
Received March 31, 2021, accepted April 14, 2021, date of publication April 20, 2021, date of current version June 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3074150

Online Task Scheduling With Workers
Variabilities in Crowdsourcing
QI LI AND LIJUN CAI
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China

Corresponding author: Qi Li (qili@hnu.edu.cn)

ABSTRACT Crowdsourcing system, which utilizes many workers to process computer-complexity tasks,
has become an effective platform in today’s online labor markets. In a crowdsourcing system, maximizing
the total utility is one key design goal. This goal is extremely hard because a computer-complexity task can be
a multi-dimensional large-scale task that contains thousands or millions of atomic tasks. In online situation,
we need to consider both the varying service of workers and future unknown task arrivals. As we know, none
of the previous work considers a multi-dimensional large-scale task assignment for utility maximization.
In this paper, an online framework is proposed to solve this optimization problem by running atomic tasks
in parallel on workers. To estimate worker service rates, we consider each varying worker as an arm for
a multi-armed bandit in crowdsourcing system. We design the online scheduling algorithm from a bandit
perspective by Online Convex Optimization (OCO) techniques. We prove that our designed algorithm can
yield a sublinear regret bound. Finally, we show that our designed algorithm is better than the baseline
algorithms by nearly 10% for the total utility achieved.

INDEX TERMS Multi-armed bandit, online optimization, multi-dimensional large-scale crowdsourcing
tasks, regret bound.

I. INTRODUCTION
Crowdsourcing system has become more and more popular
for workers to perform computer-complexity tasks. In Ama-
zon Mechanical Turk [1], translating Chinese papers into
English papers, collecting school addresses and labelling
contents of images are typical computer-complexity tasks.
This typical task is usually a large-scale task which contains
thousands or millions of atomic tasks. These atomic tasks are
viewed as decomposed tasks such as binary choice or sim-
ple voting [2]. Moreover, this typical task can also be a
multi-dimensional crowdsourcing task (data with multiple
attributes) which can be used to maximize the total utility
in this platform [3]. In a crowdsourcing system, tasks are
assigned to workers and workers get payment after com-
pleting tasks. Note that the task payment is considered as
task utility and we will use the term utility in the rest of
paper. We utilize a concave utility function to calculate task
utility with respect to the completed task [4]. The concave
utility function can be used to consider task dependencies.
In this paper, we utilize all A-tasks (atomic tasks) of a L-task
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(multi-dimensional large-scale crowdsourcing task) to maxi-
mize total utility, which are assigned to multiple workers and
run in parallel [5].

In this paper, maximizing total utility is one key design
goal, which is a hard optimization problem in an online
manner. The hardness of this optimization problem comes
from four aspects: (1) It is challenging to assign all L-tasks
to workers under worker’s capacity constraints and task’s
deadline constraints [6] (2) A task assignment decision is an
integer programming problem [7]. Without knowing future
task arrivals, it is difficult to achieve this goal by choosing a
proper worker to complete a task. (3) A worker has varying
skill by the time [8], [9]. Actually, the service of a worker
may change significantly during the processing of a L-task.
Thus, this situation leads to a large variation for the process
of A-tasks which are contained in the same L-task. (4) It is
not tractable to analyze designed algorithm’s performance,
because every online assignment will affect the remaining
online assignments [10].

To maximize the total utility, a practical task assignment
plan should meet the following four requirements: online
manner task assignments, multi-dimensional tasks, concave
utility functions, and the varying service of workers. As we
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know, no prior work satisfies the four requirements. In [12],
the scheme only satisfies the varying service of workers.
In [9], the scheme is in an online manner and satisfies
the varying service of workers. In [3], the scheme satisfies
online manner task assignments and multi-dimensional tasks.
In [13], the scheme satisfies online manner task assignments
and concave utility functions.

In our model, a scheduling plan for L-tasks is proposed
to maximize its total utility in a crowdsourcing system.
To achieve online task assignments, we propose an online
framework to solve this optimization problem. To satisfy
capacity constraints, we use the short-term constraint to han-
dle the online framework in slotted time. To handle the vary-
ing service of workers, we consider each varying worker as
an arm for a multi-armed bandit in the system. To solve this
MAB problem, we utilize the past service rates and positive
definite matrixes to make an estimation for worker service
rates. To design efficient scheduling algorithms, we update
dual variables by a new method, which helps us to choose
a proper worker for a A-task. To analyze the proposed algo-
rithm’s performance, we define a regret (Reg) and a fit (Fit)
by online convex optimization (OCO) techniques. Based on
the regret and the fit, our proposed algorithms can yield a
O(
√
T logT logT ) regret for both the single L-task case and

the multi L-tasks case over T time slots.
The main contributions are shown as follows.
• We propose a new online MAB framework to address
multi-dimensional large-scale tasks formaximizing total
utility with the variability service of workers. In addi-
tion, this online framework can handle the short-term
constraint, which yields a small constraint violation.

• We design the online algorithm to choose an appropriate
worker for the total utility, which update the dual vari-
ables by a new Gradient Descent method. In addition,
our efficient online algorithm is more scalable than the
previous combinatorial MAB algorithms.

• Weadopt a newmethod to analyze the online algorithm’s
performance which can guarantee a sublinear regret
bound. In addition, we show that our designed algorithm
is better than the baseline algorithms by nearly 10% for
the total utility.

Organization: In Section 2, we discuss related work. In Sec-
tion 3, we show system model. Section 4 presents online
task assignment for a single L-task case. Section 5 discusses
online scheduling for multiple L-tasks case. In Section 6,
experiment is presented. Section 7 concludes this paper.

II. RELATED WORK
In crowdsourcing system, many works have studied about
online task assignments for the total utility. For example,
in [14], [15], [45], the utility of crowdsourcing systems is
formulated by the completed tasks. In [16], the task util-
ity is formulated by the completed tasks. To maximize the
total utility, a Hungarian-based method (TGOA) is pro-
posed by Tong in [18], which can achieve a competitive
ratio of 1

4 in a random model. In [17], Tong proposes a

greedy-based method which is based on a Hungarian-based
method and a greedy method. This method can get a com-
petitive ratio of 1

8 . To maximize task utility, [18] utilizes
a threshold-based method for bipartite matching and [17]
utilizes the same method for trichromatic matching. If the
task utility is above the beforehand threshold, this method
will make a task assignment. In [19], Goel and Singla propose
incentive-compatiblemechanism undermatching constraints,
which can achieve an optimal task utility.

In addition, many research works have optimized the
performance of different aspects in crowdsourcing [2], [20],
[21], [39]. In particular, [20] proposes a new online cost
sensitive framework to batch atomic tasks, which can reduce
the cost of each atomic task. Reference [21] presents a gen-
eral framework for accomplishing complex and interdepen-
dent tasks by Crowd-Forge. Crowd-Forge can decompose
complex-task into small tasks, which is a prototype. Refer-
ence [2] proposes a new crowdsourcing task decomposition
framework which can achieve a minimal cost by packing
many atomic tasks into a big task. Reference [3] utilizes EM
algorithm and Lasso regression to protect the local privacy of
high-dimensional crowdsourced data.

Recently, researchers analyze the effectiveness of approx-
imation algorithms from a bandit perspective by estimating
the service rates of machines [23], [42]. The previous works
explore the machine service rates in cluster. Actually, in the
crowdsourcing, the service rates of workers will change in
each time slot during tasks processing. Thus, we should
estimate worker service rates. In this paper, we utilize the past
service rates and positive definite matrixes to estimate worker
service rates.

In crowdsourcing system, Multi-Armed Bandits (MAB)
problem is close to our task assignment problem. Ref-
erence [22] is a combinatorial MAB problem which has
studied about constrained model with a variety of bud-
get. Moreover, this work considers the exploration of a
budget-limited followed by a cost-free exploitation phase.
Later, Tran-Thanh et al. extend the ε-first policy from [24]
to an arm-limited and show that the regret of this policy
is O(B2/3). Auer et al. show the proposed algorithm can
achieve a regret with a lower bound, which is �(log B)
regret [25]. Many works utilize worker’s capacity constraint
to optimize the performance of crowdsourcing platforms.
Reference [18] identifies a more practical micro-task alloca-
tion problem for maximum utility in spatial crowdsourcing
problem under worker’s capacity constraint. Reference [31]
designs a novel framework with the mutual benefit of work-
ers, where task assignments aremade under worker’s capacity
constraint.

In crowdsourcing system, OCO has been utilized to design
the online scheduling algorithm in a convex optimization
framework. Reference [26] proposes a convex optimization
framework for crowds without estimating the true labels
and introduces personal model of each worker. In [13],
the authors consider the knapsacks problem with online con-
vex optimization, which is stimulated by dynamic pricing
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in crowdsourcing. In [28], authors utilize a loss function to
analyze the online learning algorithm’s performance. More-
over, the loss function is a convex function which is solved by
the convex optimization technique. In [27], authors propose
a saddle-point modified algorithm which yields a bound of
O(T 2/3) for the constraint violation. Reference [30] pro-
poses a new convex-concave approach to design the online
scheduling algorithm which yields a bound ofO(

√
T ) for the

constraint violation.

III. PROBLEM FORMULATION AND SYSTEM MODEL
In this model, we choose workers from an available set which
is a fixed set [32]. Moreover, workers are indexed from 1 to
M and reach the crowdsourcing system randomly. Time is
segmented into time slots. L-task j reaches the system at aj
and leaves the system at dj [6]. A L-task (multi-dimensional
large-scale task) can consist of thousands or millions of
A-tasks (Atomic tasks) [2]. The L-task is a multi-dimension
task specified by νj , where νj is a m-dimensional vector,
νj ∈ [0, 1]m and ‖νj‖2 ≤ 1. When L-task j arrives the system,
we can obtain the information of νj . In our model, each
L-task allows partial execution under which all A-tasks can
be processed in parallel on multiple workers. fj is a concave
utility function about Xj which is the number of completed
A-tasks by deadline dj. Fig.1 shows our crowdsourcing sys-
tem model. Fig.2 shows our methodological flowchart and
Table 1 presents all scheduling variables.

FIGURE 1. Our model.

FIGURE 2. Our flowchart.

A. PROBLEM FORMULATION
To deal with the time-varying behavior of each worker,
we design a stochastic model. If a worker is in specific
behavior, his service rate will reduce. If a worker is working
hard, his service rate will increase. In particular, we treat each
varying worker as an arm for a multi-armed bandit in the
system [33]. Moreover, we consider that the service rate of
each arm (worker) follows a uniform random distribution in
all time slots. To be more specific, we let wti be the service
rate of worker i in time slot t , wti ∈ [0, 1]m and ‖wi‖2 ≤ 1.

TABLE 1. Scheduling variables.

In this model, wti follows a uniform random distribution in all
time slots with E[wti] = wi for all i. In addition, worker i will
consume resource ri to process each A-task. In each time slot,
the total resource consumption shouldmeet worker’s capacity
Ci. x ij (t) is considered as a scheduling variable which is a
binary variable to indicate whether worker i has processed
L-task j at time slot t . Then, the completed A-tasks of L-task
Xj(t) is represented by:

Xj(t) =
M∑
i=1

[wti]> · x
i
j (t) · νj , (1)

Thus, Xj can be given by:

Xj =
dj∑
t=aj

M∑
i=1

[wti]> · x
i
j (t) · νj . (2)

In this model, we maximize the total utility by scheduling
variable x(t) which should satisfy resource constraint. Thus,
in crowdsourcing system, the utility of optimization prob-
lem P1 is given by:

max
{x(t)}

N∑
j=1

fj
( dj∑
t=aj

M∑
i=1

[wti]> · x
i
j (t) · νj

)
(P1)

s.t.
N∑
j=1

x ij (t) · ri ≤ Ci ∀i, (3)

x ij (t) ∈ {0, 1} , ∀j, i, t. (4)

Constraint (3) states that the total resource consumption
of A-tasks should satisfy worker’s capacity Ci in time slot t .
In P1 problem, for L-task j, 1 ≤ i ≤ M , 1 ≤ j ≤ N and
aj ≤ t ≤ dj. P1 is a combinatorial MAB problem to
maximize the total utility, which chooses a subset of proper
arms (workers) in each time slot.

VOLUME 9, 2021 78027



Q. Li, L. Cai: Online Task Scheduling With Workers Variabilities in Crowdsourcing

B. MAXIMIZE L-TASKS UTILITY
In optimization problem P1, we can only quantify the utility
of a L-task after this L-task is completed and leaves the
system. Thus, in each time slot, we should make the online
decisions for task assignments before this L-task leaves the
system. As such, it is not tractable to tackle problem P1
since the aim cannot be handled in an online manner. In this
paper, we utilize another approximated optimization problem
to instead optimization problem P1. Then, we can solve
the approximated optimization problem to get online algo-
rithms. This approximated optimization problem is also a
time-varying aim problem as follow:

N∑
j=1

(dj−aj)fj(
dj∑
t=aj

M∑
i=1

x ij (t)[w
t
i]> · νj/(dj−aj)) . (5)

(dj−aj) is the processing time of L-task j, which is also the
number of time slots in crowdsourcing system. In each time
slot, fj(

∑dj
t=aj

∑M
i=1[w

t
i]>·x

i
j (t) ·νj/(dj−aj)) is average utility

and we should maximize this average utility. We define the
regret and the fit by online convex optimization (OCO) tech-
niques, which are the performance metrics of our proposed
online algorithm [23], [34].

C. PERFORMANCE METRICS
We use the regret as a performance metrics to analyze
our online algorithm. This regret analysis is better than a
competitive-ratio analysis which is not always doable to
achieve a constant ratio. In this model, the optimal utility
of P1 is fj(

∑dj
t=aj

∑M
i=1[w

t
i]>·x

i,∗
j (t) ·νj) and the average util-

ity in Eq.(5) is (dj−aj)fj(
∑dj

t=aj

∑M
i=1[w

t
i]>·x

i
j (t)·νj/(dj−aj)).

Based on [35], we define the regret is the difference between
the optimal utility and the average utility.

Reg(T ) =
N∑
j=1

fj(
dj∑
t=aj

M∑
i=1

[wti]> · x
i,∗
j (t) · νj)

−

N∑
j=1

(dj−aj)fj(
dj∑
t=aj

M∑
i=1

[wti]>x
i
j (t)νj/(dj−aj)) . (6)

where x i,∗j (t) is optimal decision for P1. Essentially, we use
the optimal utility as the benchmark to compare the average
utility. Moreover, our online solutions meet the short-term
constraint as follows:

Fit(T ) =
M∑
i=1

dj∑
t=aj

(
N∑
j=1

x ij (t) · ri − Ci) , (7)

In some time slots, Eq.(7) can be violated temporarily [30].
Moreover, (Ci−

∑N
j=1 x

i
j (t) ·ri) is considered as the constraint

violation, which is under control in our model.

IV. A SINGLE L-TASK CASE ONLINE TASK ASSIGNMENT
In our model, we first design online task assignment policy
in a single L-task case. In optimization problem P1, variable

x ij (t) becomes x i(t) and fj becomes f . We handle this case by
the OCO techniques and consider aj = 0, dj = T . In each
time slot, the short-term constraint in (3) can be given by:

g(x(t)) = x i(t) · ri − Ci ≤ 0 , (8)

Combine Eq.(5) with Eq.(8), P1 becomes:

max
{x(t)}

T · f (
T∑
t=1

M∑
i=1

[wti]> · x
i
j (t) · νj/T ) (P2)

s.t. g(x(t)) ≤ 0 . (9)

A. ESTIMATE WORKER’S SERVICE RATE
In P2 problem, we cannot know the service rate wti at the
beginning of slot t . Moreover, wti will change by each time
slot t . Thus, we need to estimate the service rate ŵti before
making online task assignments. We use the past service rate
of arm (worker) i and positive definite matrixes to estimate
the service rate wti . This technique is common in prior work
on contextual bandits (e.g., in [29], [36], [37], [43]). By the
multi-dimension task method of [43], ŵti is given by:

ŵti = M−1t

t−1∑
τ=1

x i(τ )νjzτ , (10)

where

Mt = I +
t−1∑
τ=1

x i(τ )νj[x i(τ )νj]>, zτ = [ŵτ
i ]
>x i(τ )νj + ητ ,

(11)

where Mt is the positive definite matrixe in time slot t
and I is also a positive definite matrixe. zτ and ητ ∈ R,
E[ητ |x ij (1)νj, z1, . . . , x

i
j (τ − 1)νj, zτ−1, x ij (τ )νj] = 0. More-

over, t and τ denote time slots.

B. DESIGN ONLINE ALGORITHM
In this section, we utilize random sampling to update the
primal-dual variables based on a primal-dual approach [38].
We consider that α(t + 1) is the dual variable. Therefore,
in time slot t , the Lagrangian function is characterized by:

Lt (x,α) = tf ((
t−1∑
τ=1

M∑
i=1

[ŵτ
i ]>x

i(τ )νj +
M∑
i=1

[ŵti]>x
i(t)νj)/t)

−α(t + 1)g(x) . (12)

By the primal-dual approach in [38], x(t + 1) is given by:

x(t + 1) = 5�
(
x(t)+ β · ∇xLt (x(t),α)

)
, (13)

Here, 5�(n) is the projection of n and β is the step-size.
As we know, 5�(n) is the vector with all values between

0 and 1. Thus, 5�(n) can be calculated by:

(5�(n))i =


ni 0 ≤ ni ≤ 1 ,
1 ni > 1 ,
0 otherwise ,

(14)
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where ni is the one element in vector 5�(n).
We update the dual variable by Nesterov’s Accelerated

Gradient Descent [40]. For the reason that this method can
achieve a better regret bound than others. Thus, the dual
variable is given by:

α(t + 1) = max
{
0 , α(t)+ 2µ · g(x(t))−µ · g(x(t − 1))

}
.

(15)

Here µ is the step size and g(x(t)) is the short-term constraint
in our model.

In addition, x ij (t) is considered as a scheduling variable,
which is a binary variable to indicate whether worker i has
processed L-task j at time t . Based on Eq.(13), we can know
that x(t) is the vector with all values between 0 and 1. Thus,
we utilize a simple random sampling method to round x i(t)
as an integer x̃ i(t):

x̃ i(t) =

{
1 with prob. x i(t) ,
0 with prob. (1− x i(t)) .

(16)

Furthermore, we can get:

E[̃x i(t)] = x i(t) . (17)

where x̃ i(t) is considered as the unbiased estimator of x i(t).
To solve the optimization problem P2, we first utilize

Eq.(10) to estimate the service rate ŵti . Then, we use Eq.(15)
to calculate the dual variable α(t + 1). At last, we substitute
ŵti and α(t + 1) into Lagrangian function Eq.(12) to get
the primal variable x(t). Thus, we round the decimal x i(t)
to an integer x̃ i(t) by Eq.(16). Then, we check whether the
constraints

∑N
j=1 x̃(t) · ri ≤ Ci & x̃ i(t) == 1 are satis-

fied. If these conditions are satisfied, we assign L-Task j to
worker i. The corresponding pseudo-code of OSS (Online
Algorithm by Random Sampling in A Single L-Task) is given
in Algorithm 1.

Algorithm 1 :OSS

1: Initialization α(0) = 0 and x̃ i(t) = 1;
2: for t = 1, 2, . . . ,T do
3: Estimation on worker service rate ŵti by Eq.(10);
4: Calculate the dual variable α(t + 1) by Eq.(15);
5: Calculate the primal variable x(t) by Eq.(13);
6: Round x(t) to integer x̃(t) by Eq.(16);
7: if x̃ i(t) · ri ≤ Ci & x̃ i(t) == 1 then
8: Assign L-task j to worker i;
9: else
10: exit;
11: end if
12: end for

C. OSS ALGORITHM’S PERFORMANCE
In our model, we analyze OSS algorithm’s performance using
regret metrics defined in Eq.(7) and Eq.(6). If the OSS algo-
rithm guarantees a sublinear regret bound and the constraint
violations, our online solutions (task assignments) are close to

the optimal solutions over time slots. Our probabilistic model
takes into account the random behavior of workers in crowd-
sourcing systems, which can apply for real applications.
Theorem 1: After T time slots, the upper bound of Fit(T )

in Eq.(7) is:

Fit(T ) ≤

√
TMCmax

i ln
T
δ
+ ln

T
δ
, (18)

with prob. (1− δ).
Proof: To prove this theorem, based on Eq.(17), we can

get:

E[̃x i(t)] = x i(t), t ∈ {1, 2, . . . ,T } .

Considering Eq.(8) and OSS algorithm, in a single L-Task
case, Fit(T ) is:

Fit(T ) =
M∑
i=1

T∑
t=1

(ri · x̃ i(t)− Ci) , (19)

We let B =
∑T

t=1
∑M

i=1 ri · x
i
j (t) and B̃ =

∑T
t=1

∑M
i=1 ri ·

x̃ i(t). Then, [41] implies that, at least (1 − δ) probability,
we can get:

|B/T − B̃/T | ≤

√
γ B̃
T 2 +

γ

T
, (20)

which leads to

B̃− B ≤
√
γ B̃+ γ , (21)

In our model, the constraint (8) implies that B ≤∑M
i=1

∑T
t=1 Ci. Therefore, we have:

Fit(T ) ≤
√
γTMCmax

i + γ . (22)

holds with prob. (1− δ).
Let γ = ln T

δ
. Thus, we can get:

Fit(T ) ≤

√
TMCmax

i ln
T
δ
+ ln

T
δ
, (23)

�
Theorem 2: After T time slots, if f is a π -Lipschitz func-

tion, the upper bound of Reg(T ) in Eq.(6) is:

Reg(T ) ≤ O(π2Mm

√
T ln

1+ Tm
δ

lnT )+ 2π ln
T
δ
. (24)

with prob. (1− δ).
Lemma 1: The x(t + 1) in Eq.(13) is calculated by:

x(t + 1) = argmin
x∈�
−σ Tt (x− x(t))+

||x− x(t)||22
2β

, (25)

where σ t = β · ∇xLt (x(t), α(t + 1)).
Appendix VII-A is the proof.
Lemma 2: With prob. (1− δ), we have

f (
T∑
t=1

M∑
i=1

[wti]> · x
i,∗(t) · νj) ≤

T∑
t=1

f (
M∑
i=1

[ŵti]>x̂
i,∗νj) .

(26)
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Appendix VII-B is the proof.
Lemma 3: Let β = 1

2
√
T
, we have:

T∑
t=1

f (
M∑
i=1

[ŵti]>x̂
i,∗(t)νj)− T · f (

T∑
t=1

M∑
i=1

[ŵti]>x
i(t)νj/T )

≤

√
TMD2

2
+

3M
√
T

2
. (27)

Appendix VII-C is the proof.
Proof: As we know, ŵti is the estimation of service rate,

which is not the real service rate. Thus, we can get:

Reg(T ) = fj(
T∑
t=1

M∑
i=1

[wti]> · x
i,∗
j (t) · νj)

−Tf (
T∑
t=1

M∑
i=1

[wti]>x̃
i(t)νj/T ) (28)

Based on Lemma 2 and Lemma 3, we can use
the intermediate variables f (

∑T
t=1

∑M
i=1[ŵ

t
i]>x

i(t)νj/T )
to get the regret. In the following, we show the
relationship between f (

∑T
t=1

∑M
i=1[ŵ

t
i]>x

i(t)νj/T ) and
f (
∑T

t=1
∑M

i=1[w
t
i]>x̃

i(t)νj/T ). If f is a π -Lipschitz function,
we can get:∣∣∣Tf ( T∑

t=1

M∑
i=1

[ŵti]>x
i(t)νj/T )−Tf (

T∑
t=1

M∑
i=1

[wti]>̃x
i(t)νj/T )

∣∣∣
≤ π ·

∣∣∣ T∑
t=1

M∑
i=1

[ŵti]>x
i(t)νj −

T∑
t=1

M∑
i=1

[wti]>x̃
i(t)νj

∣∣∣
≤ π

∣∣∣ T∑
t=1

M∑
i=1

[ŵti]>x
i(t)νj︸ ︷︷ ︸

R1

−

T∑
t=1

M∑
i=1

[ŵti]>x̃
i(t)νj︸ ︷︷ ︸

R2

∣∣∣

+π

∣∣∣ T∑
t=1

M∑
i=1

[ŵti]>x̃
i(t)νj −

T∑
t=1

M∑
i=1

[wti]>x̃
i(t)νj︸ ︷︷ ︸

R3

∣∣∣ . (29)

Based on Eq.(20) and γ = ln T
δ
, with prob. (1− δ), we can

get to know that:

|R1 − R2| ≤

√
ln
T
δ
TM + ln

T
δ
. (30)

The second term of Eq.(29) can be reformulated as:

|R2 − R3|=
∣∣∣ T∑
t=1

M∑
i=1

[ŵti]>x̃
i(t)νj −

T∑
t=1

M∑
i=1

[wti]>x̃
i(t)νj

∣∣∣ .
(31)

Following [37], wti is in an ellipsoid with the center ŵti
at least (1 − δ) probability. In this situation, we define the
positive definite matrixe M-norm as ‖wti‖M :=

√
[wti]>Mwti .

In each time slot, the confidence ellipsoid is formulated by:

‖ŵti − w
t
i‖Mt ≤

√
m ln

1+ tm
δ
+
√
m (32)

Then, lemma 11 of [36] implies that
∑T

t=1 ‖̃x
i(τ )νj‖M−1t

≤
√
mT lnT . Thus, with probability at least (1− δ), we have

π

∣∣∣ T∑
t=1

M∑
i=1

[ŵti]>x̃
i(t)νj −

T∑
t=1

M∑
i=1

[wti]>x̃
i(t)νj

∣∣∣
≤ πM‖wti − ŵ

t
i‖Mt

T∑
t=1

‖̃x i(t)νj‖M−1t

≤ πM (

√
m ln

1+ tm
δ
+
√
m)(
√
mT lnT )

≤ π2Mm

√
T ln

1+ Tm
δ

lnT (33)

Combining Eq.(29), Eq.(30) and Eq.(33), with prob. (1−δ),
we have:∣∣∣Tf ( T∑

t=1

M∑
i=1

[ŵti]>x
i(t)νj/T )− Tf (

T∑
t=1

M∑
i=1

[wti]>x̃
i(t)νj/T )

∣∣∣
≤ O(π2Mm

√
T ln

1+ Tm
δ

lnT )+ 2π ln
T
δ
. (34)

Together Eq. (34) with results from Lemma 2 and
Lemma 3, we can get Theorem 2. �

V. ONLINE SCHEDULING FOR MULTIPLE L-TASKS CASE
In this section, we show online task assignments in multiple
L-tasks case. Based on Eq.(8), the capacity constraint can be
characterized by:

g(xj(t)) =
N∑
j=1

x ij (t) · ri − Ci ≤ 0 . (35)

In this multiple L-Tasks case, we let aj = 0 and dj = T .
Then, we present the optimization problem as follow:

max
{x(t)}

N∑
j=1

T∑
t=1

t · fj
(∑t

τ=1
∑M

i=1[w
τ
i ]>x

i
j (τ )νj

t

)
(P3)

s.t. g(xj(t)) ≤ 0 , ∀j, (36)

A. DESIGN ONLINE ALGORITHM
In P3 problem, the service rate wti is also unknown. Thus,
we utilize the previous service rate of arm (worker) and posi-
tive definite matrixes to estimate the service rate wti . Thus, ŵ

t
i

is given by:

ŵti = M−1t

t−1∑
τ=1

N∑
j=1

x i(τ )νjzτ , (37)

where

Mt = I +
t−1∑
τ=1

x i(τ )νj[x i(τ )νj]>, zτ = [ŵτ
i ]
>x i(τ )νj + ητ ,

(38)

where Mt and I are positive definite matrixes, ητ ∈ R and
E[ητ |x ij (1)νj, z1, . . . , x

i
j (τ − 1)νj, zτ−1, x ij (τ )νj] = 0.
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We consider a dual variable αj(t) and α(t) =

{α1(t), . . . , αN (t)}. In each time slot, the Lagrangian function
can be formulated as:

Lt (x,α(t + 1))

=

N∑
j=1

tfj
(∑t−1

τ=1
∑M

i=1[ŵ
τ
i ]>x

i
j (τ )νj+

∑M
i=1[ŵ

t
i)]>x

i
jνj

t

)

−

N∑
j=1

αj(t + 1)g(xi(t)) . (39)

In this case, multiple L-Tasks J t may arrive at the same
worker simultaneously. We utilize the same method of
Eq. (13) to get x(t) as follow:

x(t) = 5�
(
x(t − 1)+ β · ∇xLt−1(x(t − 1),α)

)
(40)

Then, we should schoose a proper L-Task among
J t . The proper L-Task can be choosen by j =

minj∈J t
{
xj(t)−(xj(t−1)+β · ∇xjLt−1(x(t−1),α(t)))

}
.

After getting x ij (t), we round x ij (t) to an integer x̃ ij (t) ∈
{0, 1} by the method in Eq.(16). Thus, x̃ ij (t) meets:

E[̃x ij (t)] = x ij (t) . (41)

We update αj(t + 1) by the method in Eq.(15) as follows:

αj(t + 1) = max
{
0 , αj(t)+2µ · g(xj(t))−µ · g(xj(t − 1))

}
.

(42)

The corresponding pseudo-code of OSM (Online Algo-
rithm by Random Sampling inMultiple L-Tasks) is presented
in Algorithm 2.

Algorithm 2 :OSM
1: for t = 1, 2, . . . ,T do
2: Initialization α(0) = 0 and x̃ ij (t) = 1;

3: Estimate worker service rate ŵti by Eq.(37) Eq.(38);
4: Calculate xj(t) by Eq.(40);
5: for i = 1, 2, . . . ,M do
6: Choose the proper L-Task j by the upper method;
7: Calculate the dual variable αj(t + 1) by Eq.(42);
8: Round x ij (t) to x̃

i
j (t) by Eq.(16);

9: if
∑N

j=1 x̃
i
j (t) · ri ≤ Ci & x̃ ij (t) == 1 then

10: Assign L-task j to worker i;
11: else
12: exit;
13: end if
14: end for
15: end for

B. OSM ALGORITHM’S PERFORMANCE
In our model, we analyze OSM algorithm’s performance
using regret metrics. If the OSM algorithm guarantees a sub-
linear regret bound and the constraint violations, our online

solutions (task assignments) are close to the optimal solutions
over time slots.
Theorem 3: After T time slots, the upper bound of Fit(T )

in OSM is:

Fit(T ) ≤

√
TMCmax

i ln
T
δ
+ ln

T
δ
, (43)

with prob. (1− δ).
Proof: Inferred from Eq. (20) and the constraint

(35), we let B =
∑N

j=1
∑T

t=1
∑M

i=1 ri · x
i
j (t) and B̃ =∑N

j=1
∑T

t=1
∑M

i=1 ri · x̃
i(t). Fit(T ) in Eq.(7) under OSM is

bounded by:

Fit(T ) ≤

√
TMCmax

i ln
T
δ
+ ln

T
δ
. (44)

�
Theorem 4: After T time slots, if f is a π -Lipschitz func-

tion, the upper bound of Reg(T ) under OSM is:

Reg(T ) ≤ O(π2NMm

√
T ln

1+ Tm
δ

lnT )+ 2πN ln
MT
δ
.

(45)
Proof: As f is a π -Lipschitz function, following

Eq.(34), we can get that:∣∣∣Tf ( T∑
t=1

M∑
i=1

[ŵti]>x
i
j (t)νj/T )− Tf (

T∑
t=1

M∑
i=1

[wti]>x̃
i
j (t)νj/T )

∣∣∣
≤ O(π2Mm

√
T ln

1+ Tm
δ

lnT )+ 2π ln
T
δ
. (46)

Thus, with prob. (1− δ), we can get:∣∣∣ N∑
j=1

Tf (
T∑
t=1

M∑
i=1

[ŵti]>x
i
j (t)νj/T )

−

N∑
j=1

Tf (
T∑
t=1

M∑
i=1

[wti]>x̃j
i(t)νj/T )

∣∣∣
≤

N∑
j=1

∣∣∣Tf ( T∑
t=1

M∑
i=1

[ŵti]>x
i
j (t)νj/T )

−Tf (
T∑
t=1

M∑
i=1

[wti]>x̃
i
j (t)νj/T )

∣∣∣
≤ O(Nπ2Mm

√
T ln

1+ Tm
δ

lnT )+ N2π ln
T
δ
. (47)

Combine Eq. (47) with Lemma 2 and Lemma 3, we can get
Theorem 4. �

VI. EXPERIMENT
In this section, we investigate online algorithm’s performance
using a real data set. In this data set, we can get the duration of
all L-tasks and the number of A-tasks. Moreover, we extract
more than 6000 L-tasks over 12 hours. νj is 5-dimensional
vector, νj ∈ [0, 1]5 and ‖νj‖2 ≤ 1.wti is 5-dimensional vector,
wti ∈ [0, 1]5 and ‖wti‖2 ≤ 1. ri is a value and ri ∈ [0, 1]. The
detailed L-task datas are illustrated in Table 2.
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TABLE 2. Real data.

In practical applications, translating Chinese papers into
English papers are typical L-tasks, which need many workers
to complete. As we know, Google Translating Software is
not suitable for completing these L-tasks, since it can lead
to many incorrect sentences. Thus, we should upload these
L-tasks into Amazon Mechanical Turk in turn. Each paper
contains many sentences which can be assigned to many
workers simultaneously. Each worker translates one sentence
on three aspects including context, grammar and spelling.
At the beginning of each time slot, we should estimate the
service rate wti . If one worker makes a better translation,
he or she will get more payment.
Simulation Setup: In the real data, we can get the arrival

time aj and the deadline dj. The capacity Ci is uniformly
distributed in [5,10]. Based on [44], a concave function
fj(Xj) = vjXκj can be considered as the utility function of
L-task j. Here, we let κ = 1/2, vj is also a uniform distribution
in [1,5].

A. EXPERIMENT FOR OSM
Baseline Algorithms: The following three algorithms are con-
sidered as the baseline algorithms to compare with the OSM
algorithm:
• OSM No Worker Estimations (OSMN): A L-task is
assigned to a worker by OSM algorithm, but this algo-
rithm does not estimate the worker service variabilities.

• Random Algorithm (RA): A L-task is assigned to a
worker randomly.

• Deadline-Aware Algorithm (DA): A L-task is assigned
to a worker by the tighter deadline.

In OSM algorithm, in each time slot, we maximize the
average utility by assigning a task to an appropriate worker.
Therefore, we can know that the number of workers can
affect the total utility in crowdsourcing system. Results
in Fig. 3 present the total utility of 200 workers is more
than the total utility of others. Considering the total utility
and the economic efficiency, we let the number of work-
ers be 200 and neglect more than 1600 situations in OSM
algorithm.

In OSM algorithm, different time slots can include differ-
ent number of L-tasks, which can affect the remaining task
assignments. Therefore, we need to calculate out the total
utility by different time slots. Fig. 4 presents the total utility
of 5 seconds is more than the total utility of other time slots.
Considering the total utility and the completing time, we let
time slot be 5 seconds and neglect more than 40 seconds
situations in OSM algorithm.

FIGURE 3. The total utility by different number of workers.

FIGURE 4. The total utility by different time slots.

By 5 seconds and 200 workers, we compare the total utility
of OSM algorithm with that of OSMN algorithm, RA algo-
rithm and DA algorithm. Fig. 5 shows the total utility curves
of four algorithms. The curve of OSM algorithm is above that
of OSMN algorithm, RA algorithm and DA algorithm. As we
know, OSM algorithm maximizes the total utility by Online
Convex Optimization (OCO) techniques, which is better than
other algorithms.

FIGURE 5. The total utility of all L-tasks.
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TABLE 3. The total utility by different algorithms.

In Table 3, we calculate out the total utility by four
algorithms in crowdsourcing system. We can know that,
comparing to OSMN algorithm, RA algorithm and DA algo-
rithm, OSM algorithm increases the total utility by 15%, 25%
and 5% respectively. Thus, OSM algorithm presents a better
performance than other three baseline algorithms.

VII. CONCLUSION
In this paper, we address large-scale multi-dimensional
crowdsourcing tasks by considering the varying service of
workers in crowdsourcing system. We consider each varying
worker as an arm for a multi-armed bandit in the system.
In this model, we study the combinatorial MAB problemwith
concave aim. To tackle this challenge, we have presented a
novel framework with bandit method. We design the online
scheduling algorithm from a bandit perspective by Online
Convex Optimization (OCO) techniques. Our algorithms can
achieve a sublinear regret bound and show a better perfor-
mance than the baseline algorithms.

APPENDIX
A. PROOF OF LEMMA 1

Proof: Considering the projection of Eq.(13), we can
get:

x(t + 1)=argmin
x∈�
||x−(x(t)+β · ∇xLt (x(t), α(t + 1)))||22 .

(48)

We expand all the terms, ignore the constant value and divide
Eq.(48) by step-size 2β. Thus, we can get the Lemma 1. �

B. PROOF OF LEMMA 2
Proof: We know x̂ i,∗ is the optimal solution for opti-

mization problem P1. Thus, we have:

f (
T∑
t=1

M∑
i=1

[wti]> · x
i,∗(t) · νj)= f (

T∑
t=1

M∑
i=1

[wti]>x̂
i,∗(t)νj) .

(49)

[41] implies that [wti]> · νj ≤ [ŵti]> · νj with prob
(1 − δ). Based on the increasing concave function f , we can
get Lemma 2 by union bounds [43]. �

C. PROOF OF LEMMA 3
Proof: Eq.(25) is a convex function and the mold is 1

2β ,
we can get that:

−σ Tt (x(t)− x(t − 1))+
||x(t)− x(t − 1)||22

2β

−tf ((
t−1∑
τ=1

M∑
i=1

[ŵτ
i ]>x

i(τ )νj +
M∑
i=1

[ŵti]>x
i(t)νj)/t)

≤−σ Tt (x
∗
−x(t−1))+

||x∗−x(t−1)||22
2β

−
||x(t)−x(t−1)||22

2β

+ tf ((
t−1∑
τ=1

M∑
i=1

[ŵτ
i ]>x

i(τ )νj+
M∑
i=1

[ŵti]>x
i(t)νj)/t)

≤
||x∗ − x(t − 1)||22

2β
−
||x(t)− x(t − 1)||22

2β

− tf ((
t−1∑
τ=1

M∑
i=1

[ŵτ
i ]>x

i(τ )νj +
M∑
i=1

[ŵti]>x
i∗(t)νj)/t) (50)

Here, t1, t2 . . . tn are considered as time slots.
8t = tf ((

∑t−1
τ=1

∑M
i=1[ŵ

τ
i ]>x

i(τ )νj+
∑M

i=1[ŵ
t
i]>x

i∗(t)νj)/t)
and 9t = tf ((

∑t
τ=1

∑M
i=1[ŵ

τ
i ]>x

i(τ )νj)/t). Based on
Lemma 5 of [23], we have:

T∑
t=1

(8t −9t ) ≤

√
TMD2

2
+

3M
√
T

2
(51)

As f is a concave function, 8t and 9t−1 can be given by:

8t = tf ((
t−1∑
τ=1

M∑
i=1

[ŵτ
i ]>x

i(τ )νj +
M∑
i=1

[ŵti]>x
i∗(t)νj)/t)

≥ (t − 1)f ((
t−1∑
τ=1

M∑
i=1

[ŵτ
i ]>x

i(τ )νj)/(t − 1))

+ f (
M∑
i=1

[ŵti]>x
i∗(t)νj)

= 9t−1 + f (
M∑
i=1

[ŵti]>x
i∗(t)νj) (52)

�

REFERENCES
[1] [Online]. Available: http://www.mturk.com
[2] Y. Tong, L. Chen, Z. Zhou, H. V. Jagadish, L. Shou, andW. Lv, ‘‘SLADE:A

smart large-scale task decomposer in crowdsourcing,’’ IEEE Trans. Knowl.
Data Eng., vol. 30, no. 8, pp. 1588–1601, Aug. 2018.

[3] X. Ren, C.-M. Yu,W. Yu, S. Yang, X. Yang, J. A.McCann, and S. Y. Philip,
‘‘LoPub: High-dimensional crowdsourced data publication with local dif-
ferential privacy,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 9,
pp. 2151–2166, Sep. 2018.

[4] Y. Zhang, Y. Gu, M. Pan, N. H. Tran, Z. Dawy, and Z. Han, ‘‘Multi-
dimensional incentive mechanism in mobile crowdsourcing with moral
hazard,’’ IEEE Trans. Mobile Comput., vol. 17, no. 3, pp. 604–616,
Mar. 2018.

[5] M. Amich, P. D. Luca, and S. Fiscale, ‘‘Accelerated implementation of
FQSqueezer novel genomic compressionmethod,’’ inProc. 19th Int. Symp.
Parallel Distrib. Comput., 2020, pp. 158–163.

[6] Y. Tong, J. She, B. Ding, L.Wang, and L. Chen, ‘‘Online mobile micro-task
allocation in spatial crowdsourcing,’’ inProc. ICDE, May 2016, pp. 49–60.

[7] D. Wedelin, ‘‘An algorithm for large scale 0–1 integer programming with
application to airline crew scheduling,’’ Ann. Oper. Res., vol. 57, no. 1,
pp. 283–301, Dec. 1995.

[8] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw,
J. Zimmerman, M. Lease, and J. Horton, ‘‘The future of crowd work,’’ in
Proc. IEEE CSCW, Feb. 2013, pp. 1301–1318.

VOLUME 9, 2021 78033



Q. Li, L. Cai: Online Task Scheduling With Workers Variabilities in Crowdsourcing

[9] J. Bragg and A. Kolobov, ‘‘Parallel task routing for crowdsourcing,’’ in
Proc. IEEE WWW, Sep. 2014, pp. 1–11.

[10] D. Deng, C. Shahabi, and U. Demiryurek, ‘‘Maximizing the number
of worker’s self-selected tasks in spatial crowdsourcing,’’ in Proc. 21st
SIGSPATIAL GIS, Nov. 2013, pp. 314–323.

[11] P. De Luca, A. Galletti, G. Giunta, and L. Marcellino, ‘‘Accelerated
Gaussian convolution in a data assimilation scenario,’’ in Proc. Int. Conf.
Comput. Sci., 2020, pp. 199–211.

[12] S. B. Roy, I. Lykourentzou, S. Thirumuruganathan, S. Amer-Yahia, and
G. Das, ‘‘Crowds, not drones: Modeling human factors in interactive
crowdsourcing,’’ in Proc. VLDB Workshop, 2013, pp. 39–42.

[13] A. R. Cardoso and H. Wang, ‘‘The online saddle point problem and online
convex optimization with knapsacks,’’ Mach. Learn., 2020.

[14] L. Kazemi and C. Shahabi, ‘‘GeoCrowd: Enabling query answering
with spatial crowdsourcing,’’ in Proc. 21st SIGSPATIAL GIS, 2012,
pp. 189–198.

[15] E. Ch’ng, S. Cai, T. E. Zhang, and F.-T. Leow, ‘‘Crowdsourcing 3D cultural
heritage: Best practice for mass photogrammetry,’’ J. Cultural Heritage
Manage. Sustain. Develop., vol. 9, no. 1, pp. 24–42, Feb. 2019.

[16] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, and J. Han, ‘‘Reliable
diversity-based spatial crowdsourcing by moving workers,’’ Proc. VLDB
Endowment, vol. 8, no. 10, pp. 347–360, 2015.

[17] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu, ‘‘Trichro-
matic online matching in real-time spatial crowdsourcing,’’ in Proc. ICDE,
Apr. 2017, pp. 1009–1020.

[18] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, ‘‘Online mobile micro-
task allocation in spatial crowdsourcing,’’ in Proc. IEEE ICDE, May 2016,
pp. 49–60.

[19] G. Goel, A. Nikzad, and A. Singla, ‘‘Allocating tasks to workers with
matching constraints: Truthful mechanisms for crowdsourcing markets,’’
J. ACM, pp. 279–280, 2014.

[20] J. Gao, X. Liu, B. C. Ooi, H. Wang, and G. Chen, ‘‘An online cost
sensitive decision-making method in crowdsourcing systems,’’ in Proc.
ACM SIGMOD, 2013, pp. 217–228.

[21] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, ‘‘Crowdforge: Crowd-
sourcing complex work,’’ in Proc. ACM Symp. User Interface Softw.
Technol., 2011, pp. 43–52.

[22] A. Antos, V. Grover, and C. Szepesvári, ‘‘Active learning in multi-armed
bandits,’’ in Algorithmic Learning Theory. Berlin, Germany: Springer,
2008, pp. 287–302.

[23] H. Xu, Y. Liu, W. C. Lau, T. Zeng, J. Guo, and A. X. Liu, ‘‘Online resource
allocation with machine variability: A bandit perspective,’’ IEEE/ACM
Trans. Netw., vol. 28, no. 5, pp. 2243–2256, Oct. 2020.

[24] L. T. Thanh, S. Stein, A. Rogers, and N. R. Jennings, ‘‘Efficient crowd-
sourcing of unknown experts using bounded multi-armed bandits,’’ Artif.
Intell., vol. 214, pp. 89–111, Sep. 2014.

[25] P. Auer, N. Cesa-Bianchi, and P. Fischer, ‘‘Finite-time analysis of the mul-
tiarmed bandit problem,’’ Mach. Learn., vol. 47, pp. 235–256, May 2002.

[26] H. Kajino, Y. Tsuboi, and H. Kashima, ‘‘A convex formulation for learning
from crowds,’’ in Proc. AAAI, 2012, pp. 1–7.

[27] T. Chen, Q. Ling, and G. B. Giannakis, ‘‘An online convex opti-
mization approach to dynamic network resource allocation,’’ 2017,
arXiv:1701.03974. [Online]. Available: http://arxiv.org/abs/1701.03974

[28] Q. Xu, Q. Huang, and Y. Yao, ‘‘Online crowdsourcing subjective image
quality assessment,’’ in Proc. MM, 2012, pp. 359–368.

[29] P. D. Luca, A. Galletti, G. Giunta, and L. Marcellino, ‘‘Recursive filter
based GPU algorithms in a data assimilation scenario,’’ J. Comput. Sci.,
Apr. 2021, Art. no. 101339.

[30] M. Mahdavi, R. Jin, and T. Yang, ‘‘Trading regret for efficiency: Online
convex optimization with long term constraints,’’ J. Mach. Learn. Res.,
vol. 13, pp. 2503–2528, Sep. 2012.

[31] L. Zheng and L. Chen, ‘‘Mutual benefit aware task assignment in a bipartite
labor market,’’ in Proc. IEEE ICDE, May 2016, pp. 73–84.

[32] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng, ‘‘Profit-driven
task assignment in spatial crowdsourcing,’’ in Proc. IJCAI, Aug. 2019,
pp.‘1914–1920.

[33] A. Rangi andM. Franceschetti, ‘‘Multi-armed bandit algorithms for crowd-
sourcing systems with online estimation of workers’ability,’’ in Proc.
AAMAS, 2018, pp. 1345–1352.

[34] A. W. Memon and G. Fursin, ‘‘Crowdtuning: Systematizing auto-tuning
using predictive modeling and crowdsourcing,’’ in Proc. PARCO Mini-
Symp., 2013, pp. 1–13.

[35] S. Agrawal and N. R. Devanur, ‘‘Bandits with concave rewards and convex
knapsacks,’’ in Proc. ACMConf. Econ. Comput., Jun. 2014, pp. 989–1006.

[36] P. Auer, ‘‘Using confidence bounds for exploitation-exploration tradeoffs,’’
J. Mach. Learn. Res., 2012.

[37] Y. Abbasi-Yadkori, ‘‘Improved algorithms for linear stochastic bandits,’’
in Proc. NIPS, 2012.

[38] H. Xu, P. Hu, W. C. Lau, Q. Zhang, and Y. Wu, ‘‘DPCP: A protocol
for optimal pull coordination in decentralized social networks,’’ in Proc.
INFOCOM, Apr. 2015, pp. 2614–2622.

[39] P. De Luca, A. Galletti, and L. Marcellino, ‘‘A Gaussian recursive filter
parallel implementation with overlapping,’’ in Proc. SITIS, Nov. 2019,
pp. 641–648.

[40] C. Jin, P. Netrapalli, and M. I. Jordan, ‘‘Accelerated gradient descent
escapes saddle points faster than gradient descent,’’ Proc. Mach. Learn.
Res., vol. 75, pp. 1042–1085, 2018.

[41] A. Badanidiyuru, R. Kleinberg, and A. Slivkins, ‘‘Bandits with knap-
sacks,’’ J. ACM, vol. 65, no. 3, pp. 1–55, Mar. 2018.

[42] P. De Luca and A. Formisano, ‘‘Haptic data accelerated prediction via
multicore implementation,’’ in Proc. Sci. Inf. Conf., 2020, pp. 110–121.

[43] S. Agrawal and N. Devanur, ‘‘Linear contextual bandits with knapsacks,’’
in Proc. NIPS, 2016, pp. 3450–3458.

[44] Z. Zheng and N. B. Shroff, ‘‘Online multi-resource allocation for deadline
sensitive jobs with partial values in the cloud,’’ in Proc. IEEE INFOCOM,
Apr. 2016, pp. 1–9.

[45] Y. Yu, S. Liu, L. Guo, P. L. Yeoh, B. Vucetic, and Y. Li, ‘‘CrowdR-
FBC: A distributed fog-blockchains for mobile crowdsourcing reputation
management,’’ IEEE Internet Things J., vol. 7, no. 9, pp. 8722–8735,
Sep. 2020.

QI LI is currently pursuing the Ph.D. degree with
the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, China.
His research interests include job scheduling and
resource allocation.

LIJUN CAI received the Ph.D. degree from the
College of Computer Science and Electronic Engi-
neering, HunanUniversity, in 2007. He is currently
a Professor with Hunan University. His research
interests include bioinformatics, cloud computing,
and big data scheduling and management.

78034 VOLUME 9, 2021


