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ABSTRACT Robots come with a variety of computing capabilities, and running computationally-intense
applications on robots is sometimes challenging on account of limited onboard computing, storage, and
power capabilities. Meanwhile, cloud computing provides on-demand computing capabilities, and thus
combining robots with cloud computing can overcome the resource constraints robots face. The key to
effectively offloading tasks is an application solution that does not underutilize the robot’s own computational
capabilities and makes decisions based on crucial cost parameters such as latency and CPU availability.
In this paper, we formulate the application offloading problem as a Markovian decision process and propose
a deep reinforcement learning-based deep Q-network (DQN) approach. The state-space is formulated with
the assumption that input data size directly impacts application execution time. The proposed algorithm is
designed as a continuous task problem with discrete action space; i.e., we apply a choice of action at each
time step and use the corresponding outcome to train the DQN to acquire the maximum rewards possible.
To validate the proposed algorithm, we designed and implemented a robot navigation testbed. The results
demonstrated that for the given state-space values, the proposed algorithm learned to take appropriate actions
to reduce application latency and also learned a policy that takes actions based on input data size. Finally,
we compared the proposed DQN algorithm with a long short-term memory (LSTM) algorithm in terms of
accuracy. When trained and validated on the same dataset, the proposed DQN algorithm obtained at least
9 percentage points greater accuracy than the LSTM algorithm.

INDEX TERMS Cloud robotics, deep reinforcement learning, deep Q-networks (DQN), AWS, neural
networks, application offloading, robot navigation.

I. INTRODUCTION
The field of robotics is growing at a great pace [1], [2],
and one factor driving its growth is the widening range of
robotic applications [3]. Recent advancements in machine
learning [4] are being used to develop smarter robots, and
so most of these robotic applications require high-performing
computational capabilities to attain a satisfactory level of per-
formance [5]. However, it is often the case that extant robots
are equipped with limited computational capabilities, and
once a robot is assembled, changing its hardware configura-
tion is not easy [6]. Providing robot access to the on-demand
computing resources offered by cloud service providers can
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be an effective means of solving this problem [7]. Namely,
by taking advantage of the computing power and data storage
options provided by cloud services [8], cloud-enabled robots
can rely less on their local computation resources.

The area of study enabling robots to utilize cloud com-
puting is termed cloud robotics, which was first coined by
Kuffner [9] in 2010. Cloud robotics algorithms are designed
on the basic premise that when robots have insufficient
computational resources for local execution of an applica-
tion, using cloud resources should improve the performance
of the application in terms of execution time and energy
efficiency [10]. If a robot has the bare minimum of computa-
tional capability, full application offloading will be an obvi-
ous choice; however, many robots presently being produced
are computationally capable, and so dynamic computational
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offloading algorithms are a wiser choice as they take into
account both the robot’s computational capability and the
application’s computational requirements [5].

Robots are equipped with a wide range of sensors. Usually,
a robotic application gets input from these sensors and pro-
cesses that input to provide an output action for the robot [11].
The amount of sensory data that the application needs to
process at a given time significantly affects its computa-
tional consumption [12]; if the application requires more
computational resources than the robot can accommodate,
its onboard execution might be extended to a degree that
degrades the robot’s performance. Hence, we designed the
offloading problem to consider application input data size
and used a deep reinforcement learning (DRL)-based deep
Q-network (DQN) for dynamic application offloading. Deep
reinforcement learning [13] is a subfield in machine learning
that combines neural networks with reinforcement learning
(RL), and has opened up avenues for solving problems that
were difficult to solve otherwise [14]. DRL has been applied
in a wide range of robotic applications related to naviga-
tion, social robotics, motion control, manipulation, and more
[14]–[16]. DRL-based algorithms have been studied for
application offloading in mobile devices [17]–[19], but only a
few studies have used DRL for application offloading from a
robotics perspective [10]. Most extant offloading algorithms
for mobile devices use mobile edge computing (MEC), and
by design cater tomobile-specific applications. To our knowl-
edge, we are the first to provide a DRL-based dynamic appli-
cation offloading solution for cloud robotics that considers
input data size and is designed as a continuous task problem
with discrete action space, i.e., we apply a choice of action at
each time step t and use the corresponding outcome to train
the DQN and learn a policy to acquire maximum rewards at a
given time step t ′. We validated the algorithm on a robotic
path planning application running on the Robot Operating
System (ROS).

The area of dynamic application offloading for cloud
robotics is still in the early stages. In this paper, we propose
a novel dynamic application offloading algorithm for cloud
robotics; moreover, the proposed architecture includes sev-
eral novel functionalities that make it the first of its kind.

The main contributions of this paper are as follows:
• We formulate the computational offloading problem as a
Markovian decision process (MDP) and propose a deep
reinforcement learning-based deep Q-network (DQN)
approach for its solution.

• We formulate the state space based on the assumption
that input data size directly impacts application execu-
tion time and define a variable reward function that helps
training converge more quickly and learning of a robust
policy.

• We analyze the proposed algorithm using a robot nav-
igation application, evaluating it on real data and also
generating synthetic data to analyzewhether the network
is learning the appropriate policy with respect to all
possible outcomes.

The remainder of the paper is organized as follows:
In Section II, we describe related work on dynamic appli-
cation offloading and DQN fundamentals. In Section III,
we define the problem formulation based on DQN.
In Section IV, we introduce the algorithm’s application with
a robot navigation framework. In Section V, we provide
experiment results and their analysis. Finally, we conclude
our work and present our future directions in Section VI.

II. BACKGROUND
This section presents related work concerning application
offloading in cloud robotics and also introduces the basic
DQN fundamentals that our algorithm uses as a design foun-
dation.

A. RELATED WORK
From 2009 on, several architectures have been proposed that
facilitate application offloading for cloud robotics [20]–[29].
The aforementioned works focus on catering to application-
specific solutions like navigation, object detection, etc. Most
of the architectures propose full offloading without any con-
sideration for the robot’s local computing capabilities and
the costs associated with offloading. Namely, communication
between robots and cloud services, including for complete
offloading, has to consider costs such as latency, energy, CPU
utilization, and security.

To our knowledge, there are only a few studies in cloud
robotics that have focused on dynamic application offloading
that account for the cost parameters involved whenmaking an
offloading decision [30]. One prior study based its offload-
ing decision on network connectivity and robot mobility; it
used a genetic algorithm and concluded that motion- and
connectivity-aware offloading leads to more efficient perfor-
mance in terms of Quality of Service (QoS) and minimum
resource consumption [31]. In 2017, Wang et al. [32] pro-
posed a resource allocation strategy based on a hierarchical
auction mechanism, namely a link quality matrix (LQM)
auction; the algorithm was designed and demonstrated for
firm real-time applications and outperformed other state-
of-the-art algorithms. Later, Hong et al. [33] proposed a
QoS-aware cooperative computational offloading solution for
robot swarms to minimize latency and maximize energy effi-
ciency; they formulated the optimization problem as a multi-
hop cooperative computation-offloading game.

Some other proposed offloading solutions were
based on edge computing [34], [35]. Shuja et al. [36],
Ahmed et al. [37] have comprehensively surveyed machine
learning-based approaches for in-network caching in edge
networks for mobile devices. These solutions allow robots
to offload computationally-intense applications to the com-
puting infrastructure in their vicinity. However, none of
these papers considered deep reinforcement learning-based
techniques for decision–making regarding offloading.

Though RL is a well-studied field in the area of robotics,
it has some shortcomings in the form of scalability [38].
Meanwhile, deep learning is known for making low-level
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categorizations of data and using that information for higher-
level categorization [39]. The combination of deep learning
and RL helps to address some of the shortcomings of RL,
i.e., problems that require higher-level categorization and
action spaces [40].

Application offloading for mobile devices is a well-studied
area, and several such studies have proposed dynamic appli-
cation offloading solutions using DRL. As a case in point,
Qiu et al. [41] proposed a collective and distributed DRL
algorithm that considered experience from distributed sys-
tems to obtain an optimum offloading policy using MEC.
Later, Qiu et al. [42] also proposed a DRL-based offload-
ing solution for computationally-intense mining applications
that employed multi-hop multi-user blockchain-empowered
MEC. Meanwhile, Tang and Wong [43] proposed a dis-
tributed DRL solution to minimize the long-term cost
for non-divisible and delay-sensitive tasks using MEC.
Wang et al. [44] proposed a meta reinforcement learning-
based algorithm that leveraged recurrent neural networks for
faster loss convergence, and represented mobile applications
as directed acyclic graphs for validation of the algorithm.
Finally, Dai et al. [45] proposed a DRL-based computa-
tion offloading and resource allocation algorithm to reduce
overall energy consumption; it used a multi-user end-edge-
cloud orchestrated network. Notably, the aforementioned
algorithms were all designed for mobile devices and mobile-
specific applications usingMEC, whereas our proposed algo-
rithm is designed from the robotics perspective and validated
with a robotic application using cloud computing.

Some researchers have applied DRL in application
offloading solutions in cloud robotics; for example,
Chinchali et al. [46] formulated the offloading problem as
a sequential decision-making problem and used deep rein-
forcement learning for object detection applications, and
their findings suggest that RL is likely an effective choice
for optimizing offloading decision policies. Another prior
study proposed a resource allocation scheme based on RL
that allowed the cloud to decide whether a request should
be accepted and the amount of resources to be allocated to
the application; this work also demonstrated better perfor-
mance of RL algorithms relative to other greedy resource
allocation scheme [47]. Finally, Peng et al. [48] proposed
an online resource scheduling framework based on DQN
that implemented a tradeoff between energy consumption
and task makespan by prioritizing the rewards. However,
most of these DRL-based works were only published in the
last couple of years, and there remains a lot of room for
improvement.

The area of dynamic application offloading is still in its
early stages, and most of the work we present here is the first
of its kind in cloud robotics. Our proposed algorithm broadly
diverges from existing solutions in two important ways. First,
we introduce a novel offloading strategy based on DQN; the
state space is built with the assumption that the size of the
input data for an applications directly impacts its execution
time. Second, we use a variable reward rather than a fixed

reward, which led the algorithm to converge faster and to
learn an optimal policy efficiently and quickly.

B. DEEP Q NETWORK
Conventional RL algorithms do not scale well with increas-
ing numbers of applications and robots, as this leads to an
explosion in state space [49] and becomes an NP-hard prob-
lem [50]. DQN is an off-policy, model-free RL algorithm [51]
that overcomes several drawbacks faced by traditional RL
algorithms [52]–[55]. Using DQN, agents are able to continu-
ously learn and optimize their decision-making through trial
and error. DQN models work on the principle of selecting
those actions that maximize overall reward in the long term.
The agent receives a reward r for change in state s when
action a is performed. Observing these rewards, the agent
forms a consensus about a policy π that helps it in achieving
the maximum reward. Hence, we have modeled the proposed
algorithm as a MDP and used DQN to derive an optimal
policy π for offloading decision-making.
DQN uses the Q-function [56], [57] as its foundation for

calculating expected reward values. Q(s, a) is the reward of
the current state-action pair, represented as the summation
of the reward for the current state and the maximum reward
value expected in the future. Mathematically, Q(s, a) is rep-
resented as,

Q(s, a) = r(s, a)+ γ max
a′

Q(s′, a′) (1)

which can be further generalized using Bellman’s equa-
tion [58], resulting in the following,

Q(s, a)← Q(s, a)+α
[
r(s, a)+γ max

a′
Q(s′, a′)−Q(s, a)

]
(2)

where γ represents the discounting rate, α is the learning rate,
and the variables s, a, r respectively denote the state space,
action taken, and associated reward for a state-action pair.
If s and a denote the current state and action, then s′ and a′

denote the next state and action.
Traditional Q-learning requires a lot of memory to gen-

erate a Q-table, and if the application space and number of
robots are large, Q-learning also becomes computationally
intense. As DQN provides a way to learn a Q-function using
a deep neural network, it is a better choice than traditional
Q-learning for the application-offloading scenario. As with
other machine learning models, DQN has a well-defined cost
function that the network tries to minimize. This cost function
is given as,

L(θ ) =
[
Q(s, a|θ )−(r(s, a)+γ max

a′
Q(s′, a′|θ−))

]2
(3)

where θ represents the trainable weights of the network.
We will use the foundations of the DRL and DQN

explained in this subsection for problem formulation. The
loss function in Eq. (3) is what the neural network tries to
minimize using the state space, action space, and reward
defined in the next section.
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III. PROBLEM FORMULATION
As stated earlier, we modeled the dynamic application
offloading algorithm using DQN. DQN is based on MDP,
which is usually defined in terms of (s, a, r), where s is the
state space, a is the action space, and r is the reward. In this
section, we talk about how we defined each of these key
parameters for the proposed offloading algorithm.

A. STATE SPACE
The time of execution for an application is proportional to
the size of the input data [59]. Hence, we designed the state
space to reflect the data sizes of the applications running at
any given time, along with other system parameters, namely
CPU availability and round-trip time for communicating with
the cloud. The state space of themodel includes the full obser-
vation of the system and is defined for every time step as,

st = {dt , ut , bt } (4)

where the meaning of each variable at state initialization is as
follows:
• t = 1, 2, 3 . . . ,T denotes the time steps for the given
episode.

• dt denotes the input data size of application.
• ut denotes the CPU availability at state initialization.
• bt denotes the network latency for data making a round
trip between the robot and the cloud.

B. ACTION SPACE
The action space defines what actions an agent can perform in
the environment. Our model is designed for binary decision-
making, hence our discrete action space is defined as at =
(a0, a1, . . . , aT )|at ∈ {0, 1}. This definition implies that an
application can be executed either locally (a = 0) or on the
cloud service (a = 1).

C. REWARD
In the following section, we define variable reward (rt ) and
its associated variables for a given state-action pair (st , at ).

When the robot performs on-board computation of an navi-
gation application task, the associated local time of execution
(l localt ) is derived from

l localt = l lcompletiont − lstartt . (5)

Similarly, when a robot delegates the computation of an
application to the cloud, the associated time of execution
(lcloudt ) is derived from

lcloudt = lccompletiont − lstartt (6)

where l lcompletiont represents the timestamp of application
completion and lstartt represents the time stamp when the task
was first assigned to the robot.

By incorporating tuning parameters α and β, the robotic
operator has the opportunity to prioritize between offloading
and local computation. These parameters are set according
to the relative importance of executing the application on the

cloud or on the robot, where α + β = 1 and α, β ∈ [0, 1].
When there is no predefined priority between offloading and
local computation, α = β; when offloading is prioritized
over local computation, α > β; and when local computa-
tion is prioritized over offloading, α < β. In our experi-
ment, we do not define a predefined priority, thus always
set α = β.

Combining the tuning parameter α with local execution
time (llocalt ) gives us total computational cost on the local
machine,

clocalt = αl localt . (7)

Similarly, combining the tuning parameter β with cloud
execution time (lcloudt ) gives us total computational cost on
the cloud,

ccloudt = βlcloudt . (8)

During its learning phase, the proposed algorithm
randomly chooses between local or cloud execution.
This algorithm-determined action calgorithmt can be either
clocalt or ccloudt , and we can represent the algorithm-
determined action as,

calgorithmt = clocalt ∨ ccloudt . (9)

Then, we define the variable reward rt for (st , at ) as,

rt = −(c
algorithm
t − clocalt )/(clocalt + ccloudt ) (10)

where rt will always be in the range between−1 and 1. When
calgorithmt = clocalt , the reward assigned will be zero, and
when calgorithmt = ccloudt , the reward values will be either
positive or negative. The agent is given a positive reward
for choosing to offload when cloud execution time (ccloudt ) is
less than local execution time (clocalt ), and a negative reward
for choosing to offload when cloud execution time (ccloudt ) is
greater than local execution time (clocalt ).

D. DQN ALGORITHM FOR DYNAMIC OFFLOADING
Now that we have clear definitions of the state space s, action
space a, and reward r , we can define our DQN-based offload-
ing algorithm as given in Algorithm 1. The DQN architecture
used for validating the proposed algorithm in robot navigation
is illustrated in Fig. 1. Our problem formulation is based on
acquiring maximum rewards and not on the end goal success
criterion. As such, the algorithm is designed as a continuous
task problem with discrete action space, i.e., we apply a
choice of action at each time step t and use the corresponding
outcome to train the DQN and learn a policy to acquire
maximum rewards at a given time step t ′ .

IV. EXPERIMENTAL SETUP WITH ROBOT
NAVIGATION APPLICATION
To validate the proposed algorithm, we used it with a
robot navigation application. The simulation environment
employed in the experimental setup is shown in Fig. 3; on the
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Algorithm 1 Proposed DQN-Based Offloading Algorithm
1: Initialize replay memory R with capacity N ;
2: Initialize action-value Q function with random

weights θ ;
3: Initialize target action-value function Q̂ with weights
θ− = θ ;

4: Input: State space st = {dt , ut , bt }
5: Output: Q value for state-action pair
6: for episode = 1 and t = 1 do
7: Receive initial state observation;
8: repeat
9: Load the state values st ;

10: Choose a random action at from action space A;
11: Calculate reward rt (st , at ) by Eq. (10);
12: Load the next state values st+1;
13: Store the experience (st , at , rt , st+1) in replay

memory R;
14: Select a random minibatch (sj, aj, rj, sj+1)

from R;
15: Set yj = rj + γ maxaj+1 Q̂(sj+1, aj+1|θ

−)
from Eq. (1);

16: Perform a gradient descent to minimize loss
using equation (yj − Q(sj, aj|θ ))2 with network
parameter θ from Eq. (3);

17: Every few steps, copy weights from Q to Q̂;
18: Set t = t + 1;
19: until A predefined stopping condition is reached,

i.e., loss function reached convergence;
20: end for

left is a graphical representation of the simulation environ-
ment, and on the right the global cost map of the navigation
environment along with obstacles, the Husky robot, and the
camera view from the robot. The simulation environment was
constructed using ROS with a gazebo simulator, which we
will briefly talk about in the next paragraphs.

The navigation application utilized here is built on top
of the ROS framework for writing robotics software, which
can be used across most robotic platforms [60] and helps
researchers and developers to create software that is modular,
concurrent, open-source, and supportive of code reuse. ROS
messages are structures that contain data of various types,
and these messages are transmitted using ROS nodes. A brief
overview of the ROS application framework is shown in the
ROS Layer of Fig. 2.

Gazebo is a 3D dynamic simulator that can accurately
and efficiently simulate the real-world behaviors of robots,
environments, and their interactions [61]. It can be easily inte-
grated with ROS, thereby allowing robots to avail themselves
of the hundreds of open-source ROS tools and packages while
within the gazebo environment. Finally, we used the open-
source Husky robot [62] as the navigation vehicle in the
environment.

A. NAVIGATION APPLICATION FRAMEWORK
The gazebo simulation environment provides access to a
Husky robot, designed byClearpath Robotics [62], whichwas
equipped with sensors such as a camera, LiDaR, and wheel
encoders, and programmed to perform path planning. The
main goal of this experiment was to determine if the robot
could learn a policy from state space values regarding when
to offload the path planning application to the cloud.

The navigation application framework used for validating
the proposed algorithm is depicted in Fig. 2. The framework
can be broadly categorized into two layers: ROS and DQN.
In the ROS layer, the robot uses the simulation environment
to generate state space data, local path-planning execution
time (llocalt ), and cloud path-planning execution time (lcloudt ).
In every time step, random goal coordinates are assigned to
the robot for path planning. For simplicity’s sake, the robot
does not actually navigate to the destination, but just cal-
culates the shortest path from the origin to the assigned
destination using the Dijkstra algorithm [63].

The values from the ROS layer are recorded in a Rosbag
file, and that file is then used to train the DQN network and
generate Q estimates for the state-action pair.
As mentioned earlier, the state space is built on the

assumption that the size of input data (dt ) provided to an
application directly impacts its execution time. In this exper-
iment, we consider path planning for robot navigation and
demonstrate how we derive the input data sizes for this
application (dpt ).

B. PATH PLANNING
Path planning is a well-studied research area in robotics. The
main objective of path-planning algorithms is to provide the
shortest obstacle-free path between origin and destination.
Among the well-known and well-studied algorithms for
path planning are the Dijkstra [63], A* [64], breadth-first
search [65], and depth-first search algorithms [65]. To ensure
faster training and data collection, we limited the task in the
present study to only plotting a path between the current
position and the goal position, without actually moving the
robot. Random goal coordinates were assigned inside the
global map, and the Dijkstra algorithm was used to compute
the shortest path.

A proper representation of computational size (dpt ) is vital
for the DQN algorithm to learn optimal policy. The objective
in our experiment was not only to determine the shortest
obstacle-free path but to do so in the least possible execution
time. The inputs for the path planner are the current position
of the robot (A), the goal position (B), and the global map
in the form of an image. Its output is an obstacle-free global
path from the current position to the goal position, as depicted
in Fig. 4. Dijkstra’s algorithm uses a node-based approach to
calculate the shortest path, and input size can be represented
by nlogn [66], where n represents the nodes. As is evident
in Fig. 4, the number of nodes in the dotted rectangular space
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FIGURE 1. Dynamic computational offloading framework based on DQN. The robot environment provides input in the form of state space, action
performed, and reward acquired. The DQN learns from these inputs and sends back a response in the form of a Q-value for the state and action pair. The
neural network used for the navigation application has one input layer, three hidden ReLU layers with 256 neurons each, and one dense linear output
layer.

gives us a good estimate of the number of nodes (n) that the
algorithm needs to explore before reaching the goal position.
The algorithm will traverse these nodes several times to find
the shortest path and hence the input size is represented as
nlogn. The Euclidean distance from A to B is the diagonal
for the rectangle. We can obtain the number of nodes in the
rectangle by dividing the area of the rectangle by the area of
each node inside it. Hence, for path planning we define the
number of nodes n as,

n = (
1
2
x2)/r2 (11)

where the numerator represents the area of the rectangle with
diagonal ĀB and the denominator represents the area of each
node. The variable x is the Euclidean distance from A to B,
and r is the length of the each side in a node.
When ROS launches a navigation module, the granularity

of the occupancy grid (r) is usually set to 0.05 meters [67],
but can be manually changed as required by the application.
A granularity of 0.05 means that each side of the square grid
is 0.05 meters and the area of each square is (0.05)2. Hence,
the resolution of each node in the occupancy grid map can be
represented as r and area of each node as r2.

We can use the number of nodes n derived from
Eq. (11) to determine the computational cost of path

planning as,

dpt = nlogn. (12)

We demonstrate in Fig. 3 an example of how we cal-
culated n and dpt . The starting position of the Husky was
(0.001, −0.001) and the assigned goal position was
(22.951, 39.054). The Euclidian distance (x) between those
two positions can be calculated as approximately 45.09. The
area of the occupancy grid r2 as stated above was 0.0025.
By substituting the values of x and r2 in Eq. (11), we get the
number of nodes (n) as being approximately 410,320. Substi-
tuting n in Eq. (12), we get dpt as approximately 5,303,251;
the Husky will need to explore the nodes several times in
order to obtain a shortest path. This implies that for the Husky
to reach its goal position, it will need to traverse around
5,303,251 nodes (nlogn) and the number of nodes in the in
the rectangular area that husky will traverse several times to
find the shortest path, can be represented as 410,320. In the
experiment, we normalized the value of dpt by dividing by the
global map size, which yielded values in the range of 0 to 5.

C. AWS AND LATENCY
In this experiment, we utilized Amazon web services (AWS)
as the cloud service provider. There are several means by
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FIGURE 2. Two-layered navigation framework for algorithm validation.
ROS Layer (top): A robot interacts with a Gazebo world and AWS to
generate state-space values along with the local and cloud execution
times for path-planning. DQN Layer (bottom): Derives an optimal
offloading policy using inputs from the ROS layer.

which a robot can communicate with AWS; for this appli-
cation, we chose ZeroMQ (ZMQ) [68]. ZMQ is a high-
performance asynchronous messaging library that can be
used in both distributed and concurrent applications, and
furthermore is known for its excellent performance scalabil-
ity and low latency. ZMQ provides a ROS-like publisher-
subscriber messaging that supports several communication
protocols, including WebSockets; in addition, the broker-
less framework provided by ZMQ is faster than the inherent
ROS communication framework. Given all these exciting
features, ZMQmakes an excellent framework for establishing
a communication protocol between robots and AWS. For the
experiment, we used the Amazon Ohio instance with a static
IP to ensure easier communication with the cloud service.
As depicted in Fig. 5, the local machine sends obstacle infor-
mation, the current robot position, and the goal position to
the cloud. The cloud sends back a response in the form of a
planned path.

The state space includes round trip latency (bt ) for each
time step, which was calculated in real-time by pinging the
cloud. The simulation was carried out on a computer that
had a stable internet connection, and latency was constant
at around 30 milliseconds with less than 5 percent variation
for 99 percent of cases. This can be considered a drawback
in the current experiment, as the latency values had minimal
variation. In any case, the latency parameter did not play a
meaningful role in deriving policy.

TABLE 1. DQN network parameters used for training.

D. DQN NETWORK
We used a neural network consisting of one input layer, three
hidden ReLU layers (each having 256 neurons), and one
dense linear output layer. The configuration of hidden layers
and the number of neurons can be altered based on conver-
gence, training time, or any other performance criteria [69].
The choice of neural network can also be adapted to fit any
specific learning problem, such as using a convolution neural
network (CNN), long short term memory (LSTM), etc. [70].
Using the network parameters given in Table 1, we obtained
a satisfactory convergence for the results.

V. RESULTS AND ANALYSIS
In supervised learning, algorithm model evaluation is reason-
ably straightforward: the data is labeled and an evaluation set
is used to assess the accuracy of the results [71]. However,
model evaluation is tricky for algorithms based on DRL as
they do not have a labeled dataset to be used as ground truth
to validate the performance of the algorithm. As our problem
formulation is based on acquiring maximum rewards and not
the end-goal success criterion, our algorithm is designed as a
continuous task problem with discrete action space, i.e., we
apply a choice of action at each time step and use the corre-
sponding outcome to train the DQN. When replay memory
reaches a threshold of 1,000 experiences, experiences are
replaced according to the first-in first-out (FIFO) approach.

In the first part of the results, we analyze the network
performance with reference to actual data collected from the
cloud and robot. Unlike in episodic problems, it is difficult
to judge an agent’s performance in a continuous problem
as there is no terminal state that defines if the action was a
success or a failure. Hence, we need to somehow generate
a dataset that can be used to verify the agent’s expected
behavior. In addition, a synthetic dataset can be used to ana-
lyze whether the network is learning appropriate policy with
respect to all possible outcomes. Accordingly, we generated
three synthetic datasets where for each dataset we had a policy
in mind that the agent should learn. Finally, we evaluated
these datasets using the loss function and rewards acquired to
determine if the agent performed as expected. The hardware
configuration of the AWS (p2.xlarge) instance and robot are
given in Table 2.

As our model is designed for binary decision-making,
to efficiently validate the proposed algorithm we need to
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FIGURE 3. Visualization of Gazebo world and global cost map. The left panel shows the graphical simulation environment that was used to validate the
proposed algorithm. The right panel shows a global map of the same environment with obstacles indicated (red arrows). In this instance, the Husky’s
starting position is (0.001, -0.001) and the goal position is (22.95, 39.05). Between the starting position and goal, the shortest path is represented by a
green line and the Euclidean distance is x = 45.29. The number of nodes to traverse is n = 410,320, and the input data size is dpt = 5,303,251.

TABLE 2. Hardware configuration of the robot and AWS.

FIGURE 4. Schematic representation for calculating the number of nodes
that the robot needs to explore before reaching its destination.

have data distributed between both action space choices;
i.e., both cases lcloudt < l localt and lcloudt > l localt need
be reasonably represented. Using the hardware configuration

FIGURE 5. Robot-AWS communication framework. The robot forwards
LiDaR data (obstacles) and the current and goal positions to AWS. AWS
calculates and forwards the shortest path between those positions to the
robot.

seen in Table 2, we obtained a dataset with a split of about
60:40; i.e., 60 percent of decisions were for cloud computa-
tion (lcloudt < l localt ) and 40 percent for local computation
(lcloudt > l localt ). Comparatively, if we choose a less capable
hardware configuration, the dataset will be skewed towards
cloud computation (lcloudt < l localt ); similarly, if we choose
a more powerful hardware configuration, the dataset will be
skewed towards local computation (lcloudt > l localt ) due to the
additional round-trip time required for cloud communication.

A. REAL DATASET
In this part of the experiment, we collected a real dataset
where the robot and cloud were connected through ZMQ.
We also implemented a cloud timeout functionality (5 s) to
handle any network failures. This feature was added to punish
the agent for choosing cloud computation if the cloud did
not respond in a given timeframe. For every time step (t),
the path-planning execution time was collected for both cloud
execution (lcloudt ) and local execution (llocalt ), along with
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FIGURE 6. Plots showing loss convergence and rewards acquired over
time for the real dataset.

state-space values (st ) and the action (at ) performed. These
values were used to train the DQN network and evaluate the
performance of our proposed algorithm.

In Fig. 6a, we plot the average loss (L(θ )) against time
step (t) using the loss function defined in Eq. (3). The plot
demonstrates convergence and shows average loss as decreas-
ing over time. This can be interpreted as theweight (θ) param-
eters of the network being optimized by gradient descent over
time [72] and also as the network learning a more efficient
policy. In Fig. 6b, cumulative reward (rt ) is plotted against
time step (t). As our algorithm is based on the foundation of
acquiring maximum rewards rather than on the end-goal suc-
cess criterion, DQN learning occurs over one single episode
with t time steps, where t = 1, 2, 3, . . . ,T . The episode
reward plot shows rewards increasing over time, implying
that the network learned the policy for acquiring maximum
rewards, i.e., the action (at ) to take for the given state space
(st ) in order to acquire maximum rewards (max(rt )). Rewards
decreased at some time steps, mainly due to the network
performing exploration [71], which helps it to form a better
policy. The exploration rate is the probability that our agent
will explore the environment rather than exploiting the orig-
inal policy consensus; we set the exploration rate (epsilon-
greedy) [71] value to 0.1.

We also assessed the accuracy of the entire dataset by
evaluating the correctness of the action taken in context of

the respective execution times. That is, the correct action
should result in less execution time. We achieved a final
accuracy of 84 percent on the dataset, suggesting that the
algorithm learned to take correct actions with respect to the
input state space over time. The overall mean execution time
of actions selected by the algorithm was 71.28 milliseconds,
while the respectivemeans for local and cloud execution were
88.38 and 73.46 milliseconds. Thus, the proposed algorithm
achieved execution time savings of almost 23 percent and
3 percent when compared with wholly local or wholly cloud
execution. The cumulative execution times were 140.88,
146.09, and 175.81 seconds for algorithm-selected, cloud,
and local execution, respectively. Hence, dynamic offloading
using this algorithm reduced the latency of the application.

FIGURE 7. Choice analysis plot for the size of path planning data
input (dpt ). For normalized values dpt > 1.1, cloud computing was the
preferred choice of the policy.

Even though the DQN network performed well with
respect to average loss and rewards acquired, it is hard to
intuitively ascertain what the agent learned.We plotted action
(at ) with respect to the size of path input data (dpt ) and
time step sequence (t) (Fig. 7) and observed that when input
data size surpassed 1.1, the agent chose in the majority of
cases to offload the application to the cloud. Hence, data size
impacted offloading choice, and when the planning problem
data had a size greater than 1.1, executing the application
on the cloud was the better choice; the application took less
time to execute even with network latency. This observation
also strengthens our hypothesis that the size of a problem is
directly proportional to execution time. Thus, we conclude
that the policy learned by the network is to choose cloud
computation for path planning over larger areas.

B. SYNTHETIC DATASET
In the previous section, we saw how the algorithm performed
on a real data set. To further evaluate the algorithm’s per-
formance and behavior, we generated three different syn-
thetic datasets with three different goals. We wanted to see
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FIGURE 8. Loss convergence and rewards acquired over time for a
synthetic dataset. This dataset was generated to observe if the network
could learn to do onboard computation for the given state.

if first, the network could learn to do onboard computation
for a given state (i.e., local computation); second, if the
network could learn to offload an application for a given state
(i.e., cloud computation); and finally, if the network could
learn a constant CPU availability value and use that as the
basis for offloading decisions (i.e., learning a CPU avail-
ability at which to offload). Additionally, this section also
provides insights into how reward (rt ) assignment varies for
local and cloud computation.

1) LOCAL COMPUTATION
To generate the synthetic dataset for local computation,
we first obtained the local execution time (llocalt ) for path
planning at each time step, then multiplied it with a ran-
dom number from 0.9 to 1.9 to obtain the cloud execution
time (lcloudt ),

lcloudt = (0.90+ rand()percent10/10.00) ∗ l localt . (13)

Fig. 8a shows that average loss decreases and converges
over time, implying that the algorithm has learned the pol-
icy to acquire maximum rewards. Fig. 8b plots cumulative
rewards against time step. One important observation is that
in this scenario, the possible reward rt ranges from −1 to 0
inclusive, i.e., rt ∈ [−1, 0]. While learning, the algorithm
can choose to either execute the application onboard or to

FIGURE 9. Loss convergence and rewards acquired over time for a
synthetic dataset. This dataset was generated to observe if the network
could learn to do cloud computation for the given state.

offload it; that is, in Eq. (10), the value for calgorithmt can be
either clocalt or ccloudt . In this particular dataset, when calgorithmt
is ccloudt , the reward is always negative as lcloudt > l localt .
In contrast, when calgorithmt is clocalt , the reward is zero.

The reward for the network (Fig. 8b) started to stabilize
at around time step 300, with no further negative rewards
being gained; the algorithm had by that point learned the best
possible action is not to gain any further negative rewards
and to always choose local computation instead of cloud
computation.

2) CLOUD COMPUTATION
To generate the cloud computation synthetic dataset, we first
obtained the local execution time (llocalt ) for path-planning at
each time step, then multiplied that with a random number
from 0.1 to 1.1 to obtain the cloud execution time (lcloudt ),

lcloudt = (0.1+ rand()percent10/10.00) ∗ l localt . (14)

Fig. 9a shows the average loss with this dataset as con-
verging over time, implying that the algorithm learned the
policy to acquire maximum rewards. Fig. 9b plots cumulative
rewards against time steps. In this scenario, the synthetic data
is skewed to favor cloud computation and the possible reward
rt for the agent ranges from 0 to 1 inclusive, i.e., rt ∈ [0, 1].
Thus, when calgorithmt is ccloudt , the reward is always positive as
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lcloudt < l localt , and when calgorithmt is clocalt , the reward is zero.
That the reward accumulated was always increasing indicates
the agent learned that choosing cloud computing over local
computing gives it a positive reward, and thus always chose
cloud computing instead of local computing.

3) LEARNING A CPU VALUE TO OFFLOAD
In the previous sections, we observed how data input size (dpt )
affects the decision to offload. In this section, we wanted to
see if the network can learn about a CPU value ut = x and
use this value to decide whether to offload or do local com-
putation. We generated a synthetic dataset where execution
times lcloudt and l localt were set as follows,

lcloudt < l localt when ut < x

lcloudt > l localt when ut > x. (15)

When collecting the synthetic data, we observed CPU
availability on the local machine to hover between
50 and 70 percent, and hence set the threshold value x as
60 percent. This allowed us to collect data that was distributed
on both sides of x.

FIGURE 10. Loss convergence and rewards acquired over time for a
synthetic dataset. This dataset was generated to observe if the network
could learn to use CPU availability as the basis for deciding whether to
offload the application.

Fig. 10b plots cumulative reward against time step. It is
difficult to interpret from this plot what the agent has learned;
accordingly, we also rendered a scatter plot as illustrated

FIGURE 11. Choice analysis plot illustrating the CPU threshold value
learned by the offloading decision policy, which was 0.61.

FIGURE 12. Confusion matrix used to determine the accuracy of the
network; over 94 percent accuracy was achieved.

in Fig. 11 and a confusion matrix as given in Fig. 12 in
order to decode what the agent learned from the dataset.
The goal of the policy was to extract the CPU availability
value (y) from the synthetic data and use it as the basis
for deciding between offloading and local computation. The
learned threshold value (y) was around 0.61 (Fig. 11), while
the pre-set x value for generating lcloudt and l localt was 0.6;
we can therefore conclude that the network was within a
reasonable margin of error. This is further supported by the
training accuracy (Fig. 12), with the network having achieved
94 percent accuracy; most wrong actions took place when
ct was around 0.6. Finally, the average loss decreased and
converged over time (Fig. 10a), implying that the algorithm
learned the policy of offloading the application whenever
CPU availability was less than 61 percent and of doing local
computation when it was greater than 61 percent.

C. COMPARATIVE EVALUATION WITH LONG
SHORT-TERM MEMORY ALGORITHM
We further evaluate the proposed DRL algorithm by compar-
ing it with another state-of-the-art machine learning model.
One approach for such evaluation is to compare the algo-
rithm with other DRL models such as DoubleDQN [73] or
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DuelingDoubleDQN [74]. These models are quite similar to
each other as they all learn value functions and act greedily
based on those values; the major difference between them
lies in performance [54], and hence, comparing these models
will imply comparing performance parameters such as how
loss convergence varies for various batch sizes, learning rates,
discounted factors, etc. However, the major emphasis of this
paper is to understand the policy learned by the agent and
the final accuracy of the algorithm. As such, rather than
comparing performance among various DRL models, a more
appropriate evaluation is to compare the accuracy of the pro-
posed algorithm with other state-of-the-art machine learning
models.

FIGURE 13. Bar chart comparing application offloading prediction
accuracy for LSTM and proposed DRL algorithms. Prediction accuracy was
calculated by training the models with the first 500 time steps (t) and
with the entire dataset of 1000 time steps. Our proposed DRL algorithm
achieved better accuracy in both cases.

The literature has predominantly suggested using long
short-term memory (LSTM) models for predicting execution
time [75]. Hence, we implemented a LSTM model based
on [76] (hidden layers= 4, batch size= 50, steps/batch= 8)
to predict application execution time from input data size.
Fig. 6a and Fig. 6b demonstrate that for the DRL model, loss
starts to converge and cumulative rewards to steadily increase
from around t = 400; this implies that by that step, the agent
has figured out a policy to acquire positive rewards. Thus,
we used actual data from the first 500 time steps to train the
LSTMmodel, with an 80:20 training:validation split.We then
used the trained LSTM to predict execution times for both
cloud and local execution of the application and compared
resulting predicted actions with actual actions obtained from
the proposed DRL algorithm. As shown in Fig. 13, while
the LSTM model achieved a final accuracy of 72.08 percent,
the proposed DRL algorithm achieved a greater accuracy
of 81.62 percent. Similarly, when using the entire 1000-time
step dataset with an 80:20 split to train the LSTM model,
it had a final accuracy of 74.12 percent, whereas the pro-
posed DRL algorithm achieved 83.32 percent. Hence, we can
conclude that our proposed DRL algorithm is comparable
to or better than LSTM in predicting appropriate actions to

take concerning application offloading with reference to the
application data input size.

D. DISCUSSION
The results demonstrated that the agent was able to learn a
policy that maximized reward and reduced overall application
execution latency. We also observed that the size of applica-
tion input data from the state space played an important role
in the policy forming a consensus. In this section, we will
present some of the limitations and key observations of the
present study. Notably, the overall accuracy after training
was greater than 80 percent for all experimental cases we
tested. Considering we only carried out the simulation for
around 1000 time steps, this accuracy gives us confidence
in the policy learned by the agent. We are also certain that
the accuracy can be increased by increasing the time steps (t)
taken to train the network.

One important observation from the results is the algorithm
convergence. From the loss plots, we can discern that the
algorithm started to converge before 500 time steps in all
cases. Such rapid convergence is vital in reducing the amount
of time that needs to be spent on training and enables the
algorithm to start taking correct actions (at ) more consistently
in less time.

One limitation of this study is that there is no one true
guideline that defines how to correctly represent the size
of input data for an application, and sometimes it falls to
the personal intuition of the human operator to correctly
represent this metric. Representations of input data size can
vary based on factors such as the algorithm implemented,
the computationalmodel used, and also on the application; for
example, we represented the size of path-planning input data
as nlogn. Similarly, if we want to search n randomly ordered
elements, the input data size is n; binary search is logn; and
sorting is nlogn [77]. For image detection based algorithms,
we can assume that frames per second multiplied by the
data size of each frame would be a good representation of
the input data [78]. Ultimately, the accuracy of the proposed
algorithm depends on the correctness of the input data size
determination, and so it’s not a foolproof system.

One of the other limitations of this study is that the
Gazebo-based experimental setup might not offer a perfect
representation of the network latency in a robotic environ-
ment. The experiment was carried out on a computer that
was connected to the internet through a LAN cable with
capacity greater than 400 Mbps. The latency between the
computer and AWS on this setup was constant at around
30 milliseconds. In a real-world scenario, this case might not
hold as robots are mostly connected through a wireless con-
nection, and so might experience fluctuating internet speeds
along with network dropouts depending on the environment.
Even though we introduced a latency parameter (bt ) in the
state space, the network never truly learned anything mean-
ingful about connection latency as the parameter had minimal
variation.
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Finally, even though we verified the algorithm for a robot
navigation application, it can be generalized to a majority of
robotic applications. This research also verifies that there is
a relationship between input data size and the time needed
for execution. Hence, if we model our state space to cap-
ture information concerning data size, the algorithm will
converge and learn a policy for offloading decision-making.
A video on the paper is available for reference at: https://
youtu.be/JAwxaOH9BFk.

VI. CONCLUSION
A dynamic computational offloading solution based on DQN
has been proposed in this paper. The proposed algorithm
was able to learn an optimal policy on when to offload an
application based on state-space values. The state space was
built on the assumption that the size of input data submitted
to an application directly impacts its execution time, and we
successfully validated this assumption using the size of path
input data (dpt ) in a navigation application. The algorithmwas
designed as a continuous task problem with discrete action
space for every time step (t), and at each step the execution
time for path planning in robot navigation was collected for
both cloud execution and local execution, as were state-space
values and the action performed. These values were used to
train the DQN network and evaluate the performance of our
proposed algorithm.

The effectiveness of the algorithm was evaluated by
observing the loss and rewards over time steps. The results
showed convergence and the agent learning a policy to max-
imize rewards over time. To further evaluate the algorithm,
we also generated three synthetic datasets, each designed
around a particular policy that the agent should learn. To com-
pare the performance of the proposed algorithm with another
state-of-the-art algorithm, we trained and validated an LSTM
model on the same dataset, using either 500 or 1000 time
steps. In both cases, the proposed algorithm achieved 9 per-
cent greater accuracy over the LSTM algorithm. The network
successfully extracted the key features from these datasets,
and the agent learned the policy that we intended. All told,
the results have validated the effectiveness of our proposed
algorithm.

Further work to accommodate a multi-robot scenario is
already underway. In future work, we will also focus on
adding additional cost parameters such as energy usage.
Finally, we are exploring various application prioritization
mechanisms that can help prioritize mission-critical applica-
tions, and we plan to apply mechanism-specific cost param-
eters to the applications. For example, applications that are
critical for robot functioning will have reducing latency as the
first priority, while applications that are not mission-critical
will prioritize reducing their own energy use.
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