
i )(vj − vi)
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+

(v̇j − v̇i)
n∑
i=1

ajif3
∫ ‖pj−pi‖
0 B̂3mjidmji

(vTj − v
T
i )(vj − vi)

(15)

where if the formation tends to be stable, the target avoidance
function B̂1 = B̂2 = B̂3 = 0, therefore the function
ror (t) is bounded. If the formation doesn’t tend to be stable,
the quadrotor have different speed with neighboring quadro-
tor (vj 6= vi), so the ror (t) is bounded and it has a bunch of
upper bounds ‖ror (t)‖ < ror0, ‖ṙor (t)‖ < ror1, ‖r̈or (t)‖ <
ror2, where ror0, ror1, ror2 are unknown constants.
During the sliding motion ρj(t) ≡ 0, the so-called equiv-

alent control Ueq(t) is designed, which must take on average
to maintain sliding. To make sure ρ̇j(t) = 0, ρj(t) = 0, with
in definition I, Ueq(t) must satisfy

Ueq(t) = −ror (t) (16)

So, there is
∥∥Ueq(t)∥∥ = ‖ror (t)‖ during sliding. In order

to obtain the estimate value of Ueq(t), it can be performed by
low-pass filter. In this way, Ueq(t) can be got as follow:

˙̄Ueq(t) =
1
κ1

(Ueq(t)− Ūeq(t)) (17)

where κ1 is a small constant, which is to make
Ūeq(t)→ Ueq(t)

Assuming that 1 > φor1 > 0, φor0 > 0, there is∣∣∥∥Ūeq(t)∥∥− ∥∥Ueq(t)∥∥∣∣ < φor1
∥∥Ueq(t)∥∥+ φor0 (18)

n(t) contains a nested adaption law shown as follows [37]:

ṅ(t) = −δor (t)
[
‖χ (t)‖3 + ‖χ (t)‖

1
2

]
(19)

χ (t) = n(t)−
1
βor

∥∥Ūeq(t)∥∥− µor (20)

δor (t) = σ0 + σ (t) (21)

σ̇ (t) =



γ
[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+
σ0

ε̂(t)

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
, if ‖ χ (t) ‖> χ0

σ0

ε̂(t)

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
,

otherwise
(22)

ε(t) =
qorror 2
βor

− σ (t) (23)

where ε̂(t) =
{

ε(t) ε(t) 6= 0
ε(t)+ ε0 ε(t) = 0

, ε0 > 0 is a small

constant, γ > 0, σ0 > 0, 0 < βor < 1 and µor > 0 are
design scalars to make sure

1
βor

∥∥Ūeq(t)∥∥+ µor2 >
∥∥Ueq(t)∥∥ (24)

In order to limit the low bound of n(t), there is

n(t) >
1
βor

∥∥Ūeq(t)∥∥+ µor (25)

Theorem 1: For system (1), the sliding surface ρj con-

verges to set Dρ =
{
ρj|
∥∥ρj∥∥ ≤ υρ 1

= max(υ0, υV1 )
}
with

0 < µa < 1 in a uniformly bounded settling time T11 ≤

T ∗11
1
=

d1(y( 4
µac1(1−γ1)

+
1

µac2(α1−1)
))

ι1
+

4
µac1(1−γ1)

+
1

µac2(α1−1)
,

where γ1 = 3
4 , α1 = 2 when the controller shown as

Uoj =

{
Uj X ∈ R2

\�̂

U∗j X ∈ �̂
(26)

where R2 is the error domain, �̂ is the singular region

Uj = −mj(β1 +
n∑

k=1

f1B̂1(
∥∥pj − pbk∥∥)(pj − pbk )

−

n∑
i=1

ajif2B̂2(
∥∥pj − pi∥∥)(pj − pi)

+

n∑
i=1

ajif3B̂3(
∥∥pj − pi∥∥)(pj − pi)

−n(t)sign
(
ρj
)
− ((

1
2
)231

∥∥ρj∥∥2ρj
+(

1
2
)
3
432

2∥∥ρj∥∥2 ρj))
+ι1

[
Ŝ(d1′(y))

]−2
Ŝ(d1′′(y))ẏ)/

n∑
i=0

aji (27)

U∗j = −mj(β1 +
n∑

k=1

f1B̂1(
∥∥pj − pbk∥∥)(pj − pbk )

−

n∑
i=1

ajif2B̂2(
∥∥pj − pi∥∥)(pj − pi)

+

n∑
i=1

ajif3B̂3(
∥∥pj − pi∥∥)(pj − pi)

−sign(ẏ)(−n(t)sign(ρj))

−((
1
2
)231

∥∥ρj∥∥2ρj
+(

1
2
)
3
432

2∥∥ρj∥∥2 ρj)))/
n∑
i=0

aji (28)

where f1, f2, f3, 31, 32 are constants and satisfy f1 > 0, f2 >
0, f3 > 0, 31 > 0, 32 > 0. sign(ẏ) : R3

→ R3 denotes
the matrix with element being the sign of the corresponding
element of ẏ. 2 satisfies

2 =



∥∥ρj∥∥2,
if
∥∥ρj∥∥ ≥ υ0

5
4
υ−0.50

∥∥ρj∥∥2 − 1
4υ
−2.5
0

∥∥ρj∥∥4,
otherwise

(29)

Proof: Choose the following Lyapunov function candi-
date

V1 =
1
2
ρTj ρj +

1
2
χ (t)2 +

1
2γ
ε(t)2 (30)
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If n(t) >‖ ror (t) ‖, it satisfies

ρTj ρ̇j = ρ
T
j

[
ror (t)+

n∑
i=0

aji
Uj
m

−

n∑
k=1

f1B̂1(
∥∥pj − pbk∥∥)(pj − pbk )

+

n∑
i=1

ajif2B̂2(
∥∥pj − pi∥∥)(pj − pi)

−

n∑
i=1

ajif3B̂3(
∥∥pj − pi∥∥)(pj − pi)

+ι1

[
Ŝ(d1′(y))

]−2
Ŝ(d1′′(y))ẏ

]
≤ −ρTj

[
(
1
2
)
2
31
∥∥ρj∥∥2ρj + (

1
2
)
3
4
32

2∥∥ρj∥∥2 ρj
]

= −31(
1
2
ρTj ρj)

2
−32(

1
2
)
3
42 (31)

When
∥∥ρj∥∥ ≥ υ0, there is −32( 12 )

3
42 = −32( 12ρ

T
j ρj)

3
4 ;

When
∥∥ρj∥∥ < υ0, there is−32( 12 )

3
42 ≤ −32( 12ρ

T
j ρj)

3
4 +9,

where 9 = ( 5
4
11
2 )

11
4 32υ

3
2
0 . So there is always −32( 12 )

3
42 ≤

−32( 12ρ
T
j ρj)

3
4 +9.

It can be concluded as

ρTj ρ̇j ≤ −31(
1
2
ρTj ρj)

2
−32(

1
2
ρTj ρj)

3
4 +9 (32)

According to the (23), σ > 0 all the time, so there is
ε(t) < qor ror 2

βor
.

Note if χ (t)= 0 then n(t) = 1
βor

∥∥Ueq(t)∥∥ + µor >∥∥Ueq(t)∥∥ = ‖ror (t)‖
χ̇ (t) = ṅ(t)−

1
βor

∥∥∥ ˙̄Ueq(t)∥∥∥
= −(σ0 + σ (t))

[
‖χ (t)‖3 + ‖χ (t)‖

1
2

]
−

1
βor

∥∥∥ ˙̄U eq(t)
∥∥∥

= −(σ0 +
qorror2
βor

− ε(t))[
‖χ (t)‖3 + ‖χ (t)‖

1
2

]
−

1
βor

∥∥∥ ˙̄U eq(t)
∥∥∥ (33)

χ (t)χ̇ (t) = −(σ0 + σ (t))
[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−
‖χ (t)‖
βor

∥∥∥ ˙̄U eq(t)
∥∥∥

≤ −(σ0 +
qorror 2
βor

− σ (t))[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+
‖χ (t)‖
βor

∥∥∥ ˙̄U eq(t)
∥∥∥

≤ −(σ0 +
qorror 2
βor

− ε(t))[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]

+

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
βor

∥∥∥ ˙̄U eq(t)
∥∥∥

≤ −σ0

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−
qorror 2
βor

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+ε(t)

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+
qorror 2
βor

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
= −σ0

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+ε(t)

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
(34)

To prove the stability of outer-loop, consider two condi-
tions in the following proof.

Case a). ‖ χ (t) ‖> χ0
According to ε(t) in (23), the first-order derivative of can

be described as:

ε̇(t) = −σ (t)

= −γ
[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−
σ0

ε(t)

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
(35)

Substitute (32), (34) and (35) to (30), there is

V̇1 ≤ −31(
1
2
ρTj ρj)

2
−32(

1
2
ρTj ρj)

3
4 +9

−σ0

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+ε(t)

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−ε(t)

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−
σ0

γ

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
= −31(

1
2
ρTj ρj)

2
−32(

1
2
ρTj ρj)

3
4 +9

−σ0

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−
σ0

γ

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
≤ −c1V12 − c2V

3
4
1 +9 (36)

where c1 = min(31, σ0,
σ0
γ
), c2 = min(32, σ0,

σ0
γ
)

Case b). ‖χ (t)‖ ≤ χ0
From (22), there is σ̇ (t) = 0 and based on the definition of

ε(t) given by (23), it follows that

ε̇(t) = −σ (t) = −
σ0

ε(t)

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
(37)

Substitute (32), (34) and (37) to (30), it follows that

V̇1 ≤ −31(
1
2
ρTj ρj)

2
−32(

1
2
ρTj ρj)

3
4 +9

−σ0

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
+ε(t)

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
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−
σ0

γ

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
(38)

Consequently, outside of following rectangular region,
which is the solution domain

4 =

{
(χ, ε) : ‖χ‖ < χ0, 0 ≤ ε <

qorror2
βor

}
(39)

the condition

V̇1 ≤ −31(
1
2
ρTj ρj)

2
−32(

1
2
ρTj ρj)

3
4 +9

−σ0

[
‖χ (t)‖4 + ‖χ (t)‖

3
2

]
−
σ0

γ

[
‖ε(t)‖4 + ‖ε(t)‖

3
2

]
(40)

is satisfied. So, we construct an ellipse as follows:

8 = {(χ, ε) : V (χ, ε) < ψ} (41)

ψ =
1
2
χ0

2
+

1
γ
(
qorror2
βor

)2 (42)

where χ (t) is the X-axis, ε(t) is the Y-axis. The ellipse
contains a rectangular, whose width is ξ0, and the height
is qor ror2

βor
.

Then the error χ (t) in (20) will satisfy χ (t) < µor
2 in fixed

time and there is

‖χ (t)‖ =

∥∥∥∥n(t)− 1
βor

∥∥Ūeq(t)∥∥− µor∥∥∥∥ < 1
2
µor (43)

So, according to the (24) and (25), the following inequality
can be concluded:

n(t) >
1
βor

∥∥Ūeq(t)∥∥+ µor2
>
∥∥Ueq(t)∥∥ = ‖ror (t)‖ (44)

The remaining proof follows the procedure in [37], and the
inequality can be concluded

V̇1 ≤ −c1V12 − c2V
3
4
1 +9 (45)

Thus the sliding surface ρj can converge to zero in fixed
time.

Nevertheless, once the sliding surface converges to zero,
in other words, the actual position of the quadrotor is
close to the desired trajectory, with (8) and (11), there is

ẏ = −ι1
[
Ŝ(d1′(y))

]−1
E1. As mentioned in the definition I,

limy→0

[
Ŝ(d1′(y))

]−1
= 0, if at this point ẏ 6= 0, it will give

rise to the singularity problem. The solution is given below.
Set the plane coordinate system with y as the X-axis

and ẏ as the Y-axis, design a small neighborhood region
when the sliding mode y = 0, the width is ε, that is
�

1
=
{
X ∈ R2| − ε < y < ε

}
, in which X = [y, ẏ]T , and

the control input will be modified in the region. Let the
trajectory directly across this region, so that it can avoid the
singularity. In ẏ > 0, y < 0 and ẏ < 0, y > 0 these
two regions, which are the critical areas, design four regions
B1,B2,B3,B4, which denote the four quadrants of the plane,

and B1
1
= {X |y > 0, ẏ > 0}, B2

1
= {X |y < 0, ẏ > 0}, B3

1
=

{X |y < 0, ẏ < 0}, B4
1
= {X |y > 0, ẏ < 0}. According to what

was mentioned above, to prove that it converges at a fixed
time, yẏ > 0 is needed, and it is clearly observed inB1 andB3.
Thus, the control input doesn’t need to change in these fields.
Otherwise, the trajectory of the system must intercept the
sliding surface before y = 0 in the fields. So, the singularity
can be compensated by sliding mode.
To a certain extent, the field � can narrowed down by

choosing ι1. Corresponding to any X∗ ∈ B2 or X∗ ∈ B4,
there will always be one big enough ι1 > 0, making X∗ ∈
B2\A+,X∗ ∈ B4\A−. At the same time, the bigger ι1 is,
the faster the sliding mode stability time is, that is, the better
the convergence is. Set boundaries for variables j(t)−|dU | ≥
k , and k > 0. Moreover, it can always be j̄(t) = j(t) + k
by design, where j(t) is an adaptive variable to eliminate the
error defined as j(t) = −n(t)sign

(
ρj
)
− (( 12 )

231
∥∥ρj∥∥2ρj +

( 12 )
3
432

2

‖ρj‖
2 ρj)).

Considering that the solution to the differential equation
might be in reverse time region t ∈ (−∞, 0], define the
curve 9± =

{
X |X = ϕ±

}
. By constructing, there is no

singularity in a closed region of 9±, ϕ±, ρ±j . In this inverse
time system, the worst-case scenario is j(t) − |dU | ≡ k ,
but according to the outer-loop system (1), there is dUj =
mjv̇j − mjge3 + TjR(Qj)T e3, v̇j is a variable over time. So,
j(t) − |dU | ≡ k is impossible to be satisfied forever. In the
general case, the discontinuous Uj of the input is guaranteed
to converge to the sliding surface. Therefore, when the initial
value is within s±, y∗, ẏ∗ can be guaranteed to reach the
sliding mode surface under the condition of y∗ 6= 0. Avoid
singularity methods modified in X ∈ �\(ρ+j ∪ ρ

−

j ). So,
by setting up the control input U∗ to ensure ẏÿ ≥ 0, at the
same time there is |ẏ| ≥ ‖ẏ(0)‖ ≥ 2ι1

|d1 ′(y(0))|
.

Through the above, the trajectory is going to pass through
region � in fixed time T�, and satisfy T� ≤ max ι1τ f1′(τ ),
where τ ∈ [0, ε]. The extra time T� can be seen as the cost
of avoiding the singularity.

The proof is completed.
Theorem 2: As the system reaches on the sliding-mode

surface ρj(t) = 0, the error of the position will converge to
zero and the system tends to be stable in fixed time.

Proof:When the system is on the sliding-mode ρj(t) =
0, the safety function Ao = 0, and there is

evj = −k1epj
∥∥epj∥∥− k2epj∥∥epj∥∥− 1

2 (46)

Choose the following lyapunov function

V3 =
1
2
eTpjepj (47)

the time derivative of V3 is calculated as

V̇3 = eTpjėpj

= eTpj

(
−k1epj

∥∥epj∥∥− k2epj∥∥epj∥∥− 1
2

)
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= −k1
∥∥epj∥∥3 − k2∥∥epj∥∥ 3

2

= −K1V
3
2
3 − K2V

3
4
3 (48)

where K1 and K2 are two positive constants and are given as
K1 =

k1

2
3
2
,K2 =

k2

2
3
4

The fixed settling time T12 is bounded by

T12 ≤
2
K1
+

4
K2

(49)

Thus, the outer-loop convergence time T1 is bounded by

T1 ≤ T11 + T12 (50)

The whole outer-loop proof is completed.
Remark 3: In order to ensure the good performance of the

system, f1, f2, f3 are chosen as f1 > 0, f2 > 0, f3 > 0.
The defined parameters µor and βor are the safety factors.
χ0 is larger than noise error, and it is selected as a small
positive constant. qor reflects the accuracy associatedwith the
estimated equivalent control. The impact of the parameter σ0
on the system is slight, and it is suggested to be set in the
range of σ0 > 0.

B. THE INNER-LOOP SYSTEM STABILITY ANALYSIS
Define the angular velocity error ω̃j = ωj − R(Q̃j)ωdj, where
ωdj is the desired angular velocity and defined as

ωdj = 2
[
ηdjI3 + S(qdj)
−qTdj

]T
Q̇dj (51)

Consider the first-order sliding mode equation as follow:

xj(t) = k3q̃j
∥∥q̃j∥∥+ k4q̃j∥∥q̃j∥∥− 1

2 + ω̃j

+ι2

[
Ŝ(d1′(a))

]−1
E1 (52)

Similarly to the outer-loop, a is a dynamic variable and
defined as

ȧ = k3q̃j
∥∥q̃j∥∥+ k4q̃j∥∥q̃j∥∥− 1

2 + ω̃j (53)

Take the time derivative of xj(t) yields

ẋj(t) = β2 + ω̇j + S(ω̃j)R(Q̃j)ωdj − R(Q̃j)ω̇dj

+ι2

[
Ŝ(d1′(a))

]−2
Ŝ
(
d1′′(a)

)
ȧ

= β2 − I
−1
fj S(ωj)Ifjωj + I

−1
fj d0j

+S(ω̃j)R(Q̃J )ωdj − R(Q̃j)ω̃dj

+ι2

[
Ŝ(d1′(a))

]−2
Ŝ
(
d1′′(a)

)
ȧ (54)

where

β2 =

[
k3
2

(
I +

q̃jq̃Tj∥∥q̃j∥∥2
)∥∥q̃j∥∥

+
k4
2

(
I +

q̃jq̃Tj∥∥q̃j∥∥2
)∥∥q̃j∥∥− 1

2

]
(η̃jI3 + S(q̃j))ω̃j

To find out the special case in the sliding process, let

ẋj(t) = rir (t)+ β2 + 0(t)

+ι2

[
Ŝ(d1′(a))

]−2
Ŝ
(
d1′′(a)

)
ȧ (55)

where

rir (t) = −I
−1
fj S(ωj)Ifjωj + I

−1
fj d0j

+S(ω̃j)R(Q̃j)ωdj − R(Q̃j)ω̇dj (56)

where λ2 > 0, Ifj, ωdj, ω̇dj are bounded, so rir (t) is bounded
and it has a bunch of upper bounds ‖rir (t)‖ < rir0, ‖ṙir (t)‖ <
rir1, ‖r̈ir (t)‖ < rir2, where rir0, rir1, rir2 are unknown
constants.

ϒ =



∥∥xj(t)∥∥2,
if
∥∥xj(t)∥∥ ≥ υ1

5
4υ
−0.5
1

∥∥xj(t)∥∥2 − 1
4
υ−2.51

∥∥xj(t)∥∥4,
otherwise

(57)

During the sliding motion xj(t) ≡ 0, design the so-called
equivalent control 0eq(t), which must take on average to
maintain sliding. To make sure that ẋj(t) = 0, xj(t) = 0, with
d1′(a) = 0 in definition, 0eq(t) must satisfy 0eq(t) = −rir (t).
So, there is

∥∥0eq(t)∥∥ = ‖rir (t)‖ during sliding. In order to
obtain the estimate value of 0eq(t), it can be performed by
low-pass filtering. In this way, 0eq(t) is got as follows:

˙̄0eq(t) =
1
κ2

(0eq(t)− 0̄eq(t)) (58)

where κ2 is a small constant, which is to make
0̄eq(t)→ 0eq(t)
Assuming that 1 > φir1 > 0, φir0 > 0, there is∣∣∥∥0̄eq(t)∥∥− ∥∥0eq(t)∥∥∣∣ < φir1

∥∥0eq(t)∥∥+ φir0 (59)

s(t) contains a nested adaption law shown as follows:

ṡ(t) = −δir (t)
[
‖ξ (t)‖3 + ‖ξ (t)‖

1
2

]
(60)

ξ (t) = s(t)−
1
βir

∥∥0̄eq(t)∥∥− µir (61)

δir (t) = b0 + b(t) (62)

ḃ(t) =



$
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+

b0
ς̂ (t)

[
‖ς (t)‖4 + ‖ς (t)‖

3
2

]
, if ‖ ξ (t) ‖> ξ0

b0
ς̂ (t)

[
‖ς (t)‖4 + ‖ς (t)‖

3
2

]
,

otherwise
(63)

ς (t) =
qirrir 2
βir

− b(t) (64)

where ς̂ (t) =
{

ς (t) ς (t) 6= 0
ς (t)+ ς0 ς (t) = 0

, ς0 > 0 is a small

constant, $ > 0, b0 > 0, 0 < βir < 1 and µir > 0 are
design scalars to make sure

1
βir

∥∥0̄eq(t)∥∥+ µir2 >
∥∥0eq(t)∥∥ (65)
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A lower-bound of s(t) is provided, and the goal is to ensure

s(t) >
1
βir

∥∥0̄eq(t)∥∥+ µir (66)

Theorem 3: For the system (2), with the fixed time

T21 ≤ T ∗21
1
=

d1(a( 4
µbc2(1−γ2)

+
1

µbc4(α2−1)
))

ι2
+

4
µac1(1−γ1)

+

1
µac2(α1−1)

, the sliding surface xj converges to set Dx ={
xj|
∥∥xj∥∥ ≤ υx 1

= max(υ1, υV2 )
}
, where 0 < µb < 1, γ2 =

3
4 , α2 = 2, and the fixed-time robust stability of the system is
proved.

The virtual attitude control 0j is designed as follows:

0oj =

{
0j X ∈ R2

\
^

�

0∗j X ∈
^

�
(67)

where R2 is the error domain,
^

� is the singular region

0j = β2 − Ifj(s(t)sign(xj)+ (
1
2
)233

∥∥xj (t)∥∥2xj(t)
+(

1
2
)
3
434

ϒ∥∥xj (t)∥∥2 xj(t)
+ι2

[
Ŝ(d1′(a))

]−2
Ŝ
(
d1′′(a)

)
ȧ) (68)

0∗j = β2 − sign(ȧ)Ifj(s(t)sign(xj)

+(
1
2
)233

∥∥xj (t)∥∥2xj(t)+ (
1
2
)
3
434

ϒ∥∥xj (t)∥∥2 xj(t) (69)

where 33, 34 are constants and satisfy 33 > 0, 34 > 0.
Proof: Choose the following Lyapunov function candidate

V2 =
1
2
xTj xj +

1
2
ξ (t)2 +

1
2$

ς (t)2 (70)

If s(t) >‖ rir (t) ‖, it satisfies

xTj ẋj = xTj

(
rir (t)+ u(t)+ ι2

[
Ŝ(d2′(a))

]−2
Ŝ
(
d1′′(a)

)
ȧ
)

≤ −xTj

(
(
1
2
)
2
33
∥∥xj∥∥2xj +(12 )

3
4
34

ϒ∥∥xj∥∥2 xj
)

= −33

(
1
2
xTj xj

)2

−34(
1
2
)
3
4ϒ (71)

when
∥∥xj∥∥ ≥ υ1, there is

−34(
1
2
)
3
4ϒ = −34(

1
2
xTj xj)

3
4 (72)

when
∥∥xj∥∥ < υ1, there is

−34(
1
2
)
3
4ϒ ≤ −34(

1
2
xTj xj)

3
4 + 9̂ (73)

where 9̂= ( 5
4
11
2 )

11
4 34υ

3
2
1 so−34( 12 )

3
4ϒ≤−34( 12x

T x)
3
4+9̂.

So there is

xTj ẋj ≤ −33

(
1
2
xTj xj

)2

−34(
1
2
xTj xj)

3
4 + 9̂ (74)

Note if ξ (t)= 0 then s(t) = 1
βir

∥∥0̄eq(t)∥∥ + µir >∥∥0eq(t)∥∥ = ‖rir (t)‖
ξ̇ (t)

= ṡ(t)−
1
βir

∥∥∥ ˙̄0eq(t)∥∥∥
= −(b0 + b(t))

[
‖ξ (t)‖3 + ‖ξ (t)‖

1
2

]
−

1
βir

∥∥∥ ˙̄0eq(t)∥∥∥
= −(z0 +

qirrir2
βir
− ς (t))

[
‖ξ (t)‖3 + ‖ξ (t)‖

1
2

]
−

1
βir

∥∥∥ ˙̄0eq(t)∥∥∥ (75)

ξ (t)ξ̇ (t)

= −(b0 + b(t))
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−

ξ

βir

∥∥∥ ˙̄0eq(t)∥∥∥
≤ −(b0 +

qirrir 2
βir

− ς (t))
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
βir

∥∥∥ ˙̄0eq(t)∥∥∥
≤ −b0

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−
qirrir 2
βir

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+ς (t)

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+
qirrir 2
βir

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
= −b0

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+ ς (t)

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
(76)

To prove the stability of inner-loop, consider two condi-
tions in the following proof.

Case a). ‖ ξ (t) ‖> ξ0
According to ς (t) in (64), the first-order derivative of ς (t)

as

ς̇ (t) = −b(t)

= −$
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−

b0
ς (t)

[
‖ς (t)‖4 + ‖ς (t)‖

3
2

]
(77)

Substitute (74), (76) and (77) to (70), it follows that

V̇2 ≤ −33(
1
2
xTj xj)

2
−34(

1
2
xTj xj)

3
4 + 9̂

−b0
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+ζ (t)

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−ζ (t)

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−
b0
$

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
= −33(

1
2
xTj xj)

2
−34(

1
2
xTj xj)

3
4 + 9̂

−b0
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
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−
b0
$

[
‖ζ (t)‖4 + ‖ζ (t)‖

3
2

]
≤ −c3V 2

2 − c4V
3
4
2 + 9̂ (78)

where c3 = min(33, b0,
b0
$
), c4 = min(34, b0,

b0
$
)

Case b.) ‖ξ (t)‖ ≤ ξ0
From (63), there is ḃ(t) = 0 and based on the definition of

ς (t) given by (64), there is

ς̇ (t) = −b(t) = −
b0
ς (t)

[
‖ς (t)‖4 + ‖ς (t)‖

3
2

]
(79)

Substitute (74), (76) and (79) to (70), there is

V̇2 ≤ −33(
1
2
xTj xj)

2
−34(

1
2
xTj xj)

3
4 + 9̂

−b0
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
+ς(t)

[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−
b0
$

[
‖ς (t)‖4 + ‖ς (t)‖

3
2

]
(80)

Consequently, it’s proved that outside the following rect-
angular region:

τ =

{
(ξ, ς) : ‖ξ‖ < ξ0, 0 ≤ ς <

qirrir2
βir

}
(81)

the inequality

V̇2 ≤ −33(
1
2
xTj xj)

2
−34(

1
2
xTj xj)

3
4 + 9̂

−b0
[
‖ξ (t)‖4 + ‖ξ (t)‖

3
2

]
−
b0
$

[
‖ς (t)‖4 + ‖ς (t)‖

3
2

]
(82)

is satisfied. So, we construct an ellipse as follows:

N = {(ξ, ς) : V (ξ, ς) < ψ̂
}

(83)

ψ̂ =
1
2
ξ0

2
+

1
$

(
qirrir 2
βir

)2 (84)

where ξ (t) is the X-axis, ς (t) is the Y-axis. The ellipse
contains a rectangular, which width is ξ0, and the height is
qir rir2
βir

.

If the µir can be chosen to satisfy

1
4
µ2
ir > ξ20 +

1
$

(
qirrir2
βir

)2

(85)

ξ (t) will be forced to converge into the region of in fixed time.
According to the definition of ξ (t) given by (61), there is

‖ξ (t)‖ =

∥∥∥∥s(t)− 1
βir

∥∥0̄eq(t)∥∥− µir∥∥∥∥ < 1
2
µir (86)

Based on the (65) and (66), there is

s(t) >
1
βir

∥∥0̄eq(t)∥∥+ µir2 >
∥∥0eq(t)∥∥ = ‖rir (t)‖ (87)

The remaining proof follows the procedure in [37], and the
inequality can be concluded

V̇2 ≤ −c3V22 − c4V
3
4
2 + 9̂ (88)

Thus the sliding surface xj can converge to zero in fixed
time.
Remark 4:As the sliding surface converges to zero, in other

words, the quaternion tracking error of the quadrotors con-

verges to zero, there is ȧ = −ι1
[
Ŝ(d1′(a))

]−1
E1. As exploited

in the definition I, lima→0

[
Ŝ(d1′(a))

]−1
= 0, but if at this

point ȧ 6= 0, it will give rise to the singularity problem.
The singularity avoidance in the attitude design could be

similar design in outer-loop design, the field of
^

� can be nar-
rowed down by choosing ι2. By a series of singular-avoidance
like the one in outer-loop design, the control input sets up as
follows 0∗j .
Remark 5: The scalar ξ0 is a small positive constant, and it

is larger than noise error. The defined parameters µir and βir
are the safety factors. qir reflects the accuracy associated with
the estimated equivalent control. Now, the proof is partially
completed
Theorem 4: As the system reaches on the sliding-mode

surface xj(t) = 0, the error of the attitude will converge to
zero and the system tends to be stable in fixed time.

Proof: When the system is on the sliding-mode
xj(t) = 0, there is

ω̃j = −k3q̃j
∥∥q̃j∥∥− k4q̃j∥∥q̃j∥∥− 1

2 (89)

Choose the following lyapunov function

V4 =
1
2
q̃Tj q̃j (90)

it yields that

V̇4 = q̃Tj ˙̃qj

=
1
2
q̃Tj (η̃jI3 + S(q̃j))ω̃j

≤ −
k3
2

∥∥q̃j∥∥3 − k4
2

∥∥q̃j∥∥ 3
2

≤ −K3V
3
2
4 − K4V

3
4
3 (91)

where K3 =
k3

2
5
2
,K4 =

k4

2
7
4

The fixed settling time T22 is bounded by

T22 ≤
2
K3
+

4
K4

(92)

Thus, the inner-loop convergence time T2 is bounded by

T2 ≤ T21 + T22 (93)

The whole inner-loop proof is completed.

C. THE WHOLE CLOSED-LOOP STABILITY ANALYSIS
Theorem 5: For the outer-loop system (1) and inner-loop
system (2), with a uniformly bounded settling time Tb ≤

4
µcc5(1−γ3)

+
1

µcc6(α3−1)
, where γ3 = 3

4 , α3 = 2, the fixed-

time robust stability of the system is going to be proved.
Proof: Choose the following Lyapunov function

Vwhole = V1 + V2 (94)
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FIGURE 3. The communication graph.

FIGURE 4. The position of the quadrotor on the x-axis, y-axis, and z-axis.

FIGURE 5. The trajectory of six quadrotors in three dimensions.

It yields that

V̇whole = V̇1 + V̇2

= −c1V12 − c2V
3
4
1 +9 − c3V2

2
− c4V

3
4
2 + θ

≤ −c5V12 − c6V
3
4
1 + 2̂ (95)

where c5 = min {c1, c3}, c6 = min {c2, c4}, 2̂ = 9 + θ

FIGURE 6. The distance between two quadrotors.

FIGURE 7. The distance between the quadrotors and the obstacles.

The proof is completed.

IV. SIMULATION
A. SIMULATION I
For the purpose of verifying the effectiveness of AFTNTSC
and the high convergence speed with a competitive tracking
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FIGURE 8. The error function of position.
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FIGURE 9. The error function of quaternion.
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FIGURE 10. The error function of xj (j = 1,2,3,4,5,6) in AFTNTSC.

FIGURE 11. The error function of yj (j = 1,2,3,4,5,6) in AFTNTSC.

accuracy, two control methods are conducted in quadrotor
formation with the same initial conditions, one is AFTNTSC,
and the other is consensus-based cooperative formation con-
trol (CCFC) [38]. The control law of CCFC is given as

T̃totali (t) = −
N+1∑
j=1

aij

[
1∑

k=0

γ k(ĥ(k)i − ĥ
(k)
j )

]
,

i ∈ {1, 2, . . . ,N }

ĥ(k)j = h(k)j − d
(k)
hj , j ∈ {1, 2, . . . ,N }, k ∈ {0, 1}

1) PARAMETER SETTING
In this part, consider a group of six quadrotors are modeled
as in (1) and (2), the structure and model parameters of each
quadrotor are same. The physical parameters for each quadro-
tor are given as: mj = 1kg, g = 9.8m/s2, and the inertia
matrices for quadrotor is Ifj = diag

(
0.039 0.039 0.12

)
kg •

m2. dUj and d0j are the disturbance of the environment on the
quadrotor and the uncertainty of the system model, which are

randomly considered as dUj =
[
sin (t) sin (t) sin (t)

]T and
d0j =

[
sin (π t) sin (π t) sin (π t)

]T .
The outer-loop controller parameters are chosen as βor =

0.99, ϕ1= 18, κ1= 10, f1 =
[
0.001 0.0015 0.0015

]T , f2 =[
0.001 0.0015 0.0015

]T , f3 = [
0.001 0.0015 0.0015]T ,

32 = 0.85, ι1 = 10.
The inner-loop controller parameters are chosen as κ2= 1,

ϕ2 = 18, 33 = 0.12, 34 = 0.85, ι2 = 10, βir = 0.99.
The following simulation results are obtained with γ = 800,
λ1 = 5, λ2 = 5, σ0 = 0.5, r0 = 0.5, $ = 800,
ξ0 = 0.01, Ra = 2.5, Rb = 1.5, Rc = 11, Rd = 8,
Re = 6, Rf = 3, ε0 = 0.01, ς0 = 0.01. The expected trajec-
tory of the leader quadrotor is qd =

[
−

1
10 sin

t
2π

5
2 t

1
2 t
]T
.

The initial conditions of the quadrotors from 1 to 6 are
chosen as p1 =

[
−0.1 0.1 0.1

]T , p2 = [
0.45 5.2 2.8

]T ,
p3 =

[
1 8.5 8.5

]T , p4 =
[
0.25 4.5 6.5

]T , p5 =[
0.85 13.5 10.5

]T , p6 = [
0.75 1.5 −1.5

]T . The initial
speed for each quadrotor is zero. The initial quaternion for
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FIGURE 12. The error function of zj (j = 1,2,3,4,5,6) in AFTNTSC.

FIGURE 13. The error function of qj1(j = 1,2,3,4,5,6) in AFTNTSC.

FIGURE 14. The error function of qj2(j = 1,2,3,4,5,6) in AFTNTSC.

each quadrotor is Q =
[
0 0 0.6 0.8

]T , and its expec-
tation is Qd =

[
0 0 0 1

]T . The initial angular veloc-
ity for each quadrotor is zero. The formation distance D

is selected as D1 =
[
0.5 6 3

]T , D2 =
[
0.5 3 6

]T ,
D3 =

[
−0.75 −6 −2

]T , D4 =
[
−0.25 −3 4

]T ,
D5 =

[
−0.2 6 3

]T , D6 =
[
0.2 −2 −7

]T , which are
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FIGURE 15. The error function of qj3(j = 1,2,3,4,5,6) in AFTNTSC.

FIGURE 16. The error function of ηj (j = 1,2,3,4,5,6) in AFTNTSC.

shown in Fig. 3. The position of the obstacles are pj1 =[
−

1
10 sin

10
π

50 10
]T
, pj2 =

[
−

1
10 sin

20
π

106 23.5
]T
, pj3 =[

−
1
10 sin

30
π

159 39.5]T .

2) RESULTS ANALYSIS
The simulation results are shown as Fig.4-Fig.9. As is shown
in Fig.4, and Fig.5, all quadrotors can track the desired trajec-
tory and form the preset formation configuration according
to the communication topology in Fig.3 with high speed.
And the distance between the quadrotor and obstacle always
maintain a safe distance as shown in Fig.6. FromFig.7 the two
quadrotors can quickly separate and quadrotor leave obstacle
in case of entering the obstacle avoidance range, and then
the formation configuration is reformed. It is worth noting
that in Fig.8 the fluctuation of position error of AFTNTSC
is smaller than that of CCFC. It is obviously can be seen
from Fig.9 that the attitude error of AFTNTSC converges
faster than the error of CCFC, with small fluctuations and
high convergence accuracy.

B. SIMULATION II
In order to further verify the effectiveness of AFTNTSC,
Monte Carlo simulation is conducted with different ini-
tial states, and the simulation is executed 20 times.
Each time the initial state is generated on pj =[
xj ± 0.5 yj ± 0.5 zj ± 0.5

]T and Qj =
[
qj1 qj2 qj3 ηj

]T
with a uniform probability, in which qj1, qj2, qj3 ∈

[
−

1
3 ,

1
3

]
and ηj ∈

[√
2
3 , 1

]
. Figs.10-12 show the tracking of each

member of the quadrotor formation at various coordinates
in multiple simulations. Figs.13-16 show the quaternion
tracking of the quadrotor in multiple simulations. Figs.10-12
are the simulation result of the error function of position in
AFTNTSC, and its purpose is to illustrate the advantages of
this method. Figs.13-16 are the error function of quaternion in
AFTNTSC. After statistics of the simulation results, a sum-
mary of these simulation results is shown in Table 1.
Remark 6: Assume that the convergence time is

x1, x2 . . . xn (n = 1, 2, 3 . . .). Then, the Mean convergence
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TABLE 1. Statistic results of 20 simulations.

time mathematical model is x̄ =

n∑
j=1

xj

n , and the Convergence

time variance’s is x2σ =

n∑
j=1

(xj−x̄)2

n .

V. CONCLUSION
The distributed formation control problem has been inves-
tigated for quadrotor formation system with inter-quadrotor
collision avoidance, obstacle avoidance and unknown distur-
bances. A safety control strategy and adaptive non-singularity
fixed time control method have been designed for quadrotor
formation. The fixed time stability of robust and safety con-
trol has been proved by Lyapunov theory. Simulation results
have been demonstrated the effectiveness of the proposed
formation control. In the future work, the formation control
with stochastic links failure is considered.
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