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ABSTRACT In the three-dimensional reconstruction of the pulmonary artery and the identification of
pulmonary embolism, experts find it difficult to accurately estimate the severity of the embolism in
the pulmonary artery, due to its irregular shape and complex adjacent tissues. In effect, segmenting the
pulmonary artery accurately is the basis for assessing the severity of pulmonary embolism, and it is also
a challengeable task. To solve this problem, this study proposes a ResD-Unet architecture for pulmonary
artery segmentation. To begin with, the U-Net network is used as the basic structure, which allows efficient
information flow and good performance in the absence of a sufficiently large dataset. In what follows,
novel Residual-Dense blocks are introduced in the ResD-Unet architecture to refine image segmentation
and build a deeper network while improving the gradient circulation of the network. Finally, a novel hybrid
loss function is utilized to make full use of the advantages of the binary cross entropy loss, Dice loss and
SSIM loss. Equipped with the hybrid loss, the proposed architecture is able to effectively segment the object
areas and accurately predict the structures with clear boundaries. The experimental results show that the
proposed framework can achieve high segmentation accuracy and efficiency, and the segmentation results
are comparable to that of manual segmentation.

INDEX TERMS Neural network, ResD-Unet, Residual-dense block, image segmentation, deep learning.

I. INTRODUCTION
Pulmonary embolism (PE) refers to the pathological and clin-
ical conditions caused by impacting substances entering the
pulmonary artery and blocking the blood supply to the tissues,
and its morbidity is only lower than that of coronary heart
disease and hypertension. Early detection, early diagnosis
and timely treatment are the keys to effectively reduce the
risk of death. In recent years, contrast-enhanced Computed
Tomography (CT) is the most commonly used modality for
PE screening [1]. Three-dimensional visualization is a tech-
nology that uses two-dimensional image sequence to recon-
struct three dimensional model and perform analysis. The
3D construction of lung is achieved by stacking the evolved
contours of individual slices over one another [2]. Compared
with two-dimensional (2D) images, the 3D visualization of
pulmonary artery CT images can provide more information
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to predict the morphological changes of the pulmonary artery,
thereby bringing convenience to the diagnosis of PE. Since
PE exists only in the pulmonary artery, the segmentation
of pulmonary artery is particularly important. On the one
hand, manual segmentation of pulmonary artery from a
CT sequence is very time-consuming and easy to misdiag-
nose [3]. On the other hand, the segmentation accuracy of
the pulmonary artery is of great significance to the three-
dimensional reconstruction of the pulmonary artery, which
can help physicians diagnose the embolism and evaluate
the effectiveness of embolism treatments. Therefore, auto-
matic segmentation methods are highly desirable in clinical
practice.

In the early days, people followed simple feature-based
methods, such as regional growth methods, active contour
models and gradient vector flow [4]. Since the grayscale
of pulmonary artery is similar to surrounding tissues and
the structure is complex, the automatic segmentation of
pulmonary artery is a realistic and challenging issue.
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Nevertheless, existing traditional methods of medical image
segmentation have shown limited success in solving this dif-
ficult problem. At present, owing to the increasing popularity
of deep neural networks, scholars have gradually adopted
deep learning methods to solve complex problems in the field
of medical images. The use of deep networks has shown
significant advances and reliable results in many computer
vision tasks, including image segmentation, target recogni-
tion, motion tracking and image classification [5]. U-Net is
an image segmentation network proposed in 2015 by Ron-
neberger et al. [6]. It has been widely studied and applied
in the field of medical image segmentation by virtue of its
simple structure, strong generalization and strong segmenta-
tion abilities. In this process, many variants of U-Net have
been proposed. Liu et al. [7] proposed an IU-Net architec-
ture that directly applied the maximum pooling layer to the
deconvolution layer, which reduced the loss of image features
and achieved better results than U-Net. Zhou et al. [8] pro-
posed a new general purpose image segmentation architecture
UNet++. Attributed to its nested structure and re-designed
skip connections, it demonstrates well performance over var-
ious state-of-the-art backbones. Xu et al. [9] proposed a new
liver segmentation framework using ResUnet with geometric
post-processing. Gu et al. [10] proposed a context encoder
network named CE-Net, which is used to obtain higher-level
information and preserve spatial information for 2D medical
image segmentation.

When training the neural network model, as the network
deepening, the model will encounter problems such as slow
convergence and vanishing gradient, which will affect the
accuracy of segmentation [11]. Besides, the fuzzy edges of
the pulmonary artery and the variability of its shape and
size make it prone to mis-segmentation and low segmenta-
tion accuracy when using U-Net for pulmonary artery seg-
mentation. Based on this, we introduce a novel framework
for pulmonary artery segmentation, termed ResD-Unet. The
framework that includes a new hybrid loss function performs
well. The main contributions of this paper are as follows:

(1) A novel semantic segmentation architecture is proposed
that can address problems faced by the traditional U-Net
network, i.e., vanishing gradients and an insufficient feature
extraction. The architecture is mainly composed of Residual-
Dense block which combines the advantages of residual
connections and dense connections.

(2) A new hybrid loss function that combines binary
cross entropy (BCE) loss, Dice loss and structural similar-
ity (SSIM) loss is used. It makes full use of the advantages of
the three loss functions, i.e., smoothing gradients, handling
imbalanced categories, and thinning boundaries.

II. METHODOLOGY
A. NETWORK FOUNDATION
The ResD-Unet network proposed in this paper is based on
U-Net structure. U-Net is one of the most well-known deep
learning networks with an encoder-decoder architecture, it is
widely used in the field of medical image segmentation.

FIGURE 1. Convolution module of network structure.

Although in the absence of a large number of data sets, U-Net
can also achieve good performance.

The concept of ‘‘the deeper the better’’ is regarded as
the key principle of neural networks. Training deep neural
networks with increased network depth can improve accu-
racy. However, when dealing with deep architecture, it will
hinder convergence during training and cause vanishing gra-
dients. In order to solve these limitations, ResNet is proposed
by Hang et al. [12]. The residual connection (as shown
in Fig 1(a)) is implemented in the form of a skip connec-
tion, where the input of the unit is directly added to the
output of the unit and activated. The residual network solves
the problem of gradient disappearance when the network is
deepened and it also converges faster under the premise of
the same number of layers. The dense connection (as shown
in Fig 1(b)) is derived from the densely-connected network
(Dense Net) [13]. For dense connection, any layer is added
direct connection to all subsequent layers in a feed-forward
manner to maximize the information flow in the network and
make training easier. This is motivated by three observations.
First, each layer in the network accepts the features of all
the layers before it as input, helps to improve the flow of
information and gradients throughout the entire network.
Secondly, there is an implicit deep supervision thanks to short
paths to all feature maps in the architecture. And third, dense
connection has the effect of regularization, which can reduce
the overfitting on training sets. However, excessive use of
dense connection can increase network complexity.

Drawing lessons from residual connection and dense
connection, we propose Residual-Dense blocks (as shown
in Fig 2), which attenuate to a great extent the problem
of degradation and vanishing gradients that are present in
deep architectures. To achieve optimal network performance,
the ordinary convolution blocks of the classical U-Net archi-
tecture are replaced with modified Residual-Dense blocks to
form ResD-Unet.

B. RESD-UNET ARCHITECTURE
To fully extract high-level intra-slice features, we designed
an efficient deep network called ResD-Unet, which combines
the advantages of residual connections [12], dense connec-
tions [13] and U-Net [6]. Residual-Dense connection adds
the features of all the previous layers to the bottom layer to
achieve feature reuse and facilitate the back-propagation of
the gradient during the training process. Besides, it effectively
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FIGURE 2. Residual-dense blocks. (a) Encode block; (b) Decoder block.

solves the problem of information loss and avoids the disap-
pearance of gradients. The use of batch normalization (BN)
layer [14] avoids overfitting and speeds up the training and
convergence of the network. The above-mentioned strategies
can make the network deeper, thus faster to converge.

An overview of ResD-Unet architecture is shown in Fig 3.
It can be divided into three parts, namely, the encoding path,
the central part and the decoding path. The left half of the
network is the encoding path, while the right one is the
decoding path. The encoding path consists of Encoder-blocks
(as shown in Fig 2(a)). Its backbone consists of two

successive 3×3 convolution blocks and an identity mapping.
Each convolution block includes a batch normalization layer,
a rectified linear unit (ReLU) [15] activation layer and two
convolution layers with the stride of 2 and 1 respectively.
A convolutional layer with the stride of 2 and a BN layer are
used in identity mapping to connect the input and output of
the Encoder-block. Then, the output of the first convolution
block is connected to the output of the Encoder-block. In this
paper, a convolutional layer with the stride of 2 is used to
reduce the spatial dimension of the feature maps by half,
rather than the pooling layer. Some of the latest network
architectures [16] have demonstrated that with this approach,
network performance can be roughly consistent, or even
slightly improved. Residual-block contains two successive
3×3 convolutional layers, and the input of the block is added
to the output. The structure of the Decoder-block (as shown
in Fig 2(b)) is similar to the Encoder-block, but the stride of
all convolutional layers in it is 1. At the beginning of each
Decoder-block, there is an up-sampling of the lower-level
feature map.

We increase network layers for more precise position-
ing. We construct ResD-Unet with four Encoder-blocks and
Decoder -blocks instead of three as in [17]. At the end of the
network, a 1 × 1 convolution and a sigmoid activation layer
are used to convert the channel map into a feature map with
two categories.

C. LOSS FUNCTION
The hybrid loss function is proposed to improve the similarity
between the segmented image and the labelled image,

FIGURE 3. The ResD-Unet architecture.
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which is defined as:

Loss = β1LossDice + β2LossCE + β3LossSSIM (1)

Among them, LossDice, LossCE and LossSSIM represent
the Dice loss function [18], BCE loss function [19] and
SSIM loss function [20] respectively, and β represents each
hyper-parameter of the loss function.

Dice coefficient is a similarity measurement, and is quite
effective in dealing with imbalanced categories. It is defined
as follows:

LossDice = 1−
2
∑N

i pigi∑N
i P

2
i +

∑N
i g

2
i

(2)

where N denotes the sum of pixels, pi is the predicted label
and gi is the ground-truth label, pi, gi ∈ [0, 1].
Dice loss is sometimes unstable during the training pro-

cess, which is not conducive to network convergence [21].
Especially when pi and gi are too small, the calculated gra-
dient of Dice changes drastically. BCE loss is widely used in
neural network training by calculating the similarity between
the ground-truth label and the predicted distribution. The
cross entropy is used to stabilize training. Its formula is as
follows:

LossCE = −
1
N

∑N

i
(gi log pi + (1− gi) log(1− pi)) (3)

where pi is the predicted label, gi is the ground truth label,
pi, gi ∈ [0, 1].
SSIM is used for image quality evaluation. It captures the

structure and contrast information in an image. When it is
integrated into the loss function of the network, the structural
information of the annotated image can be obtained. x = {xj :
j = 1, . . . ,N 2

} and y = {yj : j = 1, . . . ,N 2
} denote the pixel

values of the corresponding regions of the segmented picture
and the expert-labelled picture respectively. N is the number
of pixels. SSIM is defined as:
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Among them, µx , µy and σx , σy are the mean and standard
deviation of x and y, respectively. σxy represents their covari-
ance. C1 and C2 are small constants chosen to prevent insta-
bility when the denominator is equal to zero. In our paper,
C1 and C2 are set as 0.04 and 0.088 respectively. SSIM loss
is a patch-level metric that considers the local neighborhood
of each pixel. It gives the border a higher weight. In other
words, the loss is greater near the border, even if the predicted
probabilities on the boundary and the rest of the foreground
are the same. The loss on the boundary is the largest at the
beginning of training [20]. Therefore, the use of SSIM helps
to optimize the boundary features.

Dice coefficient evaluates the degree of overlap between
our network segmentation output and the ground truth label,

which is our ultimate optimization goal. BCE loss maintains
a smooth gradient for all pixels and helps the convergence
of the loss function. SSIM loss function is used to optimize
the segmentation details. Therefore, the combination of these
three losses can make full use of their advantages, which
can deal with unbalanced categories, smooth gradients, opti-
mize the segmentation details, and ultimately obtain higher
network performance.

III. EXPERIMENT
The lung CT images provided by the China-Japan Friendship
Hospital and the public dataset CHAOS were utilized in
the experiment to train and test ResD-Unet architecture, and
finally evaluate its performance. To make the results more
reliable, we also compared the performance of ResD-Unet
model with other models.

A. DATASET
To evaluate ResD-Unet, we used the lung CT image sequence
data set provided by the China-Japan Friendship Hospital.
The data set consists of a total of about 4000 CT images
of 80 patients, and the corresponding ground truth mask was
marked by professional physicians. This dataset is not public.

The second data set we used was the CHAOS, which is a
public data set. CHAOS [22] challenge was held in the IEEE
International Symposium on Biomedical Imaging (ISBI) in
April, 2019 Venice, ITALY. Two databases (Abdominal CT
and MRI) were used in this challenge but we only choose
one, i.e., Liver Segmentation (CT only), which corresponds
to a series of DICOM images belonging to a single patient and
contains 4,282 slices of CT images of 40 different patients.

B. PRE-PROCESSING
The input images in this article are two-dimensional CT
images, and the format of the original CT images are
DICOM [23]. The value range of Hounsfield is large, and
the target area is not obvious. Therefore, we preprocessed
each image in the CT sequence. Firstly, we read all DICOM
files and extracted the pixel values. Then, the pixel values
were normalized to the [0, 1] interval, and were stored in
the. BMP format. Finally, the histogram equalization was
performed on the image, which can enhance the contrast
of the organ boundary. Fig 4 illustrates a flowchart of
image preprocessing, and Fig 5 gives an example of this
preprocessing method.

C. IMPLEMENTATION DETAILS
The experimental environment of this research is Linux.
We ran our experiments on a NVIDIA Tesla V100 system
with 256G of memory. All models are implemented using
Keras framework [24] with Tensorflow 2.1.0 [25] as back-
end. In the meantime, the proposed architecture is optimized
by Adam (adaptive moment estimation) [26] optimizer. The
initial learning rate of the neural network is 2e-4. The batch
size is set to be four. For the lung CT dataset, the hyper-
parameters β1, β2, and β3 of the loss function are set as
0.6, 0.3, 0.1 respectively through many experiments and
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FIGURE 4. Flow chart of data preprocessing.

FIGURE 5. Sample of CT image after preprocessing.

adjustments, and the number of epochs is set as 100. For the
CHAOS dataset, the hyper-parameters β1, β2, and β3 are
set as 0.7, 0.2, 0.1 respectively through many experiments
and adjustments, and the number of epochs is set as 120.
In both datasets, we used 80% of dataset for training, 10%
for validation, and 10% for testing. The size of input images
is 256× 256.

D. RESULTS AND COMPARISONS
To make the results more reliable and illustrate ResD-Unet’s
high performance in pulmonary artery segmentation,
the dataset were segmented simultaneously by the following
models, namely the original U-Net, ResUnet, DenseUnet
as in [27], CE-Net as in [10], UNet++ as in [8] and
ResD-Unet.

Fig 6 shows the results of different networks to segment
the pulmonary artery. Fig 6(b) is a mask generated from the
labelled file, representing the label value. Fig 6(f) represents
the result of the prediction of the CE-Net model as in [9].
Fig 6(g) concerns the result of the prediction of UNet++.
Fig 6(h) is the segmentation result of ResD-Unet. It can

be seen from Fig 6 that the segmentation results obtained
by ResD-Unet model designed in this paper (Fig 6(h)) are
very close to that of the expert annotations (Fig 6(b)). Com-
pared with other algorithms, this method can effectively
display pulmonary artery boundary details and optimize
the flaws of other algorithms, e.g., over-segmentation and
under-segmentation.

To further verify the effectiveness of ResD-Unet, we also
conducted experiments on the public data set CHAOS.

Fig 7 displays the segmentation results on CHAOS data
set. Fig 7(a) represents the input image. Fig 7(b) is the mask
generated from the labelled file, representing the label value.
Fig 7(c) represents the segmentation result of U-Net. Fig 7(d)
is the segmentation result of ResUnet. Fig 7(e) represents
the segmentation result of DenseUnet. Fig 7(f) represents the
result of the prediction of the CE-Net. Fig 7(g) concerns the
result of the prediction of UNet++. Fig 7(h) is the result of
the prediction of ResD-Unet model in this paper. It can be
seen from the figure that the model proposed in this paper
can accurately segment in the range of lung. Segmentation
effects of CE-Net and UNet++ are almost as good as that of
ResD-Unet, but they need some subtle improvements. Other
algorithms can misidentify a small amount of soft tissue as
lung. The segmentation results of ResD-Unet architecture
(as shown in Fig 7(h)) is high in quality and has good effect,
which is better than U-Net, ResUnet, CE-Net and DenseUnet.
Its results have a high degree of similarity with the results
marked by the physician (As shown in Fig 7(b)).

After building a model, it is of utmost importance to evalu-
ate its performance. There is a peculiar high class unbalance,
and the selection of the correct metrics is critical to resolve
this problem. According to [28], recall and precision are
suitable and useful metrics when working with unbalanced
classes. Recall discloses how many relevant samples are
selected. Precision unveils how many predicted samples are
relevant. They are based on true positives TP (i.e., the sample
label is positive and is classified as positive), false positives
FP (i.e., the sample label is negative, but is classified as
positive) and false negatives FN (i.e., the sample label is
positive, but is classified as negative) [29].

Based on the above values, the recall and precision indexes
can be calculated.

Recall is defined as follows:

Re call =
TP

TP+ FN
(6)

Precision is defined as follows:

Pr ecision =
TP

TP+ FP
(7)

To make the results more convincing, SSIM value and Dice
coefficient are also used to evaluate the results [30]. SSIM is
a metric used to capture structure and contrast information
in an image for image quality assessment, its calculation
formula is shown in equation (4). We divide the image into
N blocks with a sliding window, calculate the structural
similarity SSIM of each block, and finally take the average
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FIGURE 6. Segmentation results of pulmonary artery with different algorithms. (a) Input image; (b) mask; (c) U-Net; (d) ResUnet; (e) DenseUnet;
(f) CE-Net; (g) UNet++;(h) ResD-Unet FIGURE 6. Segmentation results of pulmonary artery with differ.

FIGURE 7. Segmentation results of lung with different algorithms. (a) Input image; (b) mask; (c) U-Net; (d) ResUnet; (e) DenseUnet; (f) CE-Net;
(g) UNet++;(h) ResD-Unet.

value as the structural similarity measure of the ground true
image and the predicted image. Dice coefficient is a simi-
larity measurement, usually used to calculate the similarity
of two samples. In image segmentation, this formula can be
refined as:

DSC =
2 |G ∩ S|
|G| + |S|

(8)

where |G| represents the pixels of the ground truth image,
|S| represents the pixels of the segmented image. |G ∩ S|
represents the intersect pixels of two images.

When experimenting with lung CT image dataset, the
performances of different models are shown in Table 1.

Then we apply the proposed architecture to CHAOS
dataset. The performances of different models are shown
in Table 2.
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TABLE 1. The performance comparison of different algorithms on lung CT
image dataset.

TABLE 2. The performance comparison of different algorithms on CHAOS
dataset.

TABLE 3. The Running time comparison of four algorithms on lung CT
dataset.

It can be seen from Table 1 and Table 2 that our ResD-Unet
architecture shows pretty good performance in DSC, Recall,
Precision, and SSIM, thus verifying the effectiveness of the
proposed framework. From the last three rows of Table 1 and
Table 2, it can be seen that the segmentation effect of Dense-
Unet and UNet++ are almost as good as that of ResD-Unet.
However, DenseUnet and UNet++ use dense connection,
which is time-consuming when converging the model and
may lead to high computational complexity. In addition,
dense connection also requires more complex hardware
conditions.

We compared the running time of ResD-Unet architecture
with CE-Net, UNet++ and DenseUnet architecture on the
lung CT dataset in Table 3. It can be seen that the running
time of DenseUnet and UNet++ are almost two times that of
ResD-Unet. Our ResD-Unet architecture can still complete
the segmentation well without increasing the network com-
plexity. Compared with other networks, the method proposed
in this paper is higher in accuracy and efficiency. Therefore,
the ResD-Unet architecture combined with Residual-Dense
module and the hybrid loss function of boundary refinement
can effectively optimize the segmentation results and obtain
more accurate segmentation images.

IV. CONCLUSION
In this study, a ResD-Unet architecture was proposed to
segment the pulmonary artery region accurately. In the very
beginning, to solve U-Net’s problem of insufficient feature
extraction, we added Residual-Dense blocks to the feature
extraction layer composed of the original fixed-scale con-
volution kernel, which to a great extent resolved the prob-
lems in deep architectures, i.e., network degradation and
vanishing gradients. Then, a BN layer was added to the
network to accelerate model convergence and enhance the
model’s generalization ability. Finally, a hybrid loss function
was proposed to give higher weight to boundary pixels and
improve the definition of boundary segmentation. The exper-
imental results showed that the ResD-Unet network com-
bined with the boundary thinning hybrid loss function and
Residual-Dense module can segment the pulmonary arter-
ies of the lung CT images accurately, which facilitated the
subsequent research about three-dimensional reconstruction
of the pulmonary arteries and the evaluation of the severity
of PE.
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