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ABSTRACT Autonomous vehicle (AV) technology started to shift the perception of the transportation
systems. However, for AVs to operate at their optimum capabilities, they need to go through a comprehensive
testing and verification process. While a large amount of research and funding has been provided for solving
this problem, there is still a lack of a systematic method to develop standardized tests that can be used to
judge if the decision-making capability functions are within acceptable parameters. To that end, the tests
need to cover all possible situations that an AV may run into. This paper focuses on defining the notion
of coverage mathematically when using pseudo-randomly generated simulations for testing. The approach
defines new equivalence relations between scenes, which are the systems’ various states, to achieve this goal.
Considering the substantial need for computation, even with the obtained coverage, we also introduce the
mathematical definition of a sub-scene and additional strategies, such as expanding the equivalence classes
of scenes and combining actors in scenes, to reduce the amount of testing required to certify AVs.

INDEX TERMS Autonomous vehicles, coverage, model of computation, safety, testing and verification
framework.

I. INTRODUCTION
In In recent years, considerable advancements have been
made in processing speeds, machine learning, and machine
vision. In addition, significant progress has been made in the
developing and implementation of sensory technologies such
as Light Detection and Ranging (LIDAR) and Radio Detec-
tion Ranging (RADAR). These have allowed for remarkable
leaps in the advancements of AVs. In the United States alone,
94% of the accidents are completely or partially caused by
human errors [1]. Many of these accidents may be reduced
in severity or avoided entirely with AVs’ deployment on
the roads. However, in order to fully take advantage of this
technology, there is still a need for constructing test scenarios
to verify its safety and security.

The issues and procedures for the safety evaluation of
Advanced Driver Assistance Systems (ADAS) have been
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studied for the last couple of decades [2], [3]. With the
increasing interest in AV technologies, we have observed a
dramatic shift in verification methods during the past several
years. Several approaches used a simulation-based critical-
scenario identification platform through ametrics-based filter
to define critical situations [4]. Others used a method that
focuses on building interesting scenario tests within the con-
straints of physical test resources [5]. In another instance,
the method introduced in [6] only focused on generating test
cases that were thought of as critical depending on a specific
metric.

The validation and verification of autonomous vehicles
have gained increasing attention as the potential impact of
these systems on the transportation system is realized [3].
Hence, important companies in the automaker, supplier, and
technology industries presented their work on AV validation
in a recent report [7] with the goal of a comprehensive rep-
resentation of the industry’s efforts. Despite the great invest-
ment and effort in the AV testing and validation, the report
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shows that automated driving solutions still require a sys-
tematic demonstration of a low-risk factor compared to tradi-
tional human driving. A series of interviews conducted with
multiple automotive experts pointed out that‘‘Creating test
scenarios’’ and ‘‘ensuring completeness of requirements’’ as
the most important challenges of ADAS and AV testing [8].
Even though these challenges are identified, no complete
solution has been proposed, and requirements-based testing
is identified as incapable of capturing the test space. Since
the testing space for verification scenarios has been realized
to be extremely large, these approaches aim for the gen-
eration of rare or challenging scenarios and do not tackle
the challenge of scenario coverage. In other words, when
testing an AV one must be certain that the AV will perform
according to acceptable parameters in every instance similar
to the challenge in the verification scenario. Without having
a systematic approach that is proven to guarantee coverage,
the examiner may not be able to determine the number of
variations of the same scenario that must be created in order
to test the AV under in all possible cases.

A trusted verification approach has been adopted recently
from the semiconductors and chip manufacturing verifica-
tion field [9]. The developed verification approach enables
the separation of concerns and focuses solely on the AV’s
decision-making capability. Building upon results of the
approach described in [9], this work concentrates on refining
the formulation and construction of scenes mathematically.
Furthermore, this paper generalizes the equivalence relation
between scenes to produce equivalence classes of scenes that
will reduce the amount of testing needed substantially.

A. RELATED WORK
Themost commonly usedmethodologies for providing cover-
age are search-based testing, pseudorandom test generation,
and reinforcement learning-based test scenario generation.
The testing methodologies that use a search-based approach
are efficient, particularly in the software domain [10], [11].
The main challenge in these approaches is generally the
requirement for manual guidance and personnel with exper-
tise. Pseudorandom test generation methods have been used
with various simulators to test AV decision and control sys-
tems [12]–[15] in a significantly large number of randomly
generated scenarios. These methods are generally designed
to be calibrated and improved over time using the feedback
from conducted tests. Lastly, reinforcement learning has been
gaining more interest lately in the testing of autonomous sys-
tems [16], [17]. In reinforcement learning-based approaches,
testing methods are designed to automatically learn the test
case selection and prioritize the improvement of test quality
and coverage.

One of the critical considerations in coverage-based
approaches is finding the performance boundaries for AVs
in test scenarios to limit the verification space. For instance,
Waymo drives its simulation testing scenarios with the
real-world disengagement data collected by its fleet [18].
Then, a variety of scenarios are generated by fuzzing the

collected data to improve the total coverage. In another study,
Mullins et al. [10] propose generating test scenarios based on
performance boundaries and then group the scenarios using
clustering techniques. Using this method, the coverage is
defined as the ratio of decision boundary regions sampled.
Khastgir et al. [8] aim to increase the coverage of the test
scenario space by using a two-stage approach. While the first
stage is a traditional requirements-based testing approach,
the second stage focuses on the identification of hazards.
Therefore, the system increases the scenario space by cre-
ating tests on how the system works and how it may fail.
Auto-encoders are also used to reduce the testing space for
AVs. Langner et al. [19] use the reproduction error as a
novelty indicator for the real-world driving data sequence.
The approach cannot be verified globally, yet it has been
used to identify performance indicators in the driving data for
testing.

Another approach that aims to tackle the coverage chal-
lenge has been the utilization of multiple types of virtual
prototyping. Zofka et al. [20] integrated a vehicle mechanics
simulation, sensor simulation, and traffic flow simulation and
used them in both software and vehicle in the loop simula-
tions.While vehiclemechanics and sensor simulation provide
noisy information access, the traffic simulator provides the
real-world traffic scenarios that the AV can come across.
Kim et al. [21] combine multiple types of factors, such as
road geometry, environmental factors, and dynamic object
behavior, to abstract the virtual world and express all these
factors as formally defined test criteria.

Machine learning and artificial intelligence form the core
of the perception and decision-making engines of AVs. Even
though these technologies are mainly used in the design, there
are applications of them in testing, as well. Tuncali et al. [22]
use machine learning components in their system to generate
adversarial test scenarios for AVs. The system uses arrays
of test combinations and simulated annealing to find edge
scenarios and evolves in time with the feedback from the
vehicle’s controller. Jenkins et al. [23] use recurrent neural
networks (RNNs) for the automatic specification of AV test
scenarios. The RNNs are applied to existing crash data to
create test cases. Deep test [24] is also proposed for the
automatic testing of AVs using neural networks. A deep test
aims to generate test scenarios that maximize the neuron
coverage in deep neural network-based AVs. The scenario
parameters such as environmental factors are transformed to
form new test cases and show AV behavior errors.

Despite the remarkable work of the verification mentioned
above methods with various coverage goals, there is a lack
of clear formulation for the definition and generation of test
scenarios.

B. BACKGROUND
In order to proceedwith themathematical notion of this paper,
we need to have a mathematical model for the scenes and
scenarios. Furthermore, we need a mathematical definition
of how actors interact within scenarios and how scenarios can
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be combined or split. Here, we will be using the concepts and
definitions introduced earlier in [9].
Definition 1 (A Scene Vector): Ck ∈ Rni is a vector of real

values representing the 3-D spherical environment around the
vehicle or the Unit Under Test (UUT) within Nk units of
distance at any moment of time (k = t1t). The dimension of
the vector ni corresponds to the number of parameters used
to represent the UUT and the other actors in the sphere. The
distance Nk will be called the Radius of the Scene Vector.
Furthermore, a scene vector is broken down into four main
components or sub-vectors:
• The parameters describing the Ego vehicle or UUT;
including its dimensions, position, velocity and accel-
eration vectors, etc.

• The dynamic actors; which are the moving components
in this sphere. Each dynamic actor has its velocity, accel-
eration vectors, and the relative distance between the
actor and the UUT.

• The constants or static components; which include the
relative distance between the UUT and any non-moving
object or structure in the scene, in addition to the dimen-
sions of the object.

• The communication between the UUT and the other
actors and components in the scene; which would
include physical, electronic and wireless communica-
tions between the actors and other components in the
scene such as an actor signaling to change lanes in front
of the UUT.

To illustrate the scene vector, let us consider a sim-
ple case; Suppose at a certain time step k , the UUT is
travelling on a one lane road following another vehicle
(actor 1). Assume that rego(k), vego(k), and aego(k) are the
position, velocity and acceleration vectors of the ego (UUT)
at the time step k . Let r1(k), v1(k), and a1(k) be the posi-
tion, velocity and acceleration vectors of the of the actor
at the same time step. Also, let d1(k) be the distance
between actor 1 and the UUT and N be the radius of the
scene. Then the scene vector can be constructed as: Ck =(
N , rego(k), vego(k), aego(k), r1(k), v1(k), a1(k), d1(k)

)
. Note

that, one can add other parameters describing the road and any
other component of the environment to the scene vector when
needed.
Definition 2 (A Scene): χ is the 3-D environment con-

structed by accumulating the scene vectors with consecutive
time steps up to the present time step. Also, the Scene Radius
N to be the maximum of all the scenes’ radii up to the present
time step k . A Scene χ can be modeled as

χ , [C0,C1, . . . ,Ck ]

Remark 1: The scene vectors forming the columns of a
scene matrix can possibly have different sizes. Therefore,
the empty entries can be filled with zeros and define the size
of the scene matrix to be:

max{number of rows in Ci} × (k + 1), i ∈ {0, 1, · · · , k}.

Remark 2: The scene vector Ck is computed at a specific
time step, and it represents the scene as a snapshot of the
reality around the UUT at that time step. A scene represents
the space-time (4-dimensional space) around the UUT up to
the current point of time.
Remark 3: N is chosen to be large enough to capture

effects of neighboring objects on the UUT but small enough
for all of the reasonably small number of equivalence classes.

While each scene is defined at a fixed time step, there is a
need for a function that allows for the transition between time
steps and, therefore, between scenes. Moreover, this function
will also need to take into account the changes caused by the
environment and the other actors in addition to the changes
caused by the UUT.
Definition 3: Given a scene χ and suppose Ck is the scene

vector at time step k , the next state can be calculated using
the Newtonian laws of motion as

Ck+1 = ζ (Ck ,Ego’s Desired Input, other actors’ input)

where ζ is a function with the input of the current scene vec-
tor, communication from other actors, namely their velocities,
positions, directions, and the desired action of the ego, such
as velocity and position, its output is the scene vector of the
following time step that is computed, and Ck+1 is the vector
corresponding to the next time step.

Next, we define assertions mathematically, which will
allow us to determine if the UUT passes or fails in a certain
scene.
Definition 4: Given a scene κ with a radius N , we define

the Assertion function ϑ as a function with the domain being
the set of scene matrices with an interval range of [0 1], which
has a predetermined set of weighted assertions. The output
of this function is a probability (or a percentage) calculated
as a weighted average based on the predetermined assertions
where an output of 0 means the UUT fails and an output of 1
represents the UUT passing.

C. CONTRIBUTIONS
When generating simulations for testing any system, one
needs to make sure that every possible situation is covered
in the test. However, the amount of simulations necessary to
cover every possible case is incredibly large due to the large
number of involved parameters and variables. Furthermore,
coverage cannot be gained by real-world driving without
driving an astronomical number of miles [25], even if driving
the needed number of miles is possible, the results will not
be accurate due to the amount of time that will be needed and
the wear and tear on the vehicles.

Based on the best of our knowledge, none of the current
testing and verification techniques in the literature considers
the coverage analysis and equivalent classes, which has been
proposed in this paper. In this work, a novel mathemati-
cal notion for coverage (coverage matrix) is introduced by
defining the variations of a single scene and identifying how
scenes can be equivalent to each other. When two scenes are
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equivalent, then the AVwill behave in the same way. Suppose
the AV makes an undesirable or unsafe decision in one of the
scenes. In that case, it will make a similar decision in all the
other equivalent scenes. Therefore, the AV can be tested at
least once, and there is no need to test AVs under equivalent
scenes multiple times. Besides, a methodology to compute
an upper bound for the number of variations of a scene
depending on the scene’s Radius (Definition 2) is presented.
Finally, two techniques to reduce the computational testing
time are introduced.

This paper will follow the following outline:
• Section II describes the proposed flow for creating test
cases.

• The mathematical approach to the segmentation and the
addition of actors is illustrated in Section III.

• Section IV introduces an equivalence relation between
scenes which generates adjustable equivalence classes
based on the requirements of the testing.

• The Meaningful Variation of a Scene is presented in
Section V.

• Section VI introduces a new method for discretizing the
space within a scene.

• Amethod for enumerating actors and scenes is presented
in Section VII.

• Finally, Section VIII develops another strategy that can
reduce the amount of testing required to verify an AV
system’s ability to make safe and correct decisions.

II. TEST CONSTRUCTION FLOW
As described in Subsection I-B, one can consider a scenario
as the system consisting of the AV (UUT), the other actors,
and its environment. The scenario can be constructed as
a sequence of scenes (states of the system) taken at each
time-step. The Scene Vector consists of functions of time
describing the position, velocity, acceleration, and relative
distances, among other variables. These time functions are
then discretized using time-steps where we assume that noth-
ing varies within the time-step, but decisions and any other
changes such as other actors’ input or a change in the road
happen between time-steps. Also, the concept of equivalence
classes of scenes is introduced in [9] for the first time. The
main purpose of the equivalence classes of scenes is to cover
all distinct possible situations or scenarios. This reduces the
required time needed to generate random scenarios while
ensuring sufficient coverage with respect to the parameters
of interest.
Assumption 1: This work follows the same primary

assumption used in [9]. That is, we will separate our concerns
and assume that the UUT has a near-perfect perception of
the environment. In other words, we assume that the sen-
sors and sensory input fusion algorithm and the mechanical
components are handling all the AV actions are functioning
ideally. Thus, this paper focuses on the UUT’s decision-
making capability and the testing methodology.
The flow of the proposed methodology is illustrated in
Figure 1. A route is selected then divided into segments based

FIGURE 1. Flow for creating test cases.

FIGURE 2. Segmentation procedure from the bottom to the top.

on points of interest, such as intersections, turns, etc. The
route can be extracted from an actual road; this would allow
the validation of the simulations in a real-world environment
test on an actual road. The division of the route is accom-
plished in three stages, as shown in Figure 2. The segmen-
tation starts by considering the static components, namely
the road structure and non-moving obstacles on the road,
such as intersections, merging or splitting lanes, speed limit
changes, etc. Afterward, dynamic components and actors can
be added with a final layer of assertions then placed on top.
These assertions are dependent on each dynamic and static
component in the road segment. For instance, if a stop sign
and a person riding a bike are introduced into the scene, then
the assertions would be defined as the UUT’s velocity must
equal zero at the stop sign and maintain a safe distance from
the biker.

The segments are then used to build a database of unique
road segments that can be used for constructing simulations
for the given scenes and other scenes in future testing. Next,
the segments will be discretized based on time and space
to reduce the scene’s complexity and construct equivalence
classes for the scenes. The equivalence classes are grouped
by similarity so that similar situations can be tested without
repetitions. Furthermore, this will also reduce the quantity
and time required for testing.

60620 VOLUME 9, 2021



A. J. Alnaser et al.: AVs Scenario Testing Framework and Model of Computation

Now, we need to determine variations of the class repre-
sentatives of each equivalence class. Some scenes may vary
from each other, but these variations may offer no difference
from the abstraction point of view. For instance, one scene
might have a bus a certain distance away from the UUT,
and another scene might have a truck in approximately the
same location as the bus in the first scene relative to the
UUT. Therefore, We will only be interested in meaningful
variations (see Definition 7 in Section V). This step aims
to cover every possible variation of the scene in the test,
which is constructed in the following steps. This way, we can
be certain that the UUT’s decisions will remain consistently
correct and safe.

III. SEGMENTATION
One of our objectives is building a database of distinct road
pieces that can be used to build a variety of roads. This
can be accomplished by mathematically defining the road
segments and defining an equivalence relation on the set of
segments that allow us to construct a partitioning on it using
equivalence classes. Next, a class representative from each
equivalence class can be identified and added to the database.

Roads can be modeled as a 3−dimensional parametric
surface represented by vector valued function defined over
a 2−dimensional region. Hence, dividing the road into seg-
ments is equivalent to partitioning the 2−dimensional domain
of the parametric surface. Here, one can choose to partition
the domain in multiple ways, such as small identical rectan-
gles. However, it would be more useful if the partitioning is
done so that the corresponding road segments meet at points
where changes in the road occur, such as the points listed
previously (intersections, merging lanes, and so on).

The vector valued function representing the road as a para-
metric surface is given by:

r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
, (1)

where U ,V are fixed positive real numbers, and the
3−dimensional vector

(
x(u, v), y(u, v), z(u, v)

)
is the position

of every point on the surface for every (u, v) in [0,U ]×[0,V ].
Next, the two intervals [0,U ] and [0,V ] are divided into n

and m sub-intervals respectively. Let U = un and V = vm,
then for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, we get

ri,j(u, v) , r(u, v), ∀(u, v) ∈ [ui−1, ui]× [vj−1, vj]. (2)

Now, we can consider the set Sr = {ri,j|i = 1,
2, . . . , n and j = 1, 2, . . . ,m} and find the maximal lin-
early independent subset. After re-indexing, we will define
a linearly independent set by S = {ri,j|i = 1, 2, . . . , l and
j = 1, 2, . . . , p}. Hence, r(u, v) can be written as:

r(u, v) =
l∑
i=1

p∑
j=1

ci,jri,j (3)

for some constants ci,j.
Remark 4: The set Sr is a finite set of vectors; therefore,

it must contain the maximal linearly independent subset S.

Remark 5: The set S forms a basis of a space of road
segments, and thus the representation in Equation 3 is unique.
That is, the set of coefficients ci,j required to construct r(u, v)
are unique. Furthermore, S can be used to construct many
variations of the initial route that we started with.
Remark 6: One can now consider other routes and when-

ever a route segment cannot be represented as a linear com-
bination of the vectors in S, then the basis will be updated by
adding the new vector for this segment to S.
Next, one needs to consider the dynamic components such

as pedestrian and other vehicles as well as the assertions that
each component (static and dynamic) introduces in the scene.
To accomplish this, we can allow the parameters u and v to
be functions of time tl over an interval Il for each actor in the
scene, and consider the expansion on Equation 2.

ri,j(u(tl), v(tl)) = r(u(tl), v(tl))

∀(u, v) ∈ [ui−1, ui]× [vj−1, vj], tl ∈ Il (4)

Here, one can apply multiple assertions in the form of
restrictions. For instance, the actors may not collide or be
too close to each other in the scene. To accomplish this,
simulations can be set up by excluding paths rl(tl) that would
intersect over the given intervals. Afterward, we can proceed
as follows:

• Each segment is then used to construct one scene or
more based on the previous steps. Equivalence classes
are set up for the scenes, and class representatives are
selected.

• The equivalence classes are also created using a similar
approach to what was described in the previous step.
In particular, for each set of equivalent segments of
roads, only one is chosen to produce a set of nonequiva-
lent road segments. Subsequently, for each one of the
road segments, actors and other dynamic components
are introduced and using their parameters, and the asser-
tions on these parameters equivalence classes can be
finally created (see Section IV).

• The set of all the meaningful variations of each scene
class representative will then be constructed and put
together to form the coverage matrix for that scene (see
Section V).

• Verification tests can then be set up using the coverage
matrices by putting the UUT through each meaningful
variation of each scene.

As a clarification example, consider a T-Junction as rep-
resented by the Figure 3. r(u, v) be the entire piece of road
with traffic oriented upwards along the y−axes and then from
left to right along the horizontal section of the junction. Now,
since this is a 2-dimensional small example, we will use
matrix notation for the vectors, and we will break up r(u, v)
into multiple segments and add them up as follows: Let

r1(u, v)=
[
x(u, v)
y(u, v)

]
=

[
u
v

]
,where − 1 ≤ u ≤ 1, 0 ≤ v ≤ 2,
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FIGURE 3. Example of Segmentation.

and

r2(u, v)=
[
x(u, v)
y(u, v)

]
=

[
u
v

]
, where − 3 ≤ u ≤ 3, 2 ≤ v ≤ 3,

then r(u, v) = r1(u, v)+ r2(u, v).
While our aim here is to clarify the process, it is worth

noting that it is possible to segment further and use smaller
road segments as building blocks. Also, one can also use
translation and rotation matrices and the Heaviside function
to write r(u, v) as a sum of copies of the unit square oriented
upwards.

If r0(u, v) is the unit square oriented upwards, then to
simplify the computation, we can consider r0 as lifted up 1
above the plane, that is, we let

r0(u, v)=

 x(u, v)
y(u, v)

1

=
 u
v
1

, where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,

then we set up the matrices

A =

 2 0 −1
0 2 0
0 0 1

 , B =

 0 −6 3
−1 0 3
0 0 1


The matrix A is a translation and stretching matrix that

will use the unit square and create the T-junction’s vertical
leg while keeping the orientation (traffic) pointing upwards.
While B causes a clockwise rotation by 90◦, and vertical
translation then a horizontal stretch. Thus we get

r(u, v) = Ar0 + Br0 where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Lastly, one may not factor r0 out in an effort to simplify
the computation by adding the two matrices. It is important to
note that the 2 matrices A and B are composite transformation
matrices which means adding them up will change all the
operations they are meant to perform.

IV. EXPANDING THE EQUIVALENCE CLASSES
In [9], the authors presented an equivalence relation between
scenes that yielded equivalence classes of scenes which can
be used to construct testing simulations that use distinct
equivalence class representatives. However, the equivalence
relations were restrictive, causing the classes to be relatively
small in size. This implies that the tests will have to involve
a large number of class representatives. Hence, our next

objective is to extend the equivalence relation to allow for the
construction of larger equivalence classes, each containing
a wider range of scenes. This would yield a reduction in
the number of class representatives, which will be used to
generate verification simulations. We will also expand the
equivalence in a manner that can be adjustable producing
equivalence classes that can be used for sharper tests. One
may adjust the ‘‘passing’’ and ‘‘failing’’ requirements of the
tests; for example, if the UUT does not stop exactly before
the line at a stop sign but does not exceed the edge of the
curb, that might be allowed. However, differences between
the distances the UUT maintains between itself and other
actors and the defined ‘‘safe distance’’ at high speeds need
to be measured and judged at higher accuracy.

Based on the definitions and methodology in [9], the order
of the entries in a scene vector can be changed without
actually changing the scene itself. In other words, two scene
vectors are equivalent if the scenes they represent are almost
identical. That is, the differences that may be allowed are the
order of the actors and the order by which their parameters
are listed in the scene vectors and a slight variation in the
types of actors; for example, a truck can be replaced by a van
with almost the same size, location relative to the UUT and
traveling velocity.

Hence, We have the following:
Definition 5: Given a route of travel for a UUT where the

order of the entries of all the scene vectors for all the scenes
along this route is fixed. we define The Relation ρ such
that two scene vectors C1 and C2 related via ρ (denoted by
C1ρC2) if and only if:

1) C1 andC2 have the same number of entries. That is,C1
and C2 belong to the same real vector space.

2) For each pair of corresponding entries of C1 and C2,
say γ1,i and γ2,i respectively, there exists a fixedMi ≥ 0
such that

∣∣γ1,i − γ2,i∣∣ ≤ Mi for each i.

Remark 7: The choice of the constantsMi is ideally depen-
dant on the type of road or junction that the scene covers.
For instance, if the road segment is a one-lane road within a
housing community with a low-speed limit, say 25 mph, then
a small difference between the traveling velocity of an actor
or the UUT can have a large effect. Whereas, if the scene
is based on a highway segment, then the difference can be
a little larger. Also, the choice allows for a change in the
level of strictness the test designer requires for some or all
the parameters.
Lemma 1: The relation ρ in Definition 5 is an equivalence

relation.
Proof: Given a scene vectors Ck , belonging to the real

vector spaceRn. We will denoteCk =
[
γk,i

]
for i = 1, . . . , n.

Now, one can immediately see that the relation ρ is reflexive
(CkρCk) for any k by setting the constants Mi = 0 for
i = 1, . . . , n.
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Also, ρ is symmetric because if CkρCl then there exist
constants Mi ≥ 0 such that

∣∣γk,i − γl,i∣∣ = ∣∣γl,i − γk,i∣∣ ≤ Mi
for each i, hence ClρCk .

Finally, Suppose CkρCl and ClρCm. In other words,
suppose that there exist constants Mi and Ni such that∣∣γk,i − γl,i∣∣ ≤ Mi and

∣∣γl,i − γm,i∣∣ ≤ Ni for i = 1, . . . , n.
Thus we have∣∣γk,i − γm,i∣∣ = ∣∣γk,i − γl,i + γl,i − γm,i∣∣

≤
∣∣γk,i − γl,i∣∣+ ∣∣γl,i − γm,i∣∣

≤ Mi + Ni.

Hence, there exists a fixed constant Pi = Mi+Ni ≥ 0 such
that

∣∣γk,i − γm,i∣∣ ≤ Pi for each i = 1, . . . , n. That is, CkρCm
and therefore ρ is transitive.
This equivalence relation naturally gives rise to a set of

equivalence classes. Consequently, if given a route, then
one can divide the route into multiple scenes. Furthermore,
using scenes from different equivalent classes may cover a
large variety of scenarios quickly and efficiently. Moreover,
by allowing the freedom of choice in selecting the fixed
constant size, we have more control over the number of
equivalence classes.

In addition, as mentioned previously, we can group
together equivalence classes where all the actors are farther
away from the UUT than a certain fixed number of cubes
depending on the type of environment and consequently the
speed of ego and other actors. For example, in an urban
environment, objects further than, say 100 meters away, all
have the same (little) effect on the UUT’s decision. Whereas
in a high way setting, that distance must be larger since
almost all the objects and actors will be moving at a higher
speed.

In the following section, some methods that can be used
to reduce the coverage matrix’s size and lower the num-
ber of scenes and variations of these scenes are discussed
that enables testing the ability of the UUT to make the
correct decision. This can be done by eliminating similar
scenes, scenes that are included in larger scenes, and scenes
in which actors have almost no effect on the UUT’s deci-
sion. The following sections will not focus on the verifica-
tion aspect heavily. Instead, they pay more attention to the
concepts of coverage and generation of equivalent classes
of scenes.

V. COVERAGE
Coverage is obtained when one constructs a test that can
account for every possible variation of a UUT situation.
However, the number of variations a single scene can have is
very large and, in some cases, might be infinite. Thus, to attain
sufficient coverage in testing the UUT in a single scene,
one needs to find every possible equivalent scene, remove
them from the test, and only use non-equivalent scenes when
creating the test. For instance, if a scene consists of a one-lane
road where the UUT is following another vehicle, then the
UUT accelerating or the other vehicle brakes are equivalent

situations. The result is that the distance between the two
vehicles is decreasing, which can cause an accident. There-
fore, both of these situations are considered to be equivalent.
Also, suppose there is an obstacle on the road. In that case,
all that matters are a general size (volume) of the obstacle
and its location on the road; its exact shape would be of
little relevance. If the obstacle is a rock in the middle of
the road or a wooden box of similar size, then both situ-
ations would be considered equivalent. Therefore, the sec-
ond objective of this paper is to address equivalent classes
mathematically.

It has been shown in [9] that one could formulate a
scene as a vector containing the physical parameters of the
UUT, the actors, etc. Furthermore, the concept of equiva-
lence classes of scenes is introduced. However, the definition
was very general and yielded an incredibly large number of
equivalence classes while the classes themselves were very
small in terms of the number of scenes they may contain. The
main purpose of the equivalence classes of scenes into cover
representatives for all possible situations or scenarios is to
avoid spending an incredibly long time generating random
scenarios and hoping to have sufficient coverage. We aim to
refine the equivalence classes and expand them. This allows
for much faster and more efficient testing using much larger
equivalence classes. Our expansion will allow for an adapt-
able test where the equivalence can be adjusted by changing
the constant upper bounds for the absolute difference between
the parameters depending on the actual route the test is using.
Or by adjusting the actual mathematical model representing
the actors.

Once equivalence classes are established, one may con-
sider the number of scenarios or scenes that the equivalence
can represent or model. To define coverage precisely, we need
first to define what we would consider a variation of a single
scene.
Definition 6 (A Meaningful Variation of a Scene): α is

another scene β from a different equivalence class that have
the same scene radius as α.

Notice that if two scenes are not equivalent but have the
same radius, then they would differ in the number or types of
actors in the scene. However, they would have a similar type
of road structure (such as the number of lanes). Furthermore,
since we have a finite scene radius, then there is a finite
number of meaningful variations to any given scene.

More specifically, if VUUT is the volume of the rectangular
box representing the UUT in a scene of radius N , then we
have a remaining volume of 4

3πN
3
− VUUT . Hence, if, for

instance, we consider two scenes to be a meaningful variation
of each other if they have the same radius but a different
number of actors, then we have an upper bound for the
number of meaningful variations given by:

Once equivalence classes are established, one may con-
sider the number of scenarios or scenes that the equivalence
can represent or model. In order to define coverage precisely,
we need first to define what we would consider a variation of
a single scene.
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Definition 7 (A Meaningful Variation of a Scene): α is
another scene β from a different equivalence class that have
the same scene radius as α.
Notice that if two scenes are not equivalent but have the

same radius, then they would differ in the number or types of
actors in the scene. However, they would have a similar type
of road structure (such as the number of lanes). Furthermore,
since we have a finite scene radius, then there is a finite
number of meaningful variations to any given scene.

More specifically, if VUUT is the volume of the rectangular
box representing the UUT in a scene of radius N , then we
have a remaining volume of 4

3πN
3
− VUUT . Hence, if, for

instance, we consider two scenes to be a meaningful variation
of each other if they have the same radius but a different
number of actors, then we have an upper bound for the
number of meaningful variations given by:

Ma =

4
3πN

3
− VUUT
mv

, (5)

where Ma is the Maximum number of actors and mv =
min{volume of the actors}. Hence, we can define the follow-
ing;
Definition 8 (The Coverage of a Scene): is the set of all

possible Meaningful Variations of a scene. Also, The Cover-
ageMatrix of a Scene is a matrix with its columns consisting
of the scene vectors of equivalence classes representatives of
all the meaningful variations of the scene.

VI. DISCRETIZING THE SPACE IN A SCENE
The bound in Equation 5 is not a sharp upper bound. Further-
more, if one considers the continuous space inside the scene’s
sphere, then the upper bound could be infinite. However, this
is impossible in real life. Therefore we will move the problem
from a continuous setting to a discrete setting. We have the
following;
Definition 9: Let φ be a fixed constant distance such that

the relative distance between any two distinct objects (such
as actors or the UUT) in a scene is either greater than that
or equal to φ or equal to zero apart from the road. That is,
no two different objects can be within φ units from each other.
Otherwise, we consider them as one object or that there has
been a collision.

Now, let us consider a scene at a time-step k as a three-
dimensional sphere with a radius N centered at the UUT.
The UUT is represented by a rectangular box centered as the
sphere’s center. Next, the remaining space inside the sphere
will be divided into equally sized cubes. These cubes are φ
units apart (see Figure 4).

Next, for each actor in the scene, the rectangular box
representing the actor intersects with some of the cubes, then
the union of these cubes is considered the actor (see Figure 5).
Remark 8: The size of the cubes used to divide the space

inside the sphere is not necessarily constant. In fact, we set
up the cubes such that the size (length of the sides) is pro-
portional to φ (say ℵφ). Consequently, by taking a limit as φ
approaches zero, we will effectively fill in the gaps between

FIGURE 4. Continuous to Discrete Settings.

FIGURE 5. The Actor considered as a union of cubes.

the cubes and increase the number of cubes indefinitely.
Hence, we will get back to continuous space.
Remark 9: Suppose a scene is considered at the timestep

k and the cube size and the distance φ are set for the scene.
Also, assume that some actors are close to each other where a
cube cannot be fitted between them. Then these actors can be
combined and thought of as a single (larger) object or actor
at the time step.
Remark 10: Given an actor a = Actor 1 with the relative

distance da between it and the UUT. Suppose that there are
d̃a cubes between the UUT and the actor a. Thus, the relative
distance da can be approximated by d̃a a where

da ≥ d̃aaℵφ + (̃da + 1)φ. (6)

Hence, the relative distance da is bounded from below
and above by the radius of the scene divided by the boxes’
size. Now, we may consider a new discrete measure d̃a as
the distance between the actor and the UUT. For instance,
in Figure 5 above we have d̃a := 1.
Remark 11: Based on the previous remarks, we can now

consider an enumeration of actors in a scene by their discrete
relative location and distance from the UUT. Notice that if
more than one actor has the same distance from the UUT,
we can enumerate them using ordered pairs (or triplets in 3D).
We can number each actor using the closest cube coordinates
that the actor covers to the UUT. The first coordinate of
each cube will be the number of cubes present between the
UUT and that cube horizontally. The second coordinate will
be the number of cubes present ahead or behind the UUT
between the UUT and the cube, and so forth. We will follow
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FIGURE 6. The Enumeration of 3 Actors.

the standard orientation by assigning the cubes to the right
and ahead (as well as above in 3D setting) the UUT the
‘‘+’’ sign and cubes to the left and to the rear of the UUT
‘‘−’’ sign. For instance, in the scene in Figure 6 we have 3
actors assigned the enumeration (or coordinates) (2, 1), (0, 1)
and (−3,−2).

One advantage of measuring distances and defining posi-
tions in the sphere of the scene discretely is that we can now
enumerate objects and actors.We can also consider actors that
further away than a certain number of cubes as ‘‘less impor-
tant’’ in the scene since they would have little to no effect on
the decisions made by the UUT. Another advantage is that as
we move from time-step, k to the following time-step k + 1
if the discrete relative distances between the actors and each
other and the UUT do not change, then the scene at time-steps
k and k + 1 will appear almost identical. Furthermore, unless
the velocity, acceleration, as well as other parameters of the
scene, do not vary beyond a certain range, then the scenes at
the two time-steps can be considered equivalent as previously
discussed in Section IV. In this manner, we can combine time
steps, which will yield fewer computations and faster testing.

For a given scene we can refine the rough upper bound we
previously listed for the maximum number of actors Ma as
follows; For a given scene with radiusN and discretized with
a fixed distance φ and cubes of size ℵφ then by assuming that
theMinimumActor Volume=mv ≥ ℵφ then equation 5 yields

Ma ≤

4
3πN

3
− VUUT
ℵ
3
φ

. (7)

Next, since the radius of the scene is fixed, then the features
of the scene that can produce a variation of the scene are:

• Number of actors.
• Locations of Actors within the scene sphere.
• The velocity and acceleration of each actor.

Now, the inequality 7 gives an upper bound which can
be adjusted (sharpened or loosened) based on the choices
of φ and consequently the value of ℵφ . Therefore, since

the number of actors cannot exceed a certain fixed value,
then their locations within the sphere will also be limited
and identified using the enumeration scheme presented in
Remark 11. Finally, later in Section IV, we will expand the
definition of the equivalence relation between scenes. This
will allow us to say that the velocity or the acceleration of the
actors has to be significantly different for two scenes with the
same radius and the same number and locations of actors not
to be equivalent to each other and therefore to be counted as
meaningful variations of each other.

A. SCENARIOS AND THE NEXT STATE FUNCTION IN THE
DISCRETE SETTING
In [9] we introduced a method for moving from one time-step
to the next. That was the Scenario or Next State function ζ . ζ
takes the of the current scene vector, the desired action of the
UUT, and communication from other actors as its input, and
the output is a newly computed scene vector.

Ck+1 = ζ (Ck , Ego’s Input, Actors Communications). (8)

Since ζ depends on Newtonian Physics laws that are con-
tinuous in nature, this could raise an issue when we move to
the discrete setting described previously, for instance, sup-
pose that at time-step k , the UUT decided to decelerate to
increase the safety distance da(k) in response to an actor a
ahead of it. Then as we move from time-step k to time-step
k + 1, the distance between the UUT and the actor head
of it should be more than it was in the previous time-step
(that is, da(k + 1) > da(k)). In the discrete setting, that
deceleration might not have been enough to put an additional
cube or more between the UUT and the actor; therefore,
the discrete distance would appear to be the same. To avoid
this issue, wewill keep all parameters in the scene vector such
as position, velocity, and acceleration of all the actors and the
UUT as well as relative distances as continuous functions of
time and overlay the cubes and the constant distant φ after
the evaluation of this parameter at each time-step. Afterward,
we can adjust the enumeration of that actor, indicating that
there is a change in the distance between the actor and the
UUT, as explained in Remark 11 above.

B. CONCATENATING SCENES
The operator ] is defined as the binary operator used to
combine scenes in specific order [9]. As in the previous
subsection VI-A, this operator depends on the continuity
of the position function, as well as the next state function.
Given two scenes going through multiple time-steps 31 =

[C0,C1, · · · ,Cn] and 32 = [D0,D1, · · · ,Dm]. The oper-
ation 31 ] 32 must connect the last column of the first
scene with the first column of the second scene. That is
accomplished by identifying D0 = Cn+1. Also, we assume
that the scenes are not overlapping (or might have a slight
overlap).

This may be accomplished in the discrete setting as well.
We may assume that the size of the cubes we are using to
discretize both scenes is the same; we will also assume that

VOLUME 9, 2021 60625



A. J. Alnaser et al.: AVs Scenario Testing Framework and Model of Computation

FIGURE 7. Concatenating by merging a cube.

FIGURE 8. Concatenating by adding φ then going to the next cube.

the Empty space, the constant distance between the cubes
φ, is the same for both scenes. Now, if the point where the
scenes are supposed to meet is at the end of a cube from
the first scene, then we can simply add distance φ and then
start at the first you have the second scene. If, on the other
hand, the first scene ends with this section over the cube, then
we can merge that section with the first cube in the second
scene (see the Figures 7 and 8). Since sudden changes in
road conditions and structure do not happen in real life, there
will be a situation where an additional small scene must be
inserted between the two scenes to model the transition from
the first scene to the second realistically. In this case, one may
insert the transitional scene and merge it with the other two,
as mentioned previously.

The discretization method introduced here allows unique
scenes and meaningful variations of these scenes in terms of
coverage. Furthermore, it allows us to enumerate the set of
meaningful variations of a scene.

VII. ENUMERATING MEANINGFUL VARIATIONS
OF A SCENE
Once all meaningful variations of a scene are identified. The
next step is to identify an enumeration scheme for these
scenes. In other words, we need to identify a One to One
mapping from the set of all meaningful variations of a scene
and the naturals or ordered tuples of the naturals.

Given a scene α, we will define the set Sα to be the set of
all meaningful variations of α.
One might use the same actors’ coordinates discussed

previously in Remark 11 to construct a possible enu-
meration. That is, say β is a variation of α with
n actors then we may assign β the (2m + 1)−tuple

(n, x1, y1, x2, y2, . . . , xn, yn, 0, 0, . . . , 0) wherem is the max-
imum number of actors the scene can contain. Each pair
xi, yi are the discrete coordinates (the enumeration) of Actori
starting with the closest actor to the furthest. This method
will not yield a one to one function. Since if we consider the
following case for instance:

Suppose a route is given to a UUT, and at a scene, α
was taken at a time-step k . Let β and γ are two scenes
in Sα and both assigned the tuple (1, 1, 1, 0, 0, . . . , 0). That
is, both have a single actor, and the coordinate of the cube
the actor covers that is closest to the UUT is (1, 1). Now,
suppose Actorβ,1 in β is a bus which covers the cubes that
extends from the coordinate (1, 1) to (3, 1) horizontally and
from (1, 1) to (1, 5) vertically and Actorγ,1 in γ is a bike
covering the cube with coordinates (1, 1). Then these scenes
are different and may require different decisions to be made
by the UUT.

Using the average of coordinates will be just as misleading
as the method discussed above, and again it may not produce
a one-to-one mapping. However, consider the following:
Definition 10: Given a scene α let Sα is the set of all

meaningful variations of α. Letm be the maximum number of
actors the scene can contain. Define the functionϒ : Sα −→
N4m+1 where N4m+1 is the set of (4m+ 1)−tuples of natural
numbers such that for any β ∈ Sα ,

ϒ(β) = (n, x1,1, y1,1, x1,2, y1,2, . . .

. . . , xn,1, yn,1, xn,2, yn,2, 0, 0, . . . , 0)

where n is the number of actors in β and each pair (xi,1, yi,1)
are the discrete coordinates of the cube covered by Actori that
is closes to the UUT and xi,2, yi,2 are the discrete coordinates
of the cube covered by Actori that is furthest from the UUT.
The coordinates of actors are also listed starting with the
closest actor to the furthest.
Remark 12: As an example, if we consider the scene

in Figure 6 as δ then

ϒ(δ) = (3, 0, 1, 0, 2, 2, 1, 3, 3,−3,−2,−3,−3, 0, . . . , 0).

In addition, the two scenes mentioned above will be assigned
different tuples by the function ϒ .
Remark 13: It is worth mentioning that one can adjust the

value of φ, which also means adjusting the cubes’ size in the
scene sphere to gainmore accuracy in the outputs ofϒ , which
will help in distinguishing different scenes.
Remark 14: Again let us assume that β and γ are two

meaningful variations of α, with

ϒ(β) = (n, x1,1, y1,1, x1,2, y1,2, . . .

. . . , xn,1, yn,1, xn,2, yn,2, 0, 0, . . . , 0) = ϒ(γ )

then there might be still some differences between β and γ ,
such as β having a bus whereas γ has a truck that’s around
the same size as the bus and the same cubes in the scene.
However, if we consider the actors as the union of the cubes
they cover, then the abstraction of both scenarios β and γ
will be identical. Therefore, the mapping ϒ is a one-to-one

60626 VOLUME 9, 2021



A. J. Alnaser et al.: AVs Scenario Testing Framework and Model of Computation

FIGURE 9. Subscenes.

mapping which we can use to identify and enumerate the
scenes in the set Sα .

VIII. SUBSCENES
This section will focus scenes that can be considered parts
of a larger scene. These Subscenes can then be ignored when
a scenario-based test is generated to verify an autonomous
system’s competency since the questions they may raise will
be asked by the larger scenes that contain them.

Consider the two scenesA andB in Figure 9. In both scenes,
the UUT is driving behind another vehicle (Actor 1), slowing
down. In addition, scene A has a second object or vehicle on
the road (Actor 2). Assume that, with the exception of Actor 2
in scene A, the two scenes are identical.
In this situation we have the following definition.
Definition 11: Given two scenes A and B where all the

information in scene B is contained in scene A and scene A
contains information that is not in scene B. Then scene B is a
Proper Subscene of scene A if and only if the set of assertions
imposed on scene B is a subset of the set of assertions of
scene A.

Hence, if scene B is a proper subscene of scene A and
if CB and CA and the vectors representing scenes B and A
respectively, then CB is a subvector of CA. That is, after
re-ordering the entries of CA (if needed), we can place the
rows of CB first, and we will have;

CA =


[
CB
]
∗

∗

∗

 (9)

Next, we consider the relationship between the assertion
matrices of scenes A and B. Suppose 0A and 0B are the
assertion matrices of scenes A and B, respectively. Then 0B
will be a sub-matrix of 0A

0A =



 0B

 ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 (10)

Hence, if δA and δB are the verification functions of scenes A
and B respectively. Given by

δA(CA) = 0ACA − CA,0 (11)

and

δB(CB) = 0BCB − CB,0, (12)

where CA,0 and CB,0 are the vectors of acceptable values of
the parameters for passing for scenes A and B respectively.
Furthermore, since all the assertions of B are also assertions
of A, then CB,0 is a sub-vector of CA,0, that is;

CA,0 =


[
CB,0

]
∗

∗

∗

 (13)

Therefore, we have the following result;
Theorem 1: Given two scenes A and Bwith B is a subscene

of A, then if the UUT passes scenes A then it will pass
scene B.

Proof: Follows immediately from the definition of the
verification functions above.

However, this also implies that if the UUT fails in scene B
then it will fail scene A, but if it fails scene A it might still
pass scene B.

IX. DISCUSSIONS AND CONCLUSION
Autonomous and connected mobility can substantially
improve the transportation system’s efficiency and safety
and even reduce its cost. With the current advancements in
machine perception and machine intelligence, there is no
doubt that this new generation of vehicles will have an excel-
lent perception of their environment. It is left for us to make
sure that these Autonomous vehicles can and will make the
correct and safe decisions. To that end, a clear and specific
testing structure must be established. This verification and
validation methodology must be based on the Newtonian
Physics that governs the world that these vehicles function
within. It must also follow a fixed model of computation that
allows for the generation of equivalence classes and includes
steps that allow us to draw conclusions on the vehicle’s
performance, whether within acceptable parameters.

Randomly, or pseudo-randomly, generated simulations for
testing a specific parameter are common techniques used for
a long time in many fields, including testing AVs. However,
in the latter case, the process is much more complicated since
driving in the real world involves an incredible number of
variables. To construct a comprehensive test for autonomous
or connected vehicles, one would need to make sure that
every possible scenario has been simulated. While this is
maybe close to impossible to do using real-world driving
and real-world conditions, it is still possible to use computer
simulations. Although, the simulations need to guarantee that
every possible scenario is discovered.

To obtain desired coverage, we have presented a mathe-
matical definition for coverage of scenes and a methodology
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for constructing a Coverage Matrix, which can be used for
constructing comprehensive tests for the autonomous system.
We have proven that the coverage matrix is bounded; further-
more, we have proven that one can consider an equivalence
relation between scenes that can generate equivalence classes.
We have also shown that one can modify equivalence rela-
tions between the scenes and reduce the amount of testing.
In addition, a technique to discretize scenes was introduced.
This yields a strategy to enumerate scenes and actors within a
scene. Consequently, this enables for further reduction of the
amount of testing needed. It also allows for joining actors or
ignoring them if they satisfy certain criteria. If the actors are
far enough from the UUT, they will not influence the UUT’s
decision.

In our future work, we plan to run simulations and tests to
evaluate the model presented in this paper as well as present
our results from hardware in the look and software in the
loop tests.
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