IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 1, 2021, accepted April 15, 2021, date of publication April 20, 2021, date of current version April 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3074179

Characterization of Android Memory References
and Implication to Hybrid Memory Management

SOYOON LEE" AND HYOKYUNG BAHN", (Member, IEEE)

Department of Computer Engineering, Ewha University, Seoul 120-750, South Korea

Corresponding author: Hyokyung Bahn (bahn @ewha.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP)
under Grant 2019R1A2C1009275, and in part by the ICT Research and Development Program of MSIP/IITP, developing system software
technologies for emerging new memory that adaptively learn workload characteristics, under Grant 2019-0-00074.

ABSTRACT In this article, we analyze Android applications’ memory reference behaviors, and observe that
smartphone memory accesses are different from traditional computer systems with respect to the following
five aspects: 1) A limited number of hot pages account for a majority of memory writes, and these hot pages
have similar logical addresses regardless of application types; 2) The identities of these hot pages are shared
library, linker, and stack regions; 3) The memory access behaviors of hot pages do not change significantly
as time progresses even after applications finish their launching; 4) The skewness of memory write accesses
in Android is extremely stronger than that of desktop systems; 5) In predicting re-reference likelihood of hot
pages, temporal locality is better than reference frequency. Based on these observations, we present a new
smartphone memory management scheme for DRAM-NVM hybrid memory. Adopting NVM is effective
in power-saving of smartphones, but NVM has weaknesses in write operations. Thus, we aim to identify
write-intensive pages and place them on DRAM. Unlike previous studies, we prevent migration of pages
between DRAM and NVM, which eliminates unnecessary NVM write traffic that accounts for 32-42% of
total write traffic. By judiciously managing the admission of hot pages in DRAM, our scheme reduces the
write traffic to NVM by 42% on average without performance degradations.

INDEX TERMS Android, smartphone, application, memory reference, NVM, write operation, hybrid

memory.

I. INTRODUCTION

With the recent proliferation of mobile applications as well as
the advances in software platform technologies, smartphones
have become indispensable devices in our daily lives [1].
More and more people are working with their smartphones,
and various applications including social network services,
online games, video streaming, and location-based services,
emerge every day [2]-[4]. In reality, the hardware speci-
fication of the current smartphone device has reached to
that of a desktop or a laptop computer system [5]. For
example, Google Pixel 4a, the most recent version of the
Android reference phone, consists of Qualcomm Snapdragon
730G, Octa-core CPU of 2 x 2.2 GHz Kryo 470 Gold
& 6 x 1.8 GHz Kryo 470 Silver, Adreno 618 GPU, 6 GB
LPDDR4X memory, and 128GB UFS 2.1 storage, which is
sufficient to perform multitasking [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei

VOLUME 9, 2021

A smartphone is not a personal entertainment device any
longer, and some official works like video conferencing,
stock trading, or social broadcasting, are being performed
on smartphones or tablets. Also, desktop applications are
increasingly compatible with smartphones by utilizing exter-
nal I/O devices.

To accommodate more and more applications, the mem-
ory capacity of smartphones keeps increasing, which
also increases the power consumption significantly. As a
battery-based device, energy consumption is one of the major
concerns in the design of smartphone systems. It is reported
that main memory accounts for the dominant portion of the
total system energy in smartphones due to the ever growing
size of DRAM to accommodate more applications [7]. Due to
its volatile characteristics, DRAM needs consistent recharge
of power to maintain its data even though no read/write
operation is being performed. This recharge of power, which
we call the refresh operation, accounts for a significant por-
tion of memory power consumption as the size of DRAM
increases [8], [9].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 60997

https://orcid.org/0000-0001-6884-374X
https://orcid.org/0000-0002-7188-3889
https://orcid.org/0000-0003-0810-1458

IEEE Access

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

Non-volatile memory (NVM) technologies have caught
interest as an attempt to reduce the power consumption of
DRAM. NVM such as PCM (phase change memory) and
STT-MRAM (spin-transfer torque magnetic random access
memory) is a byte-addressable memory medium like DRAM
but it spends less power as it is non-volatile and thus does not
need refresh operations [9]-[11], [23]. NVM also has better
scalability than DRAM [24], [25].

Despite these prominent features of NVM (i.e., zero refresh
power and high density), NVM has critical weaknesses in
write operations that make the total substitution of DRAM
memory difficult. First, the number of write operations
allowed for each NVM cell is limited. For example, the cur-
rent write endurance of a PCM cell is known to be 107 to
108 [91, [12]. If the number of write operations performed on a
PCM cell exceeds this limit, its lifespan ends and the memory
space of the cell cannot be used any longer. The second
drawback is that the write latency of NVM is longer than that
of DRAM [11], [13], [14].

Nevertheless, NVM’s prospect is still bright. Recent
researches have proposed various techniques to overcome the
limitations of NVM, and their results indicate that NVM will
be able to reduce the energy consumption of main memory
systems significantly while retaining reasonable performance
when it is adopted as main memory [11], [13]-[16]. One of
the ways to cope with the write latency and the endurance
problems of NVM is making use of a small size DRAM
along with NVM [11], [14]. This DRAM hides the slow write
latency of NVM and also increases the lifetime of NVM by
absorbing frequent write operations.

Fig. 1 presents such an architecture by managing DRAM
and NVM together under a single physical address space.
Though DRAM and NVM hybrid memory systems have
already been studied [11], [17], this article shows that pre-
vious solutions are not efficient for smartphone memory sys-
tems due to some distinct memory access characteristics in
Android applications.

CPU
\ L1 Cache |

\ L2 Cache

< QM%mory Inten‘ai >

il C
NVM DRAM

SN~ SN~
< 1/0 Interface >
ac e

FIGURE 1. DRAM and NVM hybrid memory architecture.

In this article, we analyze the memory access behavior of
Android applications specially focusing on write operations,
and observe that smartphone memory accesses are different

60998

from the memory accesses of traditional computer systems.
Based on this observation, we present a new smartphone
memory management scheme for a DRAM-NVM hybrid
memory architecture. Our idea is that a write operation on
NVM incurs performance and endurance problems, and thus
identifying write-intensive data and placing them on DRAM
can resolve the weaknesses of NVM. This is performed by the
extensive analysis of memory reference traces extracted from
smartphone applications, which is different from the exist-
ing data placement schemes that dynamically relocate pages
between DRAM and NVM in an online manner [17], [18].
Our analysis shows that online relocations between DRAM
and NVM amplify NVM writes significantly in case of smart-
phone systems, and thus allocation based on a prior analy-
sis is more effective. Our experimental results with various
Android applications show that the proposed scheme reduces
the write traffic to NVM by 42% on average and up to 87%
without performance degradations.

A. CONTRIBUTIONS

The first contribution of this article is the characterization of
memory references in Android applications, specially focus-
ing on write operations. Write reference characterization has
largely been ignored in past studies, although some studies
observe memory writes in desktop systems [17], [19]. This
study focuses on characterizing write references of Android
generated by a variety of applications, and find out the fol-
lowing important observations that are significantly different
from desktop system cases.

1) A limited number of hot pages account for a majority of
memory writes in Android applications. Unlike desk-
top applications, these hot pages have similar logical
addresses regardless of application types. These logical
addresses can be the main target of DRAM placement
in our study.

2) The skewness of memory write accesses in Android is
extremely stronger than that of desktop systems. In par-
ticular, 10-15% of top ranking data account for 80%
of total write accesses in Android, whereas 50-60% of
top ranking data account for the same 80% writes in
desktop systems.

3) We investigate the identities of the hot pages, and
find that they consist of shared library, linker, and
stack regions. As such hot pages have similar memory
addresses, we can place them on DRAM.

4) The memory access behavior of the hot pages does not
change significantly as time progresses even after the
completion of the application launching. This implies
that the admission of data in DRAM does not need to
be changed significantly over time as hot pages tend to
be accessed consistently.

5) When comparing the temporal locality and frequency
properties in estimating the re-reference likelihood of
hot pages, temporal locality is the better estimator irre-
spective of application types. This result also contra-
dicts the analysis of desktop application cases.

VOLUME 9, 2021

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

IEEE Access

TABLE 1. Memory access characteristics of Android applications used in this article.

Total Write . Number of memory references
. . Ratio of

Traces footprint footprint read - write Instrachi

(MB) (MB) : Data read rrel%sl druc ton Data write Total count
Angrybirds 76.94 45.72 3.50:1 13,387,756 980,312 3,822,479 18,201,717
Mxplayer 79.92 4731 3.66:1 13,851,914 567,456 3,782,347 18,190,547
Youtube 68.64 40.95 4441 14,040,959 993,316 3,162,229 18,196,504
Browser 259.86 180.08 4.11:1 15,272,935 1,622,628 4,104,436 20,999,999
Facebook 198.66 96.11 5.67:1 11,121,174 486,165 2,045,716 13,653,055
Farmstory 53.74 29.45 6.24:1 12,675,555 447,297 2,101,818 15,224,670

Based on these findings, our second contribution is the
design of a new memory management scheme that we call
“Caste” for the hybrid memory architecture in Android.
Caste makes use of the aforementioned analysis results of the
Android application’s memory reference characterization to
accurately identify hot pages. By so doing, Caste eliminates
most of NVM writes by placing write-intensive pages on
DRAM. Unlike previous studies, we prevent online reloca-
tion of pages between DRAM and NVM, which completely
eliminates unnecessary NVM write traffic that accounts for
32-42% of total write traffic. This article also quantifies the
number of hot pages that should be allocated to DRAM for
the optimized performances under the given system situation,
and suggests an appropriate admission control for DRAM.
Our scheme periodically monitors the page fault ratio of
DRAM memory, and determines the number of hot pages to
be allocated to DRAM based on our page fault ratio model.

B. THE REMAINDER OF THE ARTICLE

The remainder of this article is organized as follows.
In Section II, we describe the analysis results of memory
access behaviors in Android applications. Section III explains
the proposed hybrid memory management scheme for smart-
phone applications in detail. Section IV presents the perfor-
mance evaluation results to assess the effectiveness of the
proposed scheme. Section V summarizes the related works
specially focusing on non-volatile memory and hybrid mem-
ory technologies. Finally, Section VI concludes this article.

Il. ANALYSIS OF MEMORY ACCESS BEHAVIOR IN
ANDROID

This section analyzes the memory reference behavior in
Android smartphone applications specially focusing on write
operations as we are interested in adopting write-vulnerable
NVM as memory media.

To collect memory access traces of Android applications,
we add trace collector and analyzer codes to the Valgrind
toolset [20]. In particular, we modify the source file cg_sim.c
of Cachegrind. We filter out memory accesses if they hit from
the cache layers (i.e., fist level, second level, and last level
caches) and extract only the memory accesses observable at
the main memory layer.

VOLUME 9, 2021

We collect the main memory access traces from 6 Android
applications, namely, Facebook a social network service,
Angrybirds a game, Youtube an online video-streaming ser-
vice, Farmstory a networked game, Mxplayer a multimedia
player, and Browser an Android web browser. Our trace
collector and analyzer extract the total memory footprint,
memory footprint by write operations, total number of mem-
ory accesses, ratio of read/write operations, access types,
etc. Some brief characteristics captured from these traces are
listed in Table 1.

Fig. 2 shows the memory access count that occurs on
each memory page of the logical address space for the six
Android applications we analyzed. In the figure, the red
plot shows the write access and the blue plot represents the
read access. As shown in the figure, a certain number of
limited pages account for a large portion of the memory
accesses in Android applications. Another interesting result
is that the six applications show similar trends, which implies
that hot pages accessed in Android applications have similar
logical addresses regardless of application types. Note that
this is not the case for traditional desktop applications. For
a comparison purpose, we plot the memory access count for
some desktop applications, gedit, gqview, and xmms, which
are frequently used in the memory access characterization
studies [17].

Unlike smartphone cases, the memory access count
distributions of desktop applications are different as applica-
tion types are varied. Due to this reason, memory manage-
ment studies in traditional computer systems depend on the
online behavior of each application’s pages such as tempo-
ral locality or reference frequency rather than trace analysis
results.

To analyze the write access characteristics of Android
applications further, we investigate the identities of the hot
pages. Fig. 4 shows which regions account for hot write
references in Angrybirds. Note that similar trends can be
observed for the other applications we analyzed. As shown
in the figure, most write accesses in Android applications
occur on shared library, linker, and stack regions. Fig. 5 mag-
nifies the shared library region of Fig. 4, and the identi-
ties of the hot pages consist of libc, libm, libgui, vm heap,
vm bitmap, libandroid, etc. As such hot pages have similar

60999

IEEE Access

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

60

write s 60
read m—
50 50

40 40
30 30 ‘

20

20
10 ‘ 10 “k
0 L

Access count (K)
Access count (K)

Write 60
read m—

write
read m—

Access count (K)

|

0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(a) Angrybirds

60 wri‘(e‘—"\” 60

—~ read m— —~
X 50 X 50
€ 4 € 4
3 3
O 30 O 30
@ @
o 20 Q 20
3] 3
< 10 < 10

o WL {

0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(b) Browser

0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(c) Facebook
) \VNI'i1e—VW 1 il

T Write mm—
read m—

read m—

Access count (K)

0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(d) Farmstory

0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(e) Mxplayer

0
0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(f) Youtube

FIGURE 2. Memory access count that occurs on each memory page of the logical address space for Android applications.

0
80 | ‘
70

60

\
50 ‘
40
|

WIS

. read
instruction

30
20
10

Access count (K)
Access count (K)

0 ;0(’)“20‘0‘ 300 400 500 ‘(;00 %’0(’)’500“900
Logical page number (K)
(a) Gedit

OA ‘1‘00‘ 200 FSFOO >4>00‘ ‘500‘ 600 ‘7‘00’800’ >900
Logical page number (K)
(b) Ggview

T WIATE m—

= 'Wr‘ltg_’ =
rea rea
instruction ’2 80 instruction

= 70

et

c 60

3

Q 50

o

wn 40

3 30

8 20

< 10

ol

0 100 200 300 400 500 600 700 800 900
Logical page number (K)

(c) Xmms

FIGURE 3. Memory access count that occurs on each memory page of the logical address space for desktop applications.

60 Lme —

50 shared libraries linker stack

40

30

Write count (K)

20

0 200 400 600 800 1000
Logical page number (K)

FIGURE 4. Identities of regions that have hot pages.

logical addresses, we can place them on DRAM rather than
NVM upon their first accesses.

Fig. 6 shows the distributions of write accesses as the
page rankings are varied. In the figure, the x-axis represents
the ranking of pages sorted by their total write count and
the y-axis represents the number of write accesses on that
ranking. As shown in the figure, the write accesses generated
by Android applications are extremely skewed. In particular,
10-15% of top ranking pages account for about 80% of
total write accesses, implying that write accesses in Android
application’s memory references mostly result from some hot
data. Note that this is different from desktop systems in that

61000

60

shared libraries Write me—

50

< vm h_eap

= 40 [libe, libm, vm bimap1,2

g 30 thout libandroid,
2 vm_cache...
s 20

i hl, Ll “l i

20 30 40 50 60 70 80 90 100
Logical page number (K)

o

FIGURE 5. Identities of shard library regions that have hot pages.

50-60% of top ranking pages usually account for 80% of total
write accesses [17].

Fig. 7 shows the logical page numbers that have been
accessed as time progresses for each smartphone application.
In the figure, the x-axis represents the logical time, which
is increased by one for each memory access and the y-axis
shows the logical page numbers. Similar to Fig. 2, the red
and blue plots represent the write and read operations, respec-
tively. As shown in the figure, memory writes are skewed to
a certain number of logical pages and they do not change sig-
nificantly as time progresses. In the figure, the black vertical
line represents the time point that the launch of the application

VOLUME 9, 2021

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

IEEE Access

25000 —wiite™ 18000

“write - 18000

write
16000 16000
20000
§ -*g 14000 § 14000
12000 12000
Q 9 Q
8 15000 8 10000 O 10000
[} o) 0]
2 10000 £ 8000 £ 8000
= = 6000 = 6000 |
5000 4000 4000 |
2000 | 2000 i
0 Py 0 e
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000 0 1000 2000 3000 4000 5000
Ranking of referenced pages Ranking of referenced pages Ranking of referenced pages
(a) Angrybirds (b) Browser (c) Facebook
25000 wiite - 20000 write 20000 Write -
18000 18000
4 20000 + 16000 + 16000
c c c
3 3 14000 3 14000
8 15000 8 12000 8 12000
Q @ 10000 @ 10000
%= 10000 £ 8000 £ 8000
= [= 6000 = 6000 |
5000 § 4000 § 4000 |
2000 2000
o 0 0
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Ranking of referenced pages

Ranking of referenced pages

Ranking of referenced pages

(d) Farmstory (e) Mxplayer (f) Youtube
FIGURE 6. Distributions of write accesses as the page rankings are varied for Android applications.
800000 read « 800000 read + — 800000 = = read +
L 700000 . 700000 wite - L+ 700000 [| e -
@ @ @
-g 600000 -g 600000 -g 600000
S 500000 S 500000 S 500000
c
% 400000 87400000 g 400000
2 300000 300000 2 300000
0 200000 Q- 200000 0 200000
100000 100000 IR — 100000 !
0 0 0 = e ——— — m—
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 10 12 14 16 18 0 2 4 6 8 10
Logical time (x10°) Logical time (x106) Logical time (x105)
(a) Angrybirds (b) Browser (c) Facebook
800000 read 800000 == —Tread + 800000 =T read
<. 700000 wiite - < 700000 f e o 700000 == LR
8 600000 8 600000 -8 600000
S 1S €
> 500000 > 500000 > 500000
c c c
o 400000 Iy 400000 y 400000
o 300000 ol 300000 © 300000
0 200000 0 200000 Q- 200000
100000 - . 100000 100000
0 0 ot
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 0 2 4 6 8 10
Logical time (x108) Logical time (x10%) Logical time (x10%)

(d) Farmstory

(e) Mxplayer

(f) Youtube

FIGURE 7. Logical page numbers that have been accessed as time progresses for the six Android applications.

has been completed. As we see, the memory access behavior
and hot page numbers do not change significantly even after
the launch ends.

This implies that once the admission of data in DRAM
is determined, it does not need to be changed significantly
during the execution of the application as hot pages tend to
be accessed consistently.

To reduce the number of writes that occur in NVM, DRAM
should absorb as many write accesses as possible. To do this,
we need to find a good estimator for future write accesses and
evicts those pages not likely to be re-written from DRAM.
Temporal locality and reference frequency are well known
properties used to estimate the re-reference likelihood of
pages [17], [26]. We compare the two properties from the
viewpoint of memory write accesses and analyze which is the
better estimator.

VOLUME 9, 2021

Fig. 8 shows the effect of temporal locality and frequency
on page’s write accesses of the six applications. In the figure,
the x-axis represents the page ranking with respect to the
temporal locality and frequency properties, and the y-axis
represents the number of write accesses that occur on the
page ranking given in the x-axis. The gray plot and the black
plot depict the page rankings based on temporal locality and
frequency of page accesses, respectively. As can be seen from
the figure, the gray plots are located above the black plots in
high rankings.

This implies that the re-reference likelihood of hot pages
can be more accurately estimated by temporal locality than
frequency of references in Android applications. That is,
pages that have been written recently are likely to be
re-written in the future. When NVM along with small DRAM
is used as main memory, DRAM can absorb most write

61001

IEEE Access

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

» - 1000000
100000 Temporal locality ranking of write Temporal locality ranking of write - - -
Frequency ranking of write + Frequency ranking of write + 100000 Temporal locality rank!ng of write

73 + b, « 100000 Frequency ranking of write +
8 10000 * 8 3 100007 e
c f= + o
@ S 10000 +aan e
5 5} o
s 100 T 1000 S 1000
2 t 19
[u“ 2
S 100 ° S5
5] § 100 S 100
o e} o}
[S € Q
S 10 =1 10 £
=z z = 10

: =z

1 1 :
1
1 Rw y fmof 1(;00 10000 1 F\,10 . f1 00f 1(;00 10000 b 0 100 1000 10000
anking of referenced pages anking of reterenced pages Ranking of referenced pages
(a) Angrybirds (b) Browser (c) Facebook
100000 Temporal locality ranking of write 100000 Temporal locality ranking of write 100000 Temporal locality ranking of write
Frequency ranking of write + Frequency ranking of write + Frequency ranking of write +
2 * 2 +ea, 2 + eas
& 10000 2 10000 2 10000
c = c
1) o o
2 < =4
Q1000 2 1000 2 1000
5} 9] °
2 4 4
k] 5 5
et 100 s 100 s 100
@ @ @
a o o
E 10 § 10 § 10
z H 4 i z
b : :

1 10 100 1000
Ranking of referenced pages

10000

10

(d) Farmstory

Ranking of referenced pages

(e) Mxplayer

100 1000 10000

10 100 1000
Ranking of referenced pages

10000

(f) Youtube

FIGURE 8. Number of writes that occur on the ranking of pages determined by temporal locality and frequency of references in

Temporal locality ranking of write
Frequency ranking of write +

£ 8 —

1000 Temporal locality ranking of write

Frequency ranking of write +

L.

100

- __/]
Number of references

PR

Android.
10000 7 Temporal locality ranking of write 10000
w” ta Frequency ranking of write +
»
8 1000 b 8 8 1000
i~ c
o o
2 2
© 100 © 100
k3 kS
o] I}
a 10 Q 10
£ €
=3 =}
z : z
1 1
1 10 100 1000 10000 1 10
Ranking of referenced pages

(a) Gedit

Ranking of referenced pages

(b) Ggview

100 1000 10000 1 10 100 1000

Ranking of referenced pages

10000

(c) Xmms

FIGURE 9. Number of writes that occur on the ranking of pages determined by temporal locality and frequency of references in

desktop.

accesses by preserving the top ranking pages of temporal
locality. Note that this is different from the characteristics
of desktop applications, in which frequency based estima-
tion performs better than temporal locality based estima-
tion for the re-reference likelihood of hot pages as shown
in Fig. 9 [17]. In summary, temporal locality is a better
property than access frequency in estimating the re-reference
likelihood of hot pages in Android applications.

Ill. CASTE: HYBRID MEMORY MANAGEMENT FOR
SMARTPHONE APPLICATIONS

In this section, we describe the proposed hybrid memory
management scheme for smartphone applications, called
Caste.

A. BASIC IDEA
Fig. 10 shows the overall structure of Caste. The basic
idea of Caste is that writes on NVM incur performance
and endurance problems, and thus identifying write-intensive
pages and placing them on DRAM can resolve the weak-
nesses of NVM.

As we focus on the write characteristics of pages, we con-
sider the hotness of a page based on write references only.

61002

In traditional desktop applications, the hotness of pages
changes as workloads evolve. Thus, an efficient hybrid mem-
ory management should insert a hot page in DRAM, but
moves it to NVM if it becomes cold. However, as analyzed
in Section II, memory access behaviors in smartphone appli-
cations do not change significantly. That is, it does not happen
frequently that a hot page becomes cold or a cold page
becomes hot. Thus, once a page is identified as a hot (or a
cold) page, we aim to place it on DRAM (or NVM), and do
not change its location.

Previous studies on hybrid memory management also
report that unnecessary page migrations due to incorrect
online prediction degrade the total execution time by 25% on
average [22]. Thus, we identify hot pages of an application
based on the page rankings determined before the execution
of the application. Although the page rankings are deter-
mined beforehand, we adjust the number of hot pages that
will be placed on DRAM according to the system situation
changes. This is necessary because the change of memory
situations affects the page fault ratio significantly under the
fixed DRAM capacity. Thus, our scheme periodically moni-
tors the page fault ratio of DRAM memory, and determines

VOLUME 9, 2021

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

IEEE Access

Write fault on
Page p of App i Page_rankingp <Mpgp?
_—
o] N
Mppps Storage
Mpgpa
M, Yes

FIGURE 10. Overview of Caste.

the number of hot pages to be placed on DRAM. That is, if the
page fault ratio is high, the rankings to be placed on DRAM
are decreased, and if the page fault ratio is low, the rankings
to be placed on DRAM are increased. This reduces the write
traffic to NVM without performance degradations caused by
page faults.

B. DETAILS OF CASTE

Caste investigates the write characteristics of each page dur-
ing the training phase of applications, and determines the
page ranking list, which will be maintained. From the next
execution of the applications, when a page fault occurs, Caste
places the faulted page on DRAM if the page ranking is
less than the threshold M, and otherwise places it on NVM.
In Caste, moving pages between DRAM and NVM is not
allowed. That is, although a page on NVM has been written
many times, Caste does not relocate it to DRAM. Similarly,
when a page is evicted from DRAM, Caste does not move
it to NVM but demotes directly to secondary storage. This
is different from previous data placement schemes that allow
page swaps between DRAM and NVM; evicted pages from
DRAM can be demoted to NVM, and hot pages in NVM can
also be promoted to DRAM. The rationale behind this process
is to reduce the number of slow storage accesses as well as
NVM writes by hierarchical memory management.

50

40 - -

30 - B

10 - o

NVM Write Ratio by the Swap,%

angrybirds browser facebook youtube

FIGURE 11. The ratio of NVM writes incurred by migrations between
DRAM and NVM over total NVM writes.

However, our analysis shows that this incurs too
much NVM write traffic in smartphone memory systems.
Fig. 11 shows the ratio of writes that occur by NVM-DRAM
swap over the total NVM writes when allowing the migration
of pages between DRAM and NVM. As shown in the figure,
more than 30% of total NVM writes originate from the swaps
between DRAM and NVM. This is the reason why Caste is
designed not to allow swaps between DRAM and NVM. The
only concern Caste may encounter is, then, the performance

VOLUME 9, 2021

08 _—
@ Current situation
fe] @ Target situation
© 06
3
&
(0]
2 04
o
Ap'
0.2
00 L Am . ; PR , , |
100 9 8 70 60 50 40 30 20 10 0
M MoAm Page Ranking
(a) High page fault ratio case
1.0
0.8 o
@ Current situation
2 @ Target situation
© 06
3
&
S 04
o
0.2
Ap
0.0 4A¢ |
100 9 80 70 60 50 40 30 20 10 0O
MtAm M Page Ranking

(b) Low page fault ratio case

FIGURE 12. Adjustment of the threshold M.

degradation by the increased page fault ratio. To resolve
this issue, Caste monitors the page fault ratio of DRAM
periodically and adjusts the threshold ranking M that controls
the number of pages to be placed on DRAM.

When the page fault ratio is high, Caste decreases M to
restrict pages to be placed on DRAM as the DRAM capacity
is not sufficient to accommodate current workloads. In this
case, Caste focuses on the reduction of page faults rather
than NVM writes. In contrast, when the page fault ratio is
sufficiently low, Caste increases M to accommodate more
pages on DRAM. This eventually leads to the reduction of
NVM writes.

To model the expected page fault ratio, we utilize the
Belady’s lifetime function as it is known that the func-
tion accurately approximates the hit ratio for given memory
sizes [21]. Fig. 12 shows the two cases of adjusting M based
on this model. In Fig. 12(a), as the current page fault ratio
is high, Caste decreases M to accommodate less pages on
DRAM. Inversely, when the page fault ratio is sufficiently
low, Caste increases M to place more pages on DRAM as
shown in Fig. 12(b). Fig. 13 shows how our model fits the
page fault ratio well for the given page rankings in the work-
loads we considered. As shown in the figure, our model well
fits in case of Facebook and Farmstory, but there are some
gaps between the actual page fault ratio and the value esti-
mated by our model as the page ranking threshold decreases
in case of Angrybirds and Browser. However, this does not
matter as we are interested in the boundary condition for

61003

IEEE Access

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

0.040 v 1 0.030
measured page fault ratio
predicted page fault ratio — |

measured page fault ratio
predicted page fault ratio — |

o o
s o
8 B
3 &

Page fault ratio
g g
S &

o
=)
15}
&

0 " "
8000 7000 6000 5000 4000 3000 2000 1000 O
Page ranking threshold

5000 40‘00 3000 2000 1000 0
Page ranking threshold

(a) Facebook (b) Farmstory

0.014 T 0.014
measured page fault ratio

0.012 | predicted page fault ratio — | _g 0.012

S o010

-

S 0.008
I

8
© 0006

(0“) 0.004

measured page fault ratio
predicted page fault ratio — |

0.002

0 " "
14000 12000 10000 8000 6000 4000 2000 O
Page ranking threshold

0 "
12000 10000 8000 6000 4000 2000 O
Page ranking threshold

(c) Angrybirds (d) Browser

FIGURE 13. Measured page fault ratio versus the page fault ratio
estimated by our model.

determining page rankings for DRAM admission, which is
far from the tail of the graphs.

Although we adjust the number of pages to place on
DRAM, an eviction policy is necessary as the size of DRAM
is limited. That is, adding a new hot page to DRAM requires
the eviction of an existing page from DRAM if there is no
free space in DRAM. As we observed that temporal locality is
better than frequency in estimating the re-reference likelihood
of hot pages, we use the second-chance algorithm for the
eviction of pages in DRAM. The second-chance algorithm
is a popular algorithm that reflects the temporal locality of
references.

Now, let us explain the details of the Caste algorithm based
on the pseudo-code depicted in Algorithm 1. When a page
fault occurs, Caste places the faulted page on DRAM if the
ranking of the page is less than the threshold M of the applica-
tion, and otherwise places the page on NVM. If DRAM is full,
then a victim page is selected and flushed to storage. To find
a replacement victim in DRAM, Caste monitors whether a
page has recently been accessed or not by making use of
each page’s reference bit. As Caste uses the second-chance
replacement algorithm, it sequentially scans through DRAM
resident pages, and evicts the first page that has the reference
bit of 0. For every page with the reference bit of 1 in the course
of the scan, Caste clears the bit to 0 instead of evicting the
page. As the reference bit of a page is set to 1 upon every
page access by the paging unit hardware, a page which is not
accessed until the next scan is certain to be evicted. f NVM is
full, then Caste selects a victim in NVM by making use of the
second-chance algorithm similar to replacement in DRAM.
That is, Caste sequentially scans through pages in NVM, and
clears the reference bit of the pages. If a page whose reference
bit is already cleared is found, Caste evicts this page. If the
page has been modified after entering NVM, it is flushed to
storage before evicted from NVM.

If the current epoch ends, Caste updates the page ranking
threshold M that determines the number of hot pages to be

61004

Algorithm 1
procedure caste(page P, app A)
if page_ranking (P) < M, then
insert(DRAM, P);
else
insert(NVM, P);
end if
if current epoch ends then
update_threshold(M,);
end if
end procedure
procedure insert(memory_type Mem, page P)
while no free page in Mem do
Q <« page pointed by clock-handyy,;
if reference_bit(Q) is O then
evict Q from Mem;
if modified_bit(Q) is 1 then
flush Q to storage;
end if
else
clock-handyy,,;, advances to next;
end if
end while
insert P to Mem:;
end procedure
procedure update_threshold(int M)
if page_fault_rate(M) - page_fault_rate(M - AM) > u
then
decrease M by AM;
else if page_fault_rate(M + AM) - page_fault_rate
(M) < 1 then
increase M by AM,
end if
// Page_fault_rate function is estimated by Belady’s life-
time model
end procedure

placed in DRAM. This is based on our Page_fault_rate model
estimated by the Belady’s lifetime function. Specifically,
if the estimated page fault ratio is not degraded significantly
although the threshold M is increased by AM , the new thresh-
old for the next epoch is set to M + AM. Otherwise, if the
estimated page fault ratio is significantly improved if the
threshold M is decreased by AM, the new threshold is set
to M—AM.

C. ANDROID MEMORY MANAGEMENT AND CASTE

Android memory management is performed by LMK (low
memory killer) and kswapd (kernel swap daemon). When free
memory space is below the LMK-threshold, Android triggers
LMK to make free memory. LMK selects the lowest priority
application and kills it, thereby freeing all pages belonging to
that application [41]. The priorities of applications are deter-
mined based on the time of the last use. Also, as the bottom
core part of Android consists of the Linux kernel, kswapd can

VOLUME 9, 2021

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

IEEE Access

be activated when there is not enough free memory. Kswapd
frees a certain number of page frames by flushing their con-
tents to secondary storage. The default reclamation algorithm
of kswapd maintains two page lists, the active list and the
inactive list, and evicts pages not used recently in the inactive
list [17]. Although the eviction granularity is different (i.e.,
application-level in LMK and page-level in kswapd), both
LMK and kswapd commonly evict pages that are not used
recently when there is not enough available memory. That is,
they make use of online activities to predict which pages are
not likely to be re-used in the near future.

Unlike the aforementioned replacement issue, Android
memory management does not consider the placement issue.
This is because it does not need to consider the placement
of pages among free memory frames under the homoge-
neous DRAM architecture. However, as the memory system
consists of heterogeneous media (i.e., DRAM and NVM),
page placement becomes an important issue. From this point
of view, we make the following observations that can be
exploited in efficient page placement of Android memory.
First, unlike desktop applications, memory references in
smartphones are concentrated on pages of a certain logi-
cal addresses and this is consistent regardless of applica-
tion types. Second, the memory reference behaviors of these
hot pages do not change significantly as time progresses
even after applications finish their launching. Based on these
observations, we analyzed how to efficiently manage hybrid
memory in smartphones and found that determining the type
of memory (i.e. DRAM or NVM) for placing each page and
preventing migrations between DRAM and NVM is effi-
cient. This is differentiated from previous studies that mostly
focus on the replacement algorithm, which determines an
eviction victim based on the online behavior of page refer-
ences, whereas we focus on the placement of pages between
DRAM and NVM based on the prior knowledge analyzed
from Android’s memory reference behavior.

IV. EXPERIMENTAL RESULTS

We perform trace-driven simulations to assess the effective-
ness of Caste. For a comparison purpose, we additionally
simulate a scheme that adds a page to DRAM if a write
operation on that page occurs first time and page migration
between DRAM and NVM is allowed. We call this scheme
migration-allowed, which is a typical scheme used in hybrid
memory systems [11], [17], [27], [28]. In the experiments,
the ratio of DRAM is varied to 10%, 15%, and 20% of the
total main memory capacity. Accordingly, the NVM size is
set to 90%, 85%, and 80% of the main memory, respectively.
The page size is set to 4KB, which is the default setting of
Android.

Fig. 14 shows the NVM write traffic of Caste relative to the
migration-allowed scheme for each workload as the DRAM
size is varied. As shown in the figure, Caste reduces the
NVM write traffic significantly for a variety of workloads
and DRAM sizes. Specifically, the reduced write traffic of
Caste is an average of 42% and up to 87%. This is mainly

VOLUME 9, 2021

because Caste eliminates NVM writes caused by data migra-
tion between DRAM and NVM, which accounts for the
majority of total NVM write traffic. In Browser, Mxplayer,
and Farmstory, the reduced write traffic by Caste is over 50%
regardless of the DRAM size. The write traffic of Facebook
is increased when the DRAM size is less than 20%. This is
because the number of hot pages in Facebook is relatively
large, and thus the DRAM size of 10% or 15% is not enough
for maintaining these hot pages. Based on this observation,
we need to set the size of DRAM required for Caste to
at least 20% of the total memory capacity. From now on,
we use the default DRAM size as 20%, which can minimize
the refresh energy of DRAM without performance penalties.
In such configurations, Caste can reduce NVM writes for all
cases and the average reduction in write traffic is 62% in
comparison with the migration-allowed scheme.

angrybird

browser =facebook = youtube mmxplayer ®farmstory

migration-allowed

NVM write traffic (normailized)
5

0.4 4

1
0.0 T T

10% 15% 20%

DRAM size

FIGURE 14. Relative NVM write traffic to Caste in comparison with the
migration-allowed scheme.

Fig. 15 shows the total page fault ratio normalized to that
of the migration-allowed scheme as the DRAM size and
the workloads are varied. Although placing evicted pages to
storage is likely to incur a lot of page faults, Fig. 15 shows
that the page fault ratio is not increased when the DRAM size
is set to 20%. Moreover, in some applications like Facebook
and Youtube, the page fault ratio is even improved under the
20% DRAM size. This is because Caste places pages based
on the exact write characteristics obtained by trace analysis.
Moreover, Caste does not degrade the page fault ratio as it
controls the number of incoming pages adaptively according
to system situations. When the DRAM size is 10% or 15%,
the page fault ratio is degraded because it is not sufficient
to accommodate all hot pages in DRAM memory. Based on
this result, we can also ensure that the DRAM size for Caste
should be set to 20% of the total memory capacity.

Fig. 16 compares Caste and the migration-allowed scheme
with respect to the lifetime of NVM. Although we do not
limit the target of Caste to specific NVM media, we focus
on our experiments under PCM as it is vulnerable to write
operations, and its endurance cycle is shorter than other NVM
media. Table 2 lists the DRAM and NVM characteristics we
experimented for the lifetime and the energy issue of our
experiments [17].

For the simulation of the NVM lifetime, we sequentially
execute the six workloads repeatedly until the write limit

61005

IEEE Access

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

angrybird = browser =facebook = youtube mmxplayer ®farmstory
4.0
3.5 A
3.0 A
25 A

2.0 4 migration-allowed

1.0 i
0.5 4
0.0 T T
10% 15% 20%
FIGURE 15. Relative Page fault ratio of Caste in comparison with the
migration-allowed scheme.

Page fault rate (normailized)

DRAM size

H migration-allowed Caste
3.0
25 A
S 20 |
z
5 15 |
[0}
£
3 1.0 4
=
0.5 A
0.0 - T T
10% 15% 20%
DRAM size

FIGURE 16. Lifetime of NVM.

TABLE 2. Access latency and power consumptions for DRAM and NVM.

DRAM NVM
Read latency 50 (ns) 50 (ns)
Write latency 50 (ns) 350 (ns)
Read energy 0.1 (nJ/bit) 0.2 (nJ/bit)
Write energy 0.1 (nJ/bit) 1.0 (nJ/bit)
Static power 1 (W/GB) 0.1 (W/GB)

of NVM assuming that all write requests are equally dis-
tributed to NVM. Equal distribution seems to be an unrealistic
assumption, but previous studies also made such assumptions
as wear-leveling techniques for evenly distributing write traf-
fic to NVM have been devised at the architecture level [29].
Thus, we consider this to be a valid assumption. As shown in
Fig. 16, Caste extends the lifetime of NVM by a large margin
compared to the migration-allowed scheme. Specifically, the
NVM lifetime is extended by 27%, 75%, and 162%, respec-
tively, for the DRAM size of 10%, 15%, and 20%.

From now on, we investigate the overhead of our hybrid
memory architecture by comparing the performance of Caste
with the conventional memory architecture that uses only
DRAM as main memory. Specifically, we compare the
average memory access time of the hybrid memory archi-
tecture with Caste and the DRAM only architecture. For
the DRAM only architecture, the size of DRAM is set to
the sum of DRAM and NVM sizes in the hybrid mem-
ory architecture of Caste. We also compare Caste with the
migration-allowed scheme under the same hybrid memory
architecture. Fig. 17 shows the average memory access time

61006

H migration-allowed Caste all-DRAM

1.0 A
0.5 A
0.0 + T T

10% 15% 20%
DRAM size

Average memory access time

FIGURE 17. Comparison of average memory access time.

of Caste and migration-allowed under the hybrid memory
architecture in comparison with that of the all-DRAM archi-
tecture. Note that the results are normalized to that of the
all-DRAM architecture. As shown in the figure, the per-
formance degradation of the hybrid memory architecture is
widely varied from 6.5% to 40% according to the DRAM size
and the management scheme. Specifically, Caste performs
consistently better than the migration-allowed scheme. When
the DRAM size is 20%, the performance degradation of the
hybrid memory architecture with Caste is just 6.5% compared
to the all-DRAM architecture. On the contrary, the migration-
allowed scheme degrades the memory access time by 27.8%
even though the DRAM size is as large as 20%. This indicates
that the hybrid memory architecture may degrade smartphone
memory performances, but it is feasible by judicious page
allocation like Caste.

Let us now move on to the energy consumption. The
memory energy consumption Energyy is the sum of dynamic
energy Eqynamic and static energy Egagc, that is

Energym = Edynamic + Estatic (H

The dynamic energy Eqynamic is the energy consumed during
read or write operations [30], which can be calculated as

Edynamic = Z {rp * E_readpram +wp *x E_writepram}
peDRAM

+ Z {rp * E_readnvm + wp * E_writexym}
peNVM

(@)

where 7, and w), are the number of read and write opera-
tions on page p, respectively, E_readpram and E_writepram
are the read and write energies in DRAM, respectively, and
E_readnxvm and E_writenvy are the read and write energies
in NVM, respectively.

The static energy Egic is the energy consumed constantly
irrespective of any operations in memory [30], which can be
calculated as

Estatic = {Unit_powerpraM * SizepraM
+ Unit_powernvwm * sizenvm} * T (3)

where Unit_powerpram and Unit_powernym are the static
power of DRAM and the static power of NVM, respectively,

VOLUME 9, 2021

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

IEEE Access

per capacity, sizepram and sizenvm are the size of DRAM
and NVM, and 7 is the total execution time.

Fig. 18 shows the energy consumption of Caste and
migration-allowed normalized to that of the conventional
all-DRAM architecture. As shown in the figure, the
energy-saving effect of the hybrid memory architecture is
consistent regardless of the DRAM size although small
DRAM saves more energy. When the DRAM size becomes
large, static energy required for DRAM refresh operations
accounts for a large portion of energy consumption compared
to the dynamic energy required for actual read/write opera-
tions. When the DRAM size is 20%, Caste reduces the energy
consumption of the all-DRAM architecture by 68%. The
migration-allowed scheme and Caste exhibit similar results
but Caste consumes 2.2% less energy than the migration-
allowed scheme. The energy consumption trend of these two
schemes is similar as they adopt the same hybrid memory
architecture, and thus static energy consumptions are iden-
tical. However, Caste reduces the energy consumption of the
migration-allowed scheme by eliminating NVM write traffic
that is responsible for a large portion of dynamic energy
consumption.

H migration-allowed Caste all-DRAM

1.2

1.0 A
0.8 ~
0.6 -
0.4 4
o L d I
0.0 - T T

10% 15% 20%

DRAM size

Energy consumption

FIGURE 18. Comparison of energy consumptions.

V. RELATED WORKS
A. NON-VOLATILE MEMORY TECHNOLOGIES
Non-volatile memory (NVM) has been considered as a
new memory medium to reduce the energy consump-
tion of DRAM memory. Specifically, NVM allows the
byte-addressability similar to DRAM, but it spends less
energy than DRAM because NVM does not need to perform
refresh of cells due to its non-volatile characteristics [31].
However, write operations on NVM are vulnerable in terms of
the access latency and/or endurance cycles, and thus studies
on NVM usually build hybrid memory architectures consist-
ing of DRAM and NVM to solve the write vulnerability of
NVM with a small amount of DRAM. For example, writing
data in PCM is several times slower than reading, and the
endurance cycle (i.e., maximum number of writes allowed for
a cell) in PCM is in the range of 10 to 10, which is shorter
than that of DRAM. Thus, studies on PCM as main memory
adopt additional DRAM in order to reduce the number of
write operations on PCM [11], [17].

Recently, there are attempts to focus on a pure-NVM
structure for main memory. This is possible as extremely

VOLUME 9, 2021

promising NVM technologies such as STT-MRAM (spin-
transfer torque magnetic random access memory) and
SOT-MRAM (spin orbit torque magnetic random access
memory) relieve the write vulnerabilities of NVM, and there
are lots of work discussing their superiority over DRAM
and/or SRAM. Accordingly, studies are being conducted
to configure the main memory with only NVM or even
use NVM as a replacement of SRAM-based on-chip cache
memory [32], [33].

In pure-NVM memory architectures, studies focus on
the utilization of persistent data structures as main mem-
ory becomes non-volatile. That is, while traditional systems
regard memory data as volatile and permanent data is only
maintained at the storage layer, studies on pure-NVM mem-
ory systems are now being conducted to utilize the persis-
tency of data at the memory layer. In such environments,
the memory system is specially called Persistent Memory
(PM) rather than NVM as it is differentiated from hybrid
memory architectures that do not utilize the persistency
of NVM.

As main memory becomes persistent, a cache line is
expected to be the unit of data transfer between volatile
and non-volatile devices. Thus, the failure-atomicity of write
operations could be guaranteed in the granularity of cache
lines. To do so, studies have been conducted to use in-memory
data structures for NVM. For example, Cho et al. present
Failure-atomic Byte-addressable R-tree (FBR-tree) that guar-
antees the crash consistency by making use of NVM [33].
They manage the order of memory writes and cacheline
flush instructions, thereby eliminating the inconsistency of
the FBR-tree. Lee et al. present the journaling transaction
function at the main memory layer by utilizing NVM [34].
They also extend the persistent memory characteristics of
NVM by allowing the original data location from flash stor-
age to NVM memory [25].

Some recent studies focus on the on-chip cache mem-
ory architecture that replaces SRAM by NVM. Talebi et al.
present an on-chip cache that consists of STT-MRAM instead
of SRAM [32]. They suggest a replacement policy for
STT-MRAM cache memory to improve the robustness of
STT-MRAM against write failures.

B. HYBRID MEMORY TECHNOLOGIES
Mogul et al. suggest a hybrid memory architecture that
locates read-intensive pages to NVM and write-intensive
pages to DRAM [10]. Dhiman ef al. also make use of hybrid
memory consisting of NVM and DRAM, and try to balance
the number of write operations on NVM as there are write
endurance problems in NVM [11]. Lee et al. suggest a new
page eviction algorithm for memory systems composed of
NVM and DRAM [17]. Their algorithm classifies memory
pages as hot pages and cold pages based on their write char-
acteristics, and locates hot pages on DRAM and cold pages
on NVM.

Narayan et al. suggest an object-level placement policy for
DRAM and NVM hybrid memory [35]. Specifically, their

61007

IEEE Access

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

policy aims at saving the power consumptions and improving
the performances simultaneously by placing memory objects
to appropriate memory media. Kannan et al. propose a mem-
ory management scheme for virtualized environments [36].
They present a hybrid memory management scheme that
determines the appropriate memory media for placing a page
of a guest machine, and does not allow the migration of
pages. Instead, they present another scheme that allows the
migration of memory pages and sharing pages between vir-
tual machines for performance improvement.

Lin et al. make use of dynamic programming and greedy
approximation for solving the memory mapping between
heterogeneous memory systems [37]. Zhang et al. propose
a task allocation scheme for heterogeneous memory [38].
Specifically, their scheme locates tasks one by one to NVM
and investigates the schedulability of the tasks. This is per-
formed repeatedly until the allocation of all tasks is finished.

Sun et al. present a hybrid memory management technique
for AIoT (Artificial intelligence Internet of Things) sys-
tems [28]. Specifically, they reduce the energy consumption
and optimize I/O performance of AloT systems by migrating
write-intensive data from NVM to DRAM. Also, they present
an in-memory file system to reduce the number of data move-
ments between memory and storage.

Liu et al. present a memory management framework called
Memos [27], which manages DRAM and NVM hybrid mem-
ory over the hierarchy of cache, channels, and main memory.
By monitoring the memory access patterns through TLB and
main memory levels, they optimize the data placement in
the memory hierarchy, improving memory performance and
increasing the lifetime of NVM.

Wang et al propose an SOT-MRAM based PIM
(processing-in-memory) accelerator for neural network train-
ing [39]. Specifically, they present a floating point precision
cell that features the balance between computation flexibility
and memory density, improving the energy and area effi-
ciency as well as performances.

Jin et al. present an on-chip cache management scheme
that considers the asymmetrical penalty of memory access
to DRAM and NVM [40]. They argue that hit ratio is not
an effective metric for hybrid memory systems, and propose
MALRU (Miss-penalty Aware LRU) to preserve high-latency
NVM blocks preferentially in the last level cache.

VI. CONCLUSION

In this article, we presented an efficient memory management
scheme, called Caste, for DRAM and NVM hybrid memory
architectures in a smartphone. Unlike previous studies, Caste
analyzes write reference characteristics of Android appli-
cations precisely and determines the priorities of pages for
DRAM placement. Also, by preventing online relocation of
pages between DRAM and NVM, Caste completely elimi-
nates unnecessary NVM writes that account for 32-42% of
the total write traffic. This article also quantified the number
of hot pages that should be allocated to DRAM under the
given system situations based on the page fault ratio model we

61008

devised. Experiment results with real smartphone workloads
showed that Caste reduces the NVM write traffic by 42% on
average and up to 87%.

REFERENCES

[1] S. Bae, H. Song, C. Min, J. Kim, and Y. I. Eom, “EIMOS: Enhanc-

ing interactivity in mobile operating systems,” in Proc. Int. Conf. Com-

put. Sci. Appl., in Lecture Notes in Computer Science, vol. 7335, 2012,

pp. 238-247.

1. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “GPS/HPS- and

'Wi-Fi fingerprint-based location recognition for check-in applications over

smartphones in cloud-based LBSs,” IEEE Trans. Multimedia, vol. 15,

no. 4, pp. 858-869, Jun. 2013.

F. Huang, X. Li, S. Zhang, J. Zhang, J. Chen, and Z. Zhai, “Overlapping

community detection for multimedia social networks,” IEEE Trans. Mul-

timedia, vol. 19, no. 8, pp. 1881-1893, Aug. 2017.

[4] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and
C.-H. Hsu, “On the quality of service of cloud gaming systems,” IEEE
Trans. Multimedia, vol. 16, no. 2, pp. 480—495, Feb. 2014.

[5] N. Islam and R. Want, “Smartphones: Past, present, and future,” IEEE

Pervas. Comput., vol. 13, no. 4, pp. 89-92, Oct. 2014.

Google Pixel 4a. Accessed: Apr. 1, 2021. [Online]. Available:

https://store.google.com/?srp=/product/pixel_4a_specs

A. Carroll and G. Heiser, “An analysis of power consumption in a smart-

phone,” in Proc. USENIX Annu. Tech. Conf., 2010, p. 21.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn, “Flikker: Saving

DRAM refresh-power through critical data partitioning,” in Proc. ACM

ASPLOS, 2011, pp. 213-224.

S. Eilert, M. Leinwander, and G. Crisenza, ‘‘Phase change memory: A new

memory technology to enable new memory usage models,” in Proc. Ist

IEEE Int. Memory Workshop (IMW), May 2009, pp. 1-2.

[10] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating system
support for NVM+DRAM hybrid main memory,” in Proc. HotOS, 2009,
pp. 4-14.

[11] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Proc. 46th ACM/IEEE Design Automat.
Conf. (DAC), Jul. 2009, pp. 559—-664.

[12] International Technology Roadmap for Semiconductors, Semiconductor
Industry Association, Washington, DC, USA. (2007). Emerging Research
Devices. [Online]. Available: https://www.semiconductors.org/resources/
2007-international-technology-roadmap-for-semiconductors-itrs/

[13] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proc. 36th
Annu. Int. Symp. Comput. Archit. (ISCA), 2009, pp. 14-23.

[14] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, ““Scalable high performance
main memory system using phase-change memory technology,” in Proc.
36th Annu. Int. Symp. Comput. Archit. (ISCA), 2009, pp. 24-33.

[15] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proc. 36th Annu. Int. Symp.
Comput. Archit. (ISCA), 2009, pp. 2-13.

[16] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montafio, and
J. P. Karidis, ‘“Morphable memory system: A robust architecture for
exploiting multi-level phase change memories,” in Proc. 37th Int. Symp.
Comput. Archit. (ISCA), 2010, pp. 153-162.

[17] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: A write-history-aware
page replacement algorithm for hybrid PCM and DRAM memory archi-
tectures,” IEEE Trans. Comput., vol. 63, no. 9, pp. 2187-2200, Sep. 2014.

[18] L. Ramos, E. Gorbatov, and R. Bianchini, ‘“Page placement in hybrid
memory systems,” in Proc. ACM ICS, Tucson, AZ, USA, May 2011,
pp. 85-95.

[19] H.Lee, H.Bahn, and K. G. Shin, ““Page replacement for write references in
NAND flash based virtual memory systems,” J. Comput. Sci. Eng., vol. 8,
no. 3, pp. 157-172, Sep. 2014.

[20] N. Nethercote and J. Seward, “Valgrind: A program supervision frame-
work,” Electron. Notes Theor. Comput. Sci., vol. 89, no. 2, pp. 44-66,
2003.

[21] J. Choi, S. Cho, S. Noh, S. Lyul, and Y. Cho, “Analytical prediction of
bufter hit ratios,” Electron. Lett., vol. 36, no. 1, pp. 10-11, 2000.

[22] S.Bock, B. Childers, R. Melhem, and D. Mosse, ‘“Concurrent page migra-
tion for mobile systems with OS-managed hybrid memory,” in Proc. 11th
ACM Conf. Comput. Frontiers, 2014, pp. 1-10.

2

—

3

[l

[6

—

[7

—

[8

—

[9

[t

VOLUME 9, 2021

S. Lee, H. Bahn: Characterization of Android Memory References and Implication to Hybrid Memory Management

IEEE Access

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

E. Lee and H. Bahn, “Caching strategies for high-performance storage
media,” ACM Trans. Storage, vol. 10, no. 3, pp. 1-22, Jul. 2014.

E. Lee, H. Bahn, S. Yoo, and S. H. Noh, “Empirical study of NVM
storage: An operating system’s perspective and implications,” in Proc.
IEEE 22nd Int. Symp. Modelling, Anal. Simulation Comput. Telecommun.
Syst., Sep. 2014, pp. 405-410.

E. Lee, J. Kim, H. Bahn, S. Lee, and S. H. Noh, ‘“Reducing write amplifi-
cation of flash storage through cooperative data management with NVM,”
ACM Trans. Storage, vol. 13, no. 2, pp. 1-13, Jun. 2017.

S. Lee and H. Bahn, “Characterizing memory references for smartphone
applications and its implications,” J. Semicond. Technol. Sci., vol. 15, no. 2,
pp. 223-231, Apr. 2015.

L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical hybrid memory man-
agement in OS for tiered memory systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 10, pp. 2223-2236, Oct. 2019.

H. Sun, L. Chen, X. Hao, C. Liu, and M. Ni, “An energy-efficient and
fast scheme for hybrid storage class memory in an AIoT terminal system,”
Electronics, vol. 9, no. 6, p. 1013, Jun. 2020.

L. Yavits, L. Orosa, S. Mahar, J. D. Ferreira, M. Erez, R. Ginosar, and
O. Mutlu, “WoLFRaM: Enhancing wear-leveling and fault tolerance in
resistive memories using programmable address decoders,” in Proc. [EEE
38th Int. Conf. Comput. Design (ICCD), Oct. 2020, pp. 187-196.

S. Yoo, Y. Jo, and H. Bahn, “Integrated scheduling of real-time and
interactive tasks for configurable industrial systems,” IEEE Trans. Ind.
Informat., early access, Mar. 22, 2021, doi: 10.1109/TI1.2021.3067714.
E. Lee, H. Kang, H. Bahn, and K. G. Shin, “Eliminating periodic flush
overhead of file I/O with non-volatile buffer cache,” IEEE Trans. Comput.,
vol. 65, no. 4, pp. 11451157, Apr. 2016.

M. Talebi, A. Salahvarzi, A. M. H. Monazzah, K. Skadron, and M. Fazeli,
“ROCKY: A robust hybrid on-chip memory kit for the processors with
STT-MRAM cache technology,” IEEE Trans. Comput., early access,
Nov. 26, 2020, doi: 10.1109/TC.2020.3040152.

S. Cho, W. Kim, S. Oh, C. Kim, K. Koh, and B. Nam, “‘Failure-atomic byte-
addressable R-tree for persistent memory,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 3, pp. 601-614, Mar. 2021.

E. Lee, H. Bahn, and S. Noh, “Unioning of the buffer cache and journaling
layers with non-volatile memory,” in Proc. USENIX Conf. File Storage
Technol. (FAST), 2013, pp. 73-80.

A.Narayan, T. Zhang, S. Aga, S. Narayanasamy, and A. Coskun, “MOCA:
Memory object classification and allocation in heterogeneous memory
systems,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2018, pp. 326-335.

S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan, ‘“HeteroOS—OS
design for heterogeneous memory management in datacenter,” in Proc.
ISCA, 2017, pp. 521-534.

Y. Lin, N. Guan, and Q. Deng, “Allocation and scheduling of real-time
tasks with volatile/non-volatile hybrid memory systems,” in Proc. IEEE
Non-Volatile Memory Syst. Appl. Symp. (NVMSA), Aug. 2015, pp. 1-6.

VOLUME 9, 2021

(38]

(39]

[40]

(41]

Z. Zhang, P. Liu, L. Ju, and Z. Jia, “Energy efficient real-time task
scheduling for embedded systems with hybrid main memory,” in Proc.
RTCSA, 2014, pp. 1-10.

H. Wang, Y. Zhao, C. Li, Y. Wang, and Y. Lin, “A new MRAM-based
process in-memory accelerator for efficient neural network training with
floating point precision,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Oct. 2020, pp. 1-5.

H. Jin, D. Chen, H. Liu, X. Liao, R. Guo, and Y. Zhang, “Miss
penalty aware cache replacement for hybrid memory systems,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4669-4682, Dec. 2020.

J. Kim and H. Bahn, “Maintaining application context of smart-
phones by selectively supporting swap and kill,” IEEE Access, vol. 8,
pp- 85140-85153, 2020.

SOYOON LEE received the B.S., M.S., and Ph.D.
degrees in computer science from Ewha Univer-
sity, Seoul, South Korea, in 2004, 2006, and 2011,
respectively. She is currently a Research Professor
of computer science and engineering with Ewha
University. Her research interests include emerg-
ing memory and storage systems, operating sys-
tems, and embedded systems.

HYOKYUNG BAHN (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer
science and engineering from Seoul National Uni-
versity, in 1997, 1999, and 2002, respectively.

He is currently a Full Professor of computer
science and engineering with Ewha University,
Seoul, South Korea. He has published more than
100 papers in leading conferences and journals
including USENIX FAST, IEEE TRANSACTIONS ON
CompuTeRS, IEEE TRANSACTIONS ON KNOWLEDGE AND

Darta ENGINEERING, and ACM Transactions on Storage. His research interests
include operating systems, caching algorithms, storage systems, embedded
systems, system optimizations, and real-time systems. He received the Best
Paper Awards from the USENIX Conference on File and Storage Technolo-
gies, in 2013.

61009

http://dx.doi.org/10.1109/TII.2021.3067714
http://dx.doi.org/10.1109/TC.2020.3040152

