
Received March 30, 2021, accepted April 7, 2021, date of publication April 19, 2021, date of current version April 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073992

Fractional Dynamics Based-Enhancing Control
Scheme of a Delayed Predator-Prey Model
JUN YUAN1, LINGZHI ZHAO 1, MIN XIAO 2, (Member, IEEE), AND CHENGDAI HUANG3
1School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
2College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China

Corresponding author: Lingzhi Zhao (lzhzhao@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573194 and Grant 62073172, in part
by the Natural Science Foundation of Jiangsu Province of China under Grant BK20181389, and in part by the Natural Science Foundation
of Jiangsu Higher Education Institutions of China under Grant 19KJB110017.

ABSTRACT To retard the onset of undesired bifurcation, the bifurcation control has developed into a
theme of centralized research activities in delayed fractional-order system. In this paper, the problem of
bifurcation control for a delayed fractional-order predator-prey model is investigated by employing an
enhancing feedback control technique. The bifurcation point is firstly established for controlled model by
using delay as a bifurcation parameter. Then, a series of numerical comparative studies on the effects of
bifurcation control are implemented covering the partial or total removal of the branch for feedback gains.
It reveals that the stability performance of the proposed model can be overwhelmingly elevated via the
devised approaches in comparison with the dislocated feedback ones. A numerical example with simulations
is ultimately designed to confirm the merits of the proposed theoretical results.

INDEX TERMS Fractional order, time delay, enhancing feedback control, predator-prey model, Hopf
bifurcation.

I. INTRODUCTION
In ecological systems, predator-prey system depicts the inter-
actions between two or more species and their dynamics are
affected by each other. Owing to the worldwide importance
and existence, the dynamics of predator-prey systems is one
of the basic topics in ecology, which constructs the complex
food chains and food networks. The famous predator-prey
model was established by [1], [2]. Afterwards, the dynam-
ical behaviors of predator-prey models, such as chaos, sta-
bility, bifurcations and oscillations, usually depend on the
system parameters. Basically, time delays are unavoidable
and ubiquitous in prey-predator system due to gestation [3].
At present, many outstanding achievements have been made
in the analysis of predator-prey model [4]–[8].

Fractional order dynamical systems have attracted numer-
ous researchers’ attraction in various branches, especially
in science and engineering. Compared with the traditional
integer order dynamical system, the fundamental difference
of fractional order is that it has nonlocal and weakly sin-
gular kernel [9]–[11], so it has infinite memory and more
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degrees of freedom. Due to memory effect, most biolog-
ical systems exhibit fractional dynamics. The memory in
the model describes the history of the process involved and
has an impact on the current and future development of the
process. Therefore, the fractional differential equation can
describe the actual phenomenon more accurately than the tra-
ditional integer differential equation. Generally, the modeling
of fractional order population dynamics system can enrich
dynamics, increase the complexity of the model and improve
the performance of complex system. Recently, some scholars
have incorporated fractional calculus into predator-preymod-
els and developed fractional predator-prey ones, and obtained
a large number of results related to fractional dynamics
of delayed predator-prey without delays [12]–[15] or with
delays [16]–[19].

Hopf bifurcation analysis is an effective tool to obtain
more information of complex dynamical systems near the
equilibrium point. In order to obtain more properties of
nonlinear complex dynamical systems, bifurcation has been
widely studied [20]–[24]. As we all know, in the tradi-
tional integer order delayed model, bifurcation has been
widely studied, and some good results have been obtained.
In recent years, more and more attention has been paid
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to the bifurcation of fractional order models with time
delay [25]–[28]. In [27], the authors studied a delayed gen-
eralized fractional-order prey-predator model with interspe-
cific competition, and derived the global asymptotic stability
conditions and local bifurcation criterions of the equilibrium
by choosing time delay as a bifurcation parameter.

Bifurcation control is a very necessary and effective
method. Various bifurcation control methods have been pro-
posed [29]–[31]. Using this method, a controller can be
designed to suppress or reduce the bifurcation dynamics
of a given nonlinear system, so as to expand the stability
region of the system and obtain the ideal dynamic behavior.
It is worth mentioning that the stability of fractional order
dynamic system can be greatly improved by using active
bifurcation control strategy. More and more attention has
been paid to the bifurcation control of fractional order mod-
els with time delay [32]–[37]. In [32], the onset of bifur-
cation of a delayed fractional-order small-world networks
was effectively controlled by using a fractional-order PD
feedback controller. In [34], a state feedback controllers were
implemented to suitably control the Hopf bifurcation for a
fractional delayed predator-prey system. In [35], a parametric
delay feedback control approach was further proposed to
cope with bifurcation control for a delayed fractional dual
congestion model, and it was found that the stability perfor-
mance can be extremely heightened by adopting the para-
metric delay feedback controller. Generally, there exist many
bifurcation control approaches including dislocated feedback
control, speed feedback control and enhancing feedback
control [38]–[40], et al. In [39], the author detected that the
feedback coefficients were smaller than the ones of ordinary
feedback control during controlling hyperchaotic Lorenz sys-
tem, and the control cost were reduced. In [40], it revealed that
the enhancing feedback control approach was the best choice
of among the addressed four feedback control methods in
controlling hyperchaotic Lorenz system involving relatively
simple external inputs and relatively small necessary feed-
back coefficient. It should be pointed out that it is difficult to
control a complex system with only one feedback variable.
In this case, the feedback gain is always large. Therefore,
in order to obtain high quality performance of fractional
order dynamics system, it is necessary and urgent to use
enhanced feedback control to control the occurrence of bifur-
cation. At present, the bifurcation control of fractional order
predator-prey system with time delay based on enhanced
feedback control tool has not been well studied.

Motivated by the aforemention discussions, we will use
enhanced feedback control technology to conduct a theo-
retical analysis of the bifurcation control of the time-delay
fractional predator-prey model. The key features of this paper
are listed as follows:

1) Enhancing feedback control strategy is developed to
deal with the bifurcation control in a fractional delayed
predator-prey model.

2) The bifurcation point of the controlled model can be
completely concluded by theoretical derivation.

3) The effects of fractional order on the bifurcation points
are fully investigated by using enhancing feedback control
strategy and dislocated feedback. It is found that the perfor-
mance of control gradually becomes perfect with the decre-
ment of fractional order.

4) We discover that enhancing feedback control strategy
overmatches dislocated feedback ones in delaying the onset
of bifurcation control for the considered controlled system for
given fractional order.

The rest of the current paper is arranged as follows.
Some mathematical preliminaries are presented in Section 2.
In Section 3, the investigated model are addressed. Key bifur-
cation control results by using enhancing feedback control
method are wholly determined in Section 4. The efficiency
of the proposed control scheme is verified with the help of a
simulation example in Section 5. Finally, the paper ends with
a conclusion.

II. PRELIMINARIES
Many fractional derivative definitions are applied to deal
with some practical issues including the Riemann-Liouville
definition and the Caputo definition, et al. It is worth noting
that the Caputo derivative has many advantages consisting of
the consistence of given initial conditions with integer-order
derivative, the description of well-understood features of
physical situation. In this paper, Caputo derivatives are used
to deal with the dynamic of fractional order systems.
Definition 1 ([9]): The Caputo fractional-order derivative

is defined by

Dφt f (t) =
1

0(l − φ)

∫ t

t0
(t − s)l−ψ−1f (l)(s)ds,

where l − 1 ≤ φ < l ∈ Z+, 0(·) is the Gamma function,
0(s) =

∫
∞

0 ts−1e−tdt .
The Laplace transform of the Caputo fractional-order

derivatives is

L{Dφt f (t); s} = sφF(s)−
l−1∑
k=0

sφ−k−1f (k)(0),

where l − 1 ≤ φ < l ∈ Z+. If f (k)(0) = 0, k = 1, 2, . . . , n,
then L{Dφt f (t); s} = sφF(s).
Lemma 1 ( [41]): Consider the following n-dimensional

linear fractional-order system
Dφ1γ1(t) = k11γ1(t)+ k12γ2(t)+ · · · + k1nγn(t),
Dφ2γ2(t) = k21γ1(t)+ k22γ2(t)+ · · · + k2nγn(t),
...

Dφnγn(t) = kn1γ1(t)+ kn2γ2(t)+ · · · + knnγn(t),

(1)

where 0 < φi < 1(i = 1, 2, . . . , n). It is assumed that φ is the
lowest common multiple of the denominators ψi of φi, where
φi =

ϕi
ψi
, (ϕi, ψi) = 1, ϕi, ψi ∈ Z+, for i = 1, 2, . . . , n.
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Define

4(s) =


sφ1 − k11 −k12 · · · −k1n
−k21 sφ2 − k22 · · · −k2n
...

...
. . .

...

−kn1 −kn2 · · · sφn − knn


Then the zero solution of system (1) is globally asymptoti-
cally stable in the Lyapunov sense if all roots s of the equation
det(4(s)) = 0 satisfy | arg(s)| > φiπ/2.
Lemma 2 ( [41]): Consider the following n-dimensional

linear fractional-order delayed system

Dφ1γ1(t) = k11γ1(t − τ11)+ k12γ2(t − τ12)

+ · · · + k1nγn(t − τ1n),

Dφ2γ2(t) = k21γ1(t − τ21)+ k22γ2(t − τ22)

+ · · · + k2nγn(t − τ2n),
...

Dφnγn(t) = kn1γ1(t − τn1)+ kn2γ2(t − τn2)

+ · · · + knnγn(t − τnn),

(2)

where φi ∈ (0, 1)(i = 1, 2, . . . , n), the initial values Vi(t) =
9i(t) are given for −maxi,j, τi,j = −maxi,j ≤ t ≤ 0 and i =
1, 2, . . . , n. For system (2), time-delay matrix τ = (τi,j) ∈
(R+)n×n, coefficient matrix H = (ki,j)n×n, state variables
γi(t), γi(t−τi,j) ∈ R, and initial values9i(t) ∈ C0[−τmax, 0].
Its fractional order is defined as φ = (φ1, φ2, . . . , φn). The
characteristic equation det(4(s)) is defined as∣∣∣∣∣∣∣∣∣

sφ1 − k11e−sτ11 −k12e−sτ12 · · · −k1ne−sτ1n

−k21e−sτ21 sφ2 − k22e−sτ22 · · · −k2ne−sτ2n
...

...
. . .

...

−kn1e−sτn1 −kn2e−sτn2 · · · sφn − knne−sτnn

∣∣∣∣∣∣∣∣∣
Then the zero solution of system (2) is Lyapunov globally
asymptotically stable if all the roots of the characteristic
equation det(4(s)) = 0 have negative real parts.

III. THE MATHEMATICAL MODEL
In [42], the bifurcation of a ratio-dependent delayed
predator-prey system with two delays was considered. The
mathematical model was as follows:

dN (t)
dt
= r1N (t)− εP(t)N (t),

dP(t)
dt
= P(t)

[
r2 − θ

P(t − τ2)
N (t − τ1)

]
,

(3)

where the variables and parameters of system (3) are
explained in Table.1.

For the sake of succinctness, we assume that τ1 = τ2 = τ
in system (3), then the following system can be derived

dN (t)
dt
= r1N (t)− εP(t)N (t),

dP(t)
dt
= P(t)

[
r2 − θ

P(t − τ )
N (t − τ )

]
.

(4)

TABLE 1. The instructions relevant variables and parameters
of system (3).

In this paper, we add the enhancing feedback controllers
K1[N (t) − N (t − τ )],K2[P(t) − P(t − τ ) to the following
fractional-order version predator-prey modelDφN (t) = r1N (t)− εP(t)N (t)+ K1[N (t)− N (t − τ )],

DφP(t) = P(t)
[
r2 − θ

P(t − τ )
N (t − τ )

]
+ K2[P(t)− P(t − τ )],

(5)

where φ is fractional order,K1,K2 denote feedback gains. It is
easy to see that the enhancing feedback controllers preserves
the equilibrium point of the system (5).

Noting that system (5) degenerates into the uncontrolled
integer-order version system (4) when φ = 1, K1 = K2 = 0.
It is not difficult to see that the positive equilibrium point
E∗ = (N ∗,P∗) of system (5) is consistent with system (3)
and (4), which can be acquired by solving the following
equations: {

r1 − εP∗ = 0,

r2 N ∗ − θP∗ = 0.

It implies that N ∗ =
θr1
εr2

, P∗ =
r1
ε
. Obviously, system (5)

has a unique positive equilibrium point E∗.
In order to obtain better control effect, the following basic

assumption is necessary:

(H1) K1 ≤ 0, K2 ≤ 0.

The core objective of this paper is to discuss the problem
of bifurcation control for system (5) by taking time delay as a
bifurcation parameter and the approach is from [41]. Then,
some comparative investigations on bifurcation control are
executed. It is found that the stability performance of the
controlled system can be extremely improved by enhancing
feedback control than the dislocated feedback control.

IV. THEORY ANALYSIS
In this section, time delay shall be selected as a bifurcation
parameter to investigate the problem of bifurcation control
for the predator-preymodel (5). The existence bifurcation and
bifurcation point for the proposed model shall be established.
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Let ρ(t) = N (t) − N ∗, %(t) = P(t) − P∗, then the
system (5) can be rewritten as:

Dφρ(t) = r1(ρ(t)+ N ∗)− ε(%(t)+ P∗)(ρ(t)+ N ∗)

+ K1[ρ(t)− ρ(t − τ )],

Dφ%(t) = (%(t)+ P∗)
[
r2 − θ

%(t − τ )+ P∗

ρ(t − τ )+ N ∗

]
+ K2[%(t)− %(t − τ )].

(6)

The linearized system of network (6) can be gained that
Dφρ(t) = −εN ∗%(t)+ K1ρ(t)− K1ρ(t − τ ),

Dφ%(t) = θ
( P∗
N ∗

)2
ρ(t − τ )− θ

P∗

N ∗
%(t − τ )

+ K2%(t)− K2%(t − τ ).

(7)

The associated characteristic equation of (7) is as follows

det

 sφ − K1 + K1e−sτ εN ∗

−θ
( P∗
N ∗

)2
e−sτ sφ − K2 +

(
K2 + θ

P∗

N ∗

)
e−sτ


= 0. (8)

According to the theory of determinant, we conclude that

P1(s)+ P2(s)e−sτ + P3(s)e−2sτ = 0, (9)

where

P1(s) = s2φ − (K1 + K2)sφ + K1K2,

P2(s) = (K1 + K2 + α)sφ + β − 2K1K2 − αK1,

P3(s) = K1(K2 + α),

α = θ
P∗

N ∗
,

β = αεP∗.

Multiply esτ on both sides of (9), then we get that

P1(s)esτ + P2(s)+ P3(s)e−sτ = 0. (10)

Assume that s = $ (cos π2 + i sin π2 )($ > 0) is a purely
imaginary root of (10), then we have{

(A1 + A3) cos$τ + (B3 − B1) sin$τ = −A2,

(B1 + B3) cos$τ + (A1 − A3) sin$τ = −B2,
(11)

where Ai, Bi(i = 1, 2, 3) are the real parts and imaginary parts
of Pi(s). Ai, Bi can be described as follows:

A1 = $ 2φ cosφπ − (K1 + K2)$φ cos
φπ

2
+ K1K2,

B1 = $ 2φ sinφπ − (K1 + K2)$φ sin
φπ

2
,

A2 = (K1 + K2 + α)$φ cos
φπ

2
+ β − 2K1K2 − αK1,

B2 = (K1 + K2 + α)$φ sin
φπ

2
,

A3 = K1(K2 + α),

B3 = 0.

We further label

F1($ ) = −A2(A1 − A3)− B1B2,

F2($ ) = −B2(A1 + A3)+ B1A2,

G($ ) = A21 + B
2
1 − A

2
3.

It follows from (11) that
cos$τ =

F1($ )
G($ )

,

sin$τ =
F2($ )
G($ )

.

(12)

In terms of (12), we procure that

G2($ ) = F2
1 ($ )+ F2

2 ($ ). (13)

It can be defined from (13) that

H ($ ) = G2($ )− F2
1 ($ )− F2

2 ($ ) = 0. (14)

Under Eq.(14), we can obtain that

H ($ ) = $ 8φ
+ l1$ 7φ

+ l2$ 6φ
+ l3$ 5φ

+ l4$ 4φ

+ l5$ 3φ
+ l6$ 2φ

+ l7$φ
+ l8 = 0, (15)

where li(i = 1, 2, . . . , 8) are computed in Appendix A− B.
In order to guarantee the occurrence of Hopf bifurcation

for system (5), we further give the additional assumption:
(H2) (15) has at least positive real roots.
It should be noted that the assumption (H2) is only a

necessary condition for the bifurcation of the system (5), not
a sufficient condition.

According to cos$τ =
F1($ )
G($ )

, we can get

τ (k) =
1
$

[
arccos

F1($ )
G($ )

+ 2kπ
]
, k = 0, 1, 2, . . . .

(16)

Define the bifurcation point

τ0 = min{τ (k)}, k = 0, 1, 2, . . . ,

where τ (k) is defined by (16).
In what follows, we will consider the stability of system (5)

when τ = 0. If τ is removed, the characteristic (9) becomes

λ2φ + αλφ + β = 0. (17)

It is obvious from α > 0, β > 0 that the two roots of (17) have
negative parts which satisfying Lemma 1. Hence, the positive
equilibrium of the fractional system (5) is asymptotically
stable.

In order to acquire the transversality condition of the occur-
rence for Hopf bifurcation, the following necessary assump-
tion is needed for system (5):

(H3)
χ1υ1 + χ2υ2

υ21 + υ
2
2

6= 0,

where χ1, χ2, υ1, υ2 are defined by (20).
Lemma 3: Let s(τ ) = ξ (τ ) + i$ (τ ) be the root of Eq.(9)

near τ = τj satisfying ξ (τj) = 0, $ (τj) = $0, then the
following transversality condition holds

Re
[ ds
dτ

]∣∣∣
($=$0,τ=τ0)

6= 0,
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where$0, τ0 represent the critical frequency and bifurcation
point of system (5).

Proof: By using implicit function theorem and differen-
tiating (9) with respect to τ , we can get

P′1(s)
ds
dτ
+

[
P′2(s)

ds
dτ

e−sτ + P2(s)e−sτ
(
− τ

ds
dτ
− s

)]
+

[
P′3(s)

ds
dτ

e−2sτ + 2P3(s)e−2sτ
(
− τ

ds
dτ
− s

)]
= 0.

(18)

It is clear from Eq.(17) that P′3(s) = 0. By mathematical
derivation, it follows from Eq.(18) that

ds
dτ
=
χ (s)
υ(s)

, (19)

where

χ (s) = s[P2(s)e−sτ + 2P3(s)e−2sτ ],

υ(s) = P′1(2)+ [P′2(s)− τP2(s)]e
−sτ
− 2τP3(s)e−2sτ .

Let PRi , P
I
i stand for the real parts and the imaginary parts

of Pi(s). Let P
′R
i , P

′I
i denote the real parts and the imaginary

parts of P′i(s). Then by some computation, it can be deduced
from (19) that

Re
[ ds
dτ

]∣∣∣
($=$0,τ=τ0)

=
χ1υ1 + χ2υ2

υ21 + υ
2
2

, (20)

where

χ1 = $0(PR2 sin$0τ0 − PI2 cos$0τ0 + 2PR3 sin 2$0τ0

− 2PI3 cos 2$0τ0),

χ2 = $0(PR2 cos$0τ0 + PI2 sin$0τ0 + 2PR3 cos 2$0τ0

+ 2PI3 sin 2$0τ0),

υ1 = P
′R
1 + (P

′R
2 − τ0 P

R
2 ) cos$0τ0 + (P

′I
2 − τ0 P

I
2)

· sin$0τ0 − 2τ0(PR3 cos 2$0τ0 + PI3 sin 2$0τ0),

υ2 = P
′I
1 + (P

′I
2 − τ0 P

I
2) cos$0τ0 − (P

′R
2 − τ0 P

R
2 )

· sin$0τ0 − 2τ0(PI3 cos 2$0τ0 − PR3 sin 2$0τ0).

(H3) indicates that transversality condition hold. We accom-
plish the proof of Lemma 3.

Based on the assumptions (H1)-(H3) and previous analy-
sis, the following theorem can be derived.
Theorem: Under (H1)-(H3), the following results hold:
1) E∗ of the fractional system (5) is asymptotically stable

when τ ∈ [0, τ0);
2) System (5) undergoes a Hopf bifurcation at E∗ when

τ = τ0, i.e., it has a branch of periodic solutions bifurcating
from E∗ near τ = τ0.
Remark 1: It is difficult to theoretically analyze all the

positive real roots. Nevertheless, these positive real roots
of (15) can be easily computed by using Maple numerical
software. Hence, the critical frequency $0 and bifurcation
point τ0 can be accurately established.
Remark 2: Some analogous models were analyze

in [43]–[46]. It is worth mentioning that these results only
concentrated on the dynamics of integer-order predator-prey

FIGURE 1. Time series of system (21) with φ = 0.98, K1 = −0.08,
K2 = −0.15, τ = 3.8 < τ0 = 4.4222. The equilibrium E∗ of the fractional
system (21) is asymptotically stable.

FIGURE 2. Portrait diagram of system (21) with φ = 0.98, K1 = −0.08,
K2 = −0.15, τ = 3.8 < τ0 = 4.4222. The equilibrium E∗ of the fractional
system (21) is asymptotically stable.

FIGURE 3. Time series of system (21) with φ = 0.98, K1 = −0.08,
K2 = −0.15, τ = 4.8 > τ0 = 4.4222. A Hopf bifurcation bifurcates from
the equilibrium E∗ of the fractional system (21).

models. It is more realistic to explore the dynamics of delayed
predator-prey models by fully considering the effects of
fractional calculus for ecosystems in this paper.
Remark 3: In this paper, the effects of fractional order on

the bifurcation point are adequately discussed by calculation.
It implies that the better effects in delaying the onset of
bifurcation can be achieved as fractional order decreases if
feedback gain are established.
Remark 4: In [32]–[35], various bifurcation strategies

were adopted to control the onset of bifurcation for delayed
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FIGURE 4. Portrait diagram of system (21) with φ = 0.98, K1 = −0.08,
K2 = −0.15, τ = 4.8 > τ0 = 4.4222. A Hopf bifurcation bifurcates from
the equilibrium E∗ of the fractional system (21).

FIGURE 5. Bifurcation diagram of N(t) for system (21).

FIGURE 6. Bifurcation diagram of P(t) for system (21).

fractional-order systems. Noting that these remarkable results
only were obtained all based on the dislocated feedback
approaches. Different from existing methods, the enhancing
feedback control strategy is delay onset of the bifurcation
for fractional delayed predator-prey system and satisfactory
bifurcation control effects are realized compared with the
dislocated feedback approaches in this paper. This hints that
the proposed enhancing controllers possess a superior perfor-
mance in controlling bifurcation in delayed fractional-order
systems. The derived results can be extended to deal with
others fractional-order systems with time delay.

V. NUMERICAL SIMULATIONS
In this section, a simulation example is exploited to exhibit
the correctness of the addressed theory. In our simulations,

FIGURE 7. Time series of system (21) with φ = 0.98, K1 = K2 = 0,
τ = 3.8 > 3.0079. System (21) becomes unstable.

FIGURE 8. Portrait diagram of system (21) with φ = 0.98, K1 = K2 = 0,
τ = 3.8 > 3.0079. System (21) becomes unstable.

Adama-Bashforth-Moulton predictor-corrector scheme is
adopted in [47]. To aid consistent comparisons with the
predecessor research progress, we consider model (5) with
the same parameters which are used in [42]: r1 = 0.45,
r2 = 0.1, ε = 0.03, θ = 0.05. The positive equilibrium
point E∗ can be obtained as (N ∗,P∗) = (7.5, 15). Step-length
is chosen as h = 0.01, and the initial values are taken
as (N (0),P(0)) = (8, 16). Consider the controlled system

DφN (t) = 0.45N (t)− 0.03 P(t)N (t)

+ K1[(N (t)− N (t − τ )],

DφP(t) = P(t)
[
0.1− 0.05

P(t − τ )
N (t − τ )

]
+ K2[(P(t)− P(t − τ )].

(21)

Selecting φ = 0.98, K1 = −0.08, K2 = −0.15 in sys-
tem (21), it is derived that $0 = 0.1496, then τ0 = 4.4222.
In terms of Theorem 1, E∗ of controlled system (21)
is asymptotically stable when τ = 3.8 < τ0, which,
depicted in Figs.1-2, while Figs.3-4 display that E∗ of con-
trolled system (21) is unstable, Hopf bifurcation occurs when
τ = 4.8 > τ0. Bifurcation diagrams of system (21) are
simulated in Figs. 5-6.

The same order is chosen as φ = 0.98. We first select
K1 = K2 = 0, which means that the controllers are removed,
we derive τ0 = 2.3807. We further choose τ = 3.8 >

τ0 = 2.3807, it is clear that system (21) becomes unstable,
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FIGURE 9. Time series of system (21) with φ = 0.98, K1 = −0.08, K2 = 0,
τ = 3.8 > 3.0079. System (21) becomes unstable.

FIGURE 10. Portrait diagram of system (21) with φ = 0.98, K1 = −0.08,
K2 = 0, τ = 3.8 > 3.0079. System (21) becomes unstable.

FIGURE 11. Time series of system (21) with φ = 0.98, K1 = 0, K2 = −0.15,
τ = 3.8 > 3.0079. System (21) becomes unstable.

which is depicted in Figs.7-8. Then we choose K2 = 0,
K1 = −0.08. This indicates that dislocated feedback control
emerges, then we have τ0 = 3.0079. We choose τ = 3.8 >
τ0 = 3.0079, it is obvious that system (21) becomes unstable,
which is simulated in Figs. 9-10. If K1 = 0, K2 = −0.15,
it suggests that dislocated feedback control occurs, then we
have τ0 = 2.8650. We also choose τ = 3.8 > τ0 = 2.8650,
it is obvious that system (21) becomes unstable, which is
simulated in Figs. 11-12.

In brief, system (21) will turn unstable once the controllers
all are removed or dislocated feedback controller engenders.
In what follows, we shall fully consider the effects of the
proposed enhancing control scheme.

FIGURE 12. Portrait diagram of system (21) with φ = 0.98, K1 = 0,
K2 = −0.15, τ = 3.8 > 3.0079. System (21) becomes unstable.

FIGURE 13. Comparison on the values of τ0 versus φ for system (21). The
bifurcation point is more larger with K1 = −0.08, K2 = −0.15 than that
one with K1 = K2 = 0 for given φ.

FIGURE 14. Comparison on the values of τ0 versus φ for system (21). The
performance of designed enhancing controllers overmatch the single
controller.

Case 1: Selecting three sets of parameters K1 = −0.08,
K2 = −0.15; K1 = −0.08, K2 = −0.15; K1 = −0.08,
K2 = 0; K1 = 0, K2 = −0.15, respectively. By varying
φ, we derive the values of τ0, the comparative results are
addressed in Figs.13-15. Fig.13 describes that the bifurcation
point is more larger with K1 = −0.08, K2 = −0.15 than
that one with K1 = K2 = 0 for given φ. This verifies that
the effectiveness of the devised controllers. Figs.14-15 reveal
that the performance of designed enhancing controllers over-
match the single controller.
Case 2: Fixing φ = 0.98 and select two sets of parameters

K2 = −0.15 and K2 = 0, then we derive the values of
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FIGURE 15. Comparison on the values of τ0 versus φ for system (21). The
performance of designed enhancing controllers overmatch the single
controller.

FIGURE 16. Comparison on the values of τ0 versus K1 for system (21)
with φ = 0.98. The control effects are more better with the present of
feedback gain K2 than the absence of it.

FIGURE 17. Comparison on the values of τ0 versus K2 for system (21)
with φ = 0.98. The control effects are more better with the present of
feedback gain K1 than the absence of it.

τ0 with the change of K1, which is demonstrated in Fig.16.
Fig.16 indicates that the control effects are more better with
the present of feedback gain K2 than the absence of it.
Case 3: Taking φ = 0.98 and select two sets of parameters

K1 = −0.08 and K1 = 0, then we derive the values of
τ0 with the change of K2, which is demonstrated in Fig.17.
Fig.17 discloses that the control effects are more better with
the present of feedback gain K1 than the absence of it.

VI. CONCLUSION
Using the enhanced feedback control technique, we analyze
the bifurcation control of a class of predator-prey model

with fractional delay. An improved feedback control strat-
egy is proposed for the bifurcation control of a fractional
order predator-prey model with time delay. This shows that
the proposed enhanced controller has superior performance
in controlling the bifurcation of fractional order time-delay
systems. Through theoretical derivation, the bifurcation point
of the controlled model can be obtained. The influence of
fractional order on bifurcation point is fully studied by using
enhanced feedback control strategy and dislocation feedback.
It is found that with the decrease of fractional order, the con-
trol performance tends to be perfect. This means that when
the feedback gain is established, the reduction of fractional
order can achieve better effect of delayed bifurcation.We find
that the enhanced feedback control strategy is better than the
dislocation feedback control strategy in delaying the start of
bifurcation control for a given fractional order controlled sys-
tem. Finally, the validity of the theoretical results is verified
by numerical simulation.
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