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ABSTRACT In this paper, an efficient and fault-proof active node selection approach for localization tasks in
Internet of Things (IoT) and Mobile Crowd Sensing (MCS) systems is proposed. The proposed approach is
resilient to the presence of anomalous nodes. Localization is the process of fusing data readings frommultiple
sensing nodes with the aim of finding the location of a specific target, such as radiation source, forest fires
and noisy areas. Current active node selection systems for localization tasks perform algorithms like greedy
and genetic methods over the whole Area of Interest (AoI). As such, a system that considers anomalous data
is required to detect anomalies and perform localization over a large number of active nodes, which usually
takes multiple iterations and is computationally costly. To overcome this, we propose a resilient localization
approach which a) uses the median filter based image filtering technique to level out anomalous readings,
b) uses the filtered readings to reduce the AoI to be around the target location without being influenced
by anomalous nodes, c) detects and eliminates anomalies in the new AoI based on the deviation between
filtered readings and original readings, and d) selects remaining nodes in new AoI for localization. As a
result, there is a huge reduction in the complexity of active node selection and thus reduction in time taken
by the system to perform the task of source localization. The efficacy of the proposed system is evaluated for
radiation source localization tasks using simulated radiation dataset, by performing experiments for several
test scenarios. The results demonstrate that the system is able to perform localization tasks in significantly
reduced time and therefore generate near real-time results while also maintaining low localization error.

INDEX TERMS Anomaly detection, image filtering, Internet of Things, localization, mobile crowd sensing,
weighted average.

I. INTRODUCTION
The Internet of Things (IoT) allows the connection and inter-
action among different objects like sensors, RFIDs, actuators,
andmobile phones, due to which it is widely being considered
as the next big technological revolution [1], [2]. The paradigm
of IoT enabled the concept of Mobile Crowd Sensing (MCS),
in which a number of mobile devices act as sensing nodes and
collectively share sensing data so as to measure or predict
a phenomenon of common interest [3]–[5]. Owing to the
ubiquity of smart devices and the development of information
technologies, IoT and MCS have gained huge popularity in
the field of data collection [6], [7], and are thus well known
areas of research in the present day.

The associate editor coordinating the review of this manuscript and
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Target and event localization is one of the many applica-
tions of IoT and MCS. Localization tasks integrate and ana-
lyze data readings frommultiple sensing nodes to identify the
location of a particular event or phenomenon within a certain
AoI. These can be used to localize events or phenomena like
radiation, forest fires, noise pollution, water pollution, air
pollution, etc [8]–[11]. It has been shown that the localization
performance is considerably enhanced by employing many
well-distributed small sensors, rather than using a few big
ones [8]. The sensing nodes, however, comprise of small bat-
tery powered devices with limited residual energy, resulting
in a need to minimize the number of nodes used to perform
localization effectively. As such, optimum localization and
optimum node selection/ placement are both active areas of
research in localization tasks. In addition, these networksmay
comprise faulty nodes, which if used may deteriorate the
system’s localization accuracy. Thus, there is also a need for
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a mechanism that ensures robustness over such anomalous
nodes.

Current works fuse data from multiple sensors for reli-
able outcomes. Sensor optimization methods in the lit-
erature primarily consist of 2 types: node placement
optimization [12]–[14] and active node selection [15]–[19].
The node placement optimization methods are concerned
with placing the sensing nodes in a certain AoI with the objec-
tive of minimizing the localization time and the number of
deployed nodes, as well as maximizing the localization accu-
racy. Likewise, the active node selection techniques focus on
selecting the best group of sensing nodes from the available
population by considering several selection parameters such
as cost, area coverage, node’s residual energy, efficiency, and
reputation. The former is used in relatively earlier works and
are not as effective since the prior knowledge of the source
location is unknown, making the method complex and less
adaptive.

Localization tasks rely heavily on sensor readings to esti-
mate the target location. However, sensing nodes may some-
times provide incorrect readings due to malfunctioning of
its components or maliciousness. Such anomalous readings,
if used, introduce very high errors in the target estimation,
which can be extremely catastrophic in sensitive applications.
Thus, detection and removal of such node readings is very
important for accurate processing of such information. Most
of the existing localization systems do not take anomalous
readings into account and thus are less applicable to real life
scenarios [8]–[12], [15], [20]–[25].

Most of the common anomaly detection systems are based
on clustering, nearest neighbor, and, classification [26], [27]
which detect outliers that differ from the majority. However,
data points in localization tasks naturally vary from each
other, even though they are in the same neighborhood. They
follow a radial pattern depending on the node’s distance from
the event, where the nodes in closer proximity to source show
higher readings. Therefore, these methods are not effective
in localization tasks. A data-based centroiding technique for
the anomaly detection for localization tasks was introduced
in [16]. However in this work, the anomaly detection as well
as localization is done over the whole AoI and therefore takes
multiple iterations for completion. This is not ideal for time
and resource constraining tasks. The major shortcoming of
this method is that the localization process requires multiple
rounds of node selection and localization, which: a) is com-
putationally expensive, b) takes longer time to localize.

To overcome the aforementioned shortcomings, an Effi-
cient Fault Proof Localization System (EFLS) has been pro-
posed in this work. The system aims to reduce the complexity
and time required to localize by narrowing the AoI to a small
area around the target location. Before narrowing the AoI,
correctness in the presence of anomalous nodes is ensured
in a novel way by leveling out the anomalous data readings
using noise filtering techniques in images [28]–[30]. The
filtered readings are then used to reduce the AoI around
high valued nodes. As opposed to complex and iterative

methods that are performed over the whole AoI in existing
works, EFLS presents a simpler and faster method to select
active nodes in the presence of faulty readings. EFLS thus
results in: a) reduced complexity, b) reduced time to localize,
c) anomaly handling.

Thus, in comparison to current works, the major contribu-
tions of the proposed work are:

1) The design of a novel mechanism using median fil-
ter based image filtering technique to minimize AoI
around actual target in the presence of anomalous
nodes;

2) The design of a novel anomaly detection technique
using deviation between actual and filtered data;

3) Reduction in complexity of active node selection by
significant reduction in AoI;

4) Reduction in total time taken for localization and gen-
eration of near-real time results without compromising
task accuracy.

The efficacy of the proposed system is evaluated by using
real-life radiation datasets, where the task is to localize the
radiation source. However, it can also be applied to other
event localization tasks such as noise, fire, etc.

The rest of the paper is organized as follows. Section II
goes over published works on related topics. Section III
discusses the proposed approach consisting of median fil-
tering, AoI reduction, anomaly detection and localization.
Section IV presents and discusses the simulation results and
evaluation metrics used. Finally, section V concludes the
paper.

II. RELATED WORK
Many researches have taken place in literature which are
aimed towards developing algorithms to solve the problem
of localization using information from a network of sensing
devices that is distributed in a particular area. Some works
from literature [8], [12], [21]–[24] are mainly concerned with
just computing themathematical estimation of the target loca-
tion based on the data from sensing nodes, while other works
[12]–[16], [25] focus on development of full localization
system which addresses the optimal node selection for the
purpose of optimizing the task of localization.

Most of the early researches on source localization are
primarily aimed at minimizing the localization time and error.
[23] uses the Iterative Pruning Method to fuse data from
sensing nodes for localization, while [22], [31] useMaximum
Likelihood Estimate, and Inverse Square law to estimate the
target in the neighborhood of the global maxima. [21], [23],
[24], [32] use Time Difference of Arrival(TDoA) and Direc-
tion of Arrival(DoA) on readings to find the source location.
Likewise, Bayesian method is used by [8], [12], [15], [16],
[31], [33], in which prior belief about the target location are
updated based on the fusion of the current data readings.

In addition to performing localization, some of the early
works have also focused on finding the best location to deploy
the sensing nodes. Since this is a NP-hard problem, most
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works have used greedy and genetic algorithms. [12] has
proposed a solution using 9 stationary nodes while [13],
[14] have considered placement of mobile nodes. These tech-
niques targeted to minimize the number of nodes used along
with minimizing the localization time and maximizing the
localization accuracy. However, these node placement tech-
niques require prior knowledge of the event location, and are
thus not practical. More recent works have thus focused on
selecting a number of nodes from the whole population to use
for localization. A data-driven active node selection mecha-
nismwhile considering parameters including residual energy,
data confidence, area coverage, and cost is used in [15], [16],
[19]. Likewise, [17], [18] perform an initial estimation of
the target to generate the distance weight measurements for
active node selection.

Most of the aforementioned works, however, do not incor-
porate a way to deal with situations when the sensor readings
are anomalous, making these techniques highly prone to erro-
neous results in the presence of abnormal data. In literature,
there are several anomaly detection techniques which are
very accurate depending on the type of data used [26], [27].
Statistical modelling develops a statistical model to capture
the distribution of data, and flags a data instance as anomalous
if it does not fit the distribution [34]–[36]. Nearest neigh-
bor technique flags anomalies based on their distance from
the neighborhood [37]–[40]. Similarly, clustering technique
flags anomalies if the data instance lies far from the cluster
[41], [42]. Classification techniques involve a model that can
classify if the instance is anomalous or normal by learning
from training instances [43]–[45]. However, these anomaly
detection algorithms give poor results for detecting anomalies
in radially spreading data of localization tasks as they cannot
capture the distribution of the radially spreading data. A data-
based centroiding technique has been proposed in [16] to
effectively detect anomalous readings in localization tasks.
This work implemented an end-to-end localization system
using the data driven active node selection based on greedy
and genetic algorithms and Bayesian localization algorithm.

In this paper, we propose an efficient fault-proof localiza-
tion system that handles anomalous readings effectively. The
system uses fast image noise filtering techniques to outlie
anomalous readings, and make the localization process more
efficient. Previous works in the literature have never analysed
anomalies in localization tasks from the perspective of image
noise filtering. Noise that can exist in images include gaussian
noise, impulse noise, shot noise, uniform noise, film grain
noise and multiplicative noise. These noises can be refined
perfectly by using linear filters or non-linear filters or combi-
nation of those filters to obtain noise free images [28]–[30].
In the case of localization tasks, node positions and node read-
ings can be considered as analogous to pixel positions and
pixel intensities respectively in images. As such, anomalous
readings in sensing nodes can be inferred to be analogous to
noise in images. The anomalies in localization tasks resemble
the salt and pepper or impulse noise in images themost. These
types of noise in images have been shown to be effectively

TABLE 1. List of abbreviations.

removed by applying median filtering technique [28]–[30].
Similar technique, when applied in distributed node readings,
gives a filtered data that is free of anomalous values, which is
beneficial for efficient localization and anomaly detection.

III. PROPOSED SYSTEM
In source localization problems, the data readings provided
by the sensing nodes deployed in the AoI are aggregated
and processed with the aim of estimating the source location.
This can be done efficiently and accurately by using sensor
readings of nodes close to the actual source. In addition,
faulty readings can inject high errors in target prediction,
due to which selection of nodes closer to the source that
are not faulty has to be done. In this work, radiation source
localization is used as a running example. Given a single
radioactive source, the goal is to use the sensor readings of
nodes close to the actual target in order to predict the source
location while considering anomalous readings.

With the goal of minimizing complexity of node selection
process in a fault-proof manner, the proposed localization
systemmakes use of an image filtering technique: the median
filter, to regularize anomalous readings so that the Area of
Interest (AoI) can be narrowed down without being influ-
enced by anomalies. The system works in 5 main stages:
1) Data Collection and 2-D Mapping, 2) Filtering, 3) AoI
Reduction, 4) Anomaly Detection and Elimination, 5) Local-
ization. The sensor readings are first collected and mapped
into a 2 dimensional grid of readings spaced according to
node positions in the AoI. This 2-D image-like map is then
passed through a filter to level out anomalies, the result of
which is used to reduce the AoI. Nodes within the new AoI
are then evaluated to detect anomalies. Anomalous nodes are
eliminated and localization is performed over the remaining
nodes in the new AoI. Figure 1 shows the system overview.

A. DATA COLLECTION AND 2-D MAPPING
The readings from deployed sensing nodes along with their
locations and node IDs are obtained at once. This list of node
coordinates and their sensor readings are then converted into
a 2 dimensional grid. This is done because the image filtering
stage only takes a 2 dimensional data that resembles an image.
The position of a node in the 2-D grid is determined using its
location coordinates and the value at that position is given
by the node reading. As such, a node position in the grid
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FIGURE 1. Proposed system block diagram.

TABLE 2. Example of collected data readings.

FIGURE 2. Two dimensional representation of the data collected along
with corresponding contour plot.

is analogous to a pixel in images and a node reading to a
pixel intensity. Table 2 shows the collected data readings and
Figure 2a shows the 2-D map for this data. Figure 2b is the
contour plot of sensor readings in Figure 2a. Contour plot has
been used throughout this paper in order to better visualize
the magnitude of data values in the two dimensional space.
In this scenario, the readings are collected through radiation
detectors regarding a radioactive target that is present in
the AoI as shown in Figures 2a and 2b. Details about the
simulation environment are to be discussed in section IV-A.

B. FILTERING
In the domain of digital image processing, different filtering
techniques exist for different types of noises. One of these
noises is the impulse noise (also known as salt and pepper
noise), which are sharp, random changes in some image pixel
intensities. The anomalies in localization tasks resemble this
noise the most. This type of noise in images has been shown
to be effectively removed by applying the median filtering

FIGURE 3. Impulse noise image before and after filtering [28].

technique [28], [29]. Figures 3a and 3b show an image with
impulse noise and the same image after applyingmedian filter
respectively, where the noises have been removed effectively.

Therefore, the same technique has been used in the pro-
posed system in order to filter anomalous readings. A median
filter of size 3 × 3 has been glided through the grid of
sensor readings with a stride length of 1. A 3 × 3 filter is
suitable to filter out moderate density noise without blurring
the output [46] and stride 1 ensures minimal information
loss. For each filter operation, the filter outputs the median
value of the 9 nodes under consideration. Sincemedian values
are not influenced by outliers, anomalous node readings are
effectively replaced by the median value of the surrounding
nodes in the filter output. This results in a filtered grid of
data where the anomalous readings have been leveled out
in accordance to their surroundings. This in turn results in
a radially spread data which maintains the pattern and target
position of the original readings. Figures 4a and 4b show node
readings with anomalous values and the median filtered node
values respectively. The anomalous readings have been lev-
eled out effectively in the filtered data. For instance, the node
at coordinate (120, 120) shows an anomalous reading of 31
in Figure 4a, while the surrounding nodes show much higher
readings. This value has been leveled out by the median filter
in Figure 4b to be 136, which is closer to the surrounding node
readings.

C. AoI REDUCTION
The AoI is reduced with the objective of having a few number
of informative nodes around the actual target owing to the
fact that the use of active nodes closer to the target results in
a faster and more accurate localization [8]. Since anomalous
readings are nullified by the filter, the filtered data can be
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FIGURE 4. Selection process of active nodes closer to the source.

used as a reference to interpret the rough target location in
a way that is resilient to the presence of anomalous nodes.
Thus, the AoI is reduced to be around the nodes with high
filtered values. In the proposed system, this is done according
to Algorithm 1.

Algorithm 1 Area of Interest Reduction
Result: Reduced AoI consisting of nodes closer to the
target
1: Sort the filtered readings in descending order
2: Select top 10 % of filtered sensor readings
3: Compute boundary of new AoI as:
4: Minimum and Maximum x coordinate of top

10% nodes
5: Minimum and Maximum y coordinate of top

10% nodes
6: Select nodes inside the boundary of new AoI

Figure 4c shows the generated boundary of the reducedAoI
for the filtered data in Figure 4d.

D. ANOMALY DETECTION AND ELIMINATION
Although several anomaly detection techniques like
statistical modelling, nearest neighbor, clustering, and
classification-based techniques exist in the literature, they do
not work well with the radially spreading data of localization
tasks. So, in this work, we propose a novel mechanism to
detect anomalies within the reduced AoI by comparing the
value of actual and filtered data for each node. As mentioned
in section III-B, the anomalous data points undergo drastic

value updates on filtering while the other data points undergo
little changes as per their surroundings. Thus, we use this
deviation to flag anomalous nodes and eliminate them accord-
ing to Algorithm 2. Figure 4d shows that the anomalous
nodes within the new AoI for sensor readings of Figure 4a
are detected correctly.

Algorithm 2 Anomaly Detection and Elimination
Result:Anomaly flagged and removed inside the new AoI
1: For each node in the reduced AoI:
2: Compute the deviation in actual sensor reading and
filtered data
3: Deviation = ActualData− FilteredData;
4: Anomaly Flagging:
5: If |Deviation| ≥ 0.5× ActualValue :
6: Flag node as Anomalous
7: Else:
8: Flag node as Normal
9: Remove Flagged Anomalous Nodes from AoI

E. LOCALIZATION
The efficient way to do the target localization is by selecting
only those nodes that are closer to the source, and then
executing the localization algorithm around the space of inter-
est. The proposed system efficiently selects the nodes from
the reduced AoI which are not anomalous as mentioned in
section III-B and III-D, thus the next task is to implement
the localization algorithm using the selected nodes only. The
localization algorithm that has been devised consists of 4
main stages: 1) Hypothetical Space Generation, 2) Inverse
Square Computations, 3) Similarity Computations, and 4)
Weighted Average Computations.

1) HYPOTHETICAL SPACE GENERATION
In order to locate the target position, the reduced AoI is
further divided into np uniform grids called patches. Central
position of each patch is considered as a candidate location
where the target might be situated. For localization, the pos-
sibility of the target being at each patch is accessed. Figure 5
shows the conversion of a reduced AoI with 5 sensing nodes
(ns = 5) into 9 hypothetical spaces where the target is
possibly residing (np = 9).

FIGURE 5. AoI to hypothetical patches.
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2) INVERSE SQUARE COMPUTATIONS
Readings in localization tasks depend on the distance
between the node and the target. In many phenomenons such
as radiation, heat, and sound, the physical quantity at a certain
location is inversely proportional to the square of distance
between that location and the source of the physical quantity.
Thus, in order to evaluate the likelihood of each patch being
the source of the localization problem at hand, we assume
each patch as the source and compute inverse square distance
values from that patch to all the sensor nodes in the new AoI.
The inverse square distance is computed using (1) and (2).
The inverse square distances from a single patch to all the
nodes in the new AoI are arranged in a one dimensional array
which is referred as the distance vector.

ISDij =
1

d2ij
(1)

where ISDij is the inverse square distance between location i
and j and dij is the euclidean distance between location i and
j computed using (2).

dij =
√
(Xj − Xi)2 + (Yj − Yi)2 (2)

where (Xi,Yi) and (Xj,Yj) are the coordinates of locations i
and j respectively.

The distance vectors of all the patches are arranged in a
two dimensional array of size np × ns, such that each row
represents the distance vector of a single patch. This two
dimensional array is called the distance vector array and is
computed using Algorithm 3.

Algorithm 3 Distance Vector Array Computation
Input: sensor positions (Sp), patch positions (Pp)
Output: distance vector array
1: Initialize DistanceVectorArray as an empty list
2: For i in each Pp:
3: Initialize DistanceVector as an empty list
4: For j in each Sp:
5: Compute ISDij
6: Append result to DistanceVector
7: End For
8: Append DistanceVector to DistanceVectorArray
9: End For

3) SIMILARITY COMPUTATIONS
To access which patch position is most likely to be the actual
target, cosine similarity is computed between each patch
distance vector and the vector of original sensor readings.
Cosine similarity measures the similarity between two non-
zero vectors, where 1 means they are maximally similar (i.e.
parallel) and 0 means they are maximally dissimilar (i.e.
perpendicular). The cosine similarity between two vectors A
and B is given as:

Cos(A,B) =
A.B

||A||.||B||
=

∑n
i=1 Ai.Bi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(3)

where Ai and Bi are the ith components of vectors A and B
respectively and n is the length of vectors A and B.

Thus, the cosine similarities between patch distance vec-
tors and sensor readings imply the confidence score for each
patch’s proximity to the target. For example, if patches P1
and P2 have similarity scores of 0.9 and 0.85 respectively,
then it implies that the target is 0.9 times closer to P1 and
0.85 times closer to P2. Similarly, if the similarity score of
a patch is close to 0, then the possibility of the target being
close to that patch is very low. Thus, to obtain the sweet spot
between the likely patches, the weighted average algorithm is
implemented.

4) WEIGHTED AVERAGE COMPUTATIONS
In order to find the location where the target is most likely
located, the weighted average of the patch positions (Xwt.avg,
Ywt.avg) is computed using their similarity scores as:

Xwt.avg =

∑np
i=1(XPi × Si)∑np

i=1 Si
(4)

Ywt.avg =

∑np
i=1(YPi × Si)∑np

i=1 Si
(5)

where XPi , YPi and Si are the i
th patch x coordinate, y coordi-

nate and similarity score respectively.
So as to avoid errors in target estimation introduced by

including low score patches, the weighted average is com-
puted only over the patches having a similarity score greater
than 0.5. However, in cases with very high percentages of
anomalous nodes, all patches may have a similarity score
below 0.5. To account for this, if the maximum similarity
score is 0.5 or less, then all patches are taken into consider-
ation for weighted average computation. The computation of
weighted average is shown in Algorithm 4 and the resulting
location is the system’s estimated target location.

Algorithm 4Weighted Average For Target Location Estima-
tion
Input: patch positions, similarity score
Output: Estimated Target Location
1: Find maximum similarity score
2: If maximum similarity score > 50%:
3: Select patches with similarity score > 50%
4: Else:
5: Select all the patches
6: Compute Weighted Average (Xwt.avg, Ywt.avg)

IV. SIMULATION RESULTS
This section describes different experiments and simulations
conducted to evaluate the performance of the proposed sys-
tem: Efficient Fault-proof Localization System (EFLS).

A. SIMULATION ENVIRONMENT
The experiments are performed for a radiation source local-
ization task. The radiation data readings are simulated using
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the principles of radiation, according to which the readings:
photon counts per minute (CPM ) at sensing node i due to
source S, follow a Poisson distribution [8], [12] given by:

CPMi =
Is × Ai × ηi

(d si )
2 (6)

where CPMi is the photons counts per minute at node i due
to source with intensity Is, Ai is the detector surface area, d si
is the distance between node i and the source S, and ηi is
detector efficiency which is given by:

ηi =
# of photons recorded by ith node
# of incident photons on ith node

(7)

Background radiation is negligible compared to the source
radiation and, is considered same throughout the AoI. Thus,
considering that all detectors are equally efficient and have
same surface area Ai, we have:

CPMi ∝
Is

(d si )
2 (8)

While generating data, the source intensity of 109 has been
taken into consideration. For anomalous behaviour simula-
tion, three different seed values have been used to select three
different sets of n% of nodes randomly. The readings of those
randomly selected n% nodes are changed to random values
in the range of 0 to 3 times the actual values. To report final
evaluations at n% of anomalous nodes, the results have been
averaged over three different sets.

Even though radiation source localization has been used
for experiments, the proposed system is applicable for any
localization task with a single target. This is due to the fact
that data readings in localization tasks are a function of the
distance of nodes from the target; the closer the nodes are to
the target, higher the readings.

B. DATASET
To generate the data, nodes are synthetically placed
within a square area in a uniform manner. The readings
are simulated using Poisson’s Distribution as mentioned
in Section IV-A. Table 3 shows the structure of the dataset
used in the experiments carried out.

TABLE 3. Dataset description.

C. EVALUATION RESULTS
Many experiments have been carried out to test the efficacy
of our system. Since the objective of this work is to improve
system efficiency without compromising on task accuracy,
each experiment evaluates the system on metrics includ-
ing Localization time (total time taken by the system) and

Localization error (euclidean distance between actual source
location and predicted source location). Using these metrics,
the system’s performance and scalability are assessed on
three test cases: 1) Varying percentage of anomalous nodes,
2) Varying population size, and 3) Varying Area Length,
which have been described in sections IV-C1, IV-C2, IV-C3
respectively. In each test case, the proposed system, EFLS,
is compared to:

1) System 1: a synthetic system that performs the same
localization algorithm over the whole AoI without
eliminating anomalous nodes. This system is similar to
the ones in [8] and [10].

2) System 2: a synthetic system that performs the same
localization algorithm over the reducedAoI but without
eliminating anomalous nodes.

This has been done to test the efficacy of reducing the AoI
and that of eliminating anomalous nodes in the reduced AoI
before performing localization. Since this work is concerned
with the improvement in localization efficiency and accuracy
with the use of fewer nodes of the new AoI versus use of all
the nodes of the entire AoI, the same localization algorithm
has been used in all the scenarios. This aids in illustrating
that using nodes that are closer to the target is highly effec-
tive in increasing localization accuracy along with reducing
computational cost. Hence comparison with other works has
not been performed.

1) VARYING PERCENTAGE OF ANOMALOUS NODES
The 3 simulations aforementioned i.e: 1) System 1,
2) System 2, and 3) EFLS (performing localization over
nodes in reduced area after eliminating anomalies), are tested
by varying the percentage of anomalous nodes in the area
between 0% to 50%. The system has been tested on varying
percentages of anomalous nodes in order to evaluate its ability
to handle different proportions of abnormal nodes. Evaluation
over 50% anomalous nodes is not done because the majority
of nodes start behaving randomly after that. This is due to the
fact that the majority of the data points are anomalous and
the system struggles to distinguish between the normal and
the abnormal ones [16], [47]. Throughout the experiments,
a fixed area size of 5 km by 5 km with 121 nodes is used.

Figure 6 describes the simulation results for localization
error of the 3 systems for varying percentages of anomalous
nodes. As can be seen, reducing only the area of interest
(System 2) reduces the localization error to some extent, but
the error deteriorates in the presence of higher anomalous
nodes since most nodes within the reduced area also become
anomalous. On the other hand, reduction of area in addition to
removal of anomalies in EFLS reduces the error significantly
by upto 68%. It is evident that EFLS is able to maintain a
low and stabilized error for upto 30% of anomalous nodes.
Likewise, Figure 7 describes the localization time taken by
the 3 systems for varying percentages of anomalous nodes.
However, unlike in the case of localization error, reducing
the area (System 2) drastically reduces the time taken by the
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FIGURE 6. The localization error for varying percentage of anomalous
nodes.

FIGURE 7. The localization time for varying percentage of anomalous
nodes.

system to perform the localization in comparison to System 1,
which is expected since there are fewer and more significant
nodes in the reduced AoI. For upto 40% of anomalous nodes,
EFLS takes similar time as System 2. However, for higher
anomalous nodes, EFLS takes slightly less time. Thus, EFLS
is able to reduce the time taken by the system from about
1.3 seconds to 30 milliseconds, which is around 30 times
faster.

2) VARYING POPULATION SIZE
The same 3 systemsmentioned in the section IV-C1 are tested
for scalability by varying the number of nodes (population)
in a fixed area of size 5 km by 5 km with 10% of anoma-
lous nodes. The number of nodes are varied between 121
to 529. Figure 8 demonstrates that for different population
sizes, EFLS shows significantly lower errors than System 1.
Also it can be seen that while the reduction of area in
System 2 improves localization error to some extent,
the anomaly removal step in EFLS further reduces this
error. Likewise, Figure 9 shows that the time taken by
System 1 increases as the population size increases. However
EFLS and System 2 are able to perform the task in a very low
time for all population sizes. As such, EFLS is able to reduce
the localization error by 79% to 95% and the localization
time by 49 to 81 times. This proves the scalability of the
proposed approach, EFLS, in terms of both accuracy and time
for different population sizes.

FIGURE 8. The localization error for varying population size.

FIGURE 9. The localization time for varying population size.

3) VARYING AREA LENGTH
In this case as well, the 3 systems mentioned in the section
IV-C1 are tested for scalability by varying the area size. The
length of a square area with 225 nodes, of which 10% are
anomalous, is varied between 1 km to 5 km. From Figure 10,
it is evident that EFLS shows about 43% to 79% lower errors
than both its counterparts for all area lengths. Additionally,
EFLS and System 2 perform the localization task 52 to 65
times faster than the system using the whole area for all area
lengths, this has been evident by Figure 11. This proves the
scalability of EFLS in terms of both accuracy and time for
different area lengths.

FIGURE 10. The localization error for varying area length.
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FIGURE 11. The localization time for varying area length.

V. CONCLUSION
In this paper, an efficient fault-proof localization system
(EFLS) has been proposed for IoT and MCS. The system
targets to reduce system complexity by providing an efficient
mechanism of active node selection by narrowing the AoI
to be around the target location in a way that is resilient
to the presence of anomalous nodes. The system achieves
this with a novel mechanism that employs the median image
filtering technique to reduce the AoI. In addition, the system
effectively detects and eliminates anomalies innovatively by
comparing the actual and filtered values. In doing so, the sys-
tem is able to overcome the shortcomings of computational
complexities and inefficiency in existing works. The pro-
posed system is tested on real-life dataset for radiation source
localization tasks and compared to non-resilient systems of
which one performs localization over the whole area while
the other does the same in the reduced area. The results
show that the proposed system reduces the localization error
by up to 68% and localization time by up to 30 times for
different percentages of anomalous nodes. The scalability of
the proposed system in terms of population and area sizes is
also verified. The results show that EFLS lessens the error
by an average of 89% and 61%, respectively, and reduces
the time required to perform the task significantly. Moreover
the results demonstrate that the reduction of area in our sys-
tem contributes to faster localization while anomaly removal
in addition to area reduction is responsible for improved
accuracy.

While the proposed system is able to improve the efficiency
of localization significantly by integrating image filtering
technique to address challenges of active node selection and
anomaly handling, there is some room for further improve-
ments. One is to detect anomalies over the whole area so as to
penalise anomalous nodes and hence perform node reputation
updates for future tasks. Following this, another direction
for future work is taking into consideration other parameters
such as residual energy, cost and reputation of nodes while
selecting nodes in the reduced area. Additionally, the system
currently only localizes a single stationary target. Further
work can be done to expand it so as to localizemultiple targets
as well as mobile targets.
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