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ABSTRACT Advances in three-dimensional microscopy and tissue clearing are enabling whole-organ
imaging with single-cell resolution. Fast and reliable image processing tools are needed to analyze the
resulting image volumes, including automated cell detection, cell counting and cell analytics. Deep learning
approaches have shown promising results in two- and three-dimensional nuclei detection tasks, however
detecting overlapping or non-spherical nuclei of different sizes and shapes in the presence of a blurring
point spread function remains challenging and often leads to incorrect nuclei merging and splitting. Here we
present a new regression-based fully convolutional network that located a thousand nuclei centroids with high
accuracy in under a minute when combined with V-net, a popular three-dimensional semantic-segmentation
architecture. High nuclei detection F1-scores of 95.3% and 92.5%were obtained in two different whole quail
embryonic hearts, a tissue type difficult to segment because of its high cell density, and heterogeneous and
elliptical nuclei. Similar high scores were obtained in the mouse brain stem, demonstrating that this approach
is highly transferable to nuclei of different shapes and intensities. Finally, spatial statistics were performed
on the resulting centroids. The spatial distribution of nuclei obtained by our approach most resembles the
spatial distribution of manually identified nuclei, indicating that this approach could serve in future spatial
analyses of cell organization.

INDEX TERMS 3D microscopy, cell detection, cell segmentation, centroid detection, deep learning,
regression, spatial statistics, V-net, whole tissue.

I. INTRODUCTION
The explosion of new tissue clearing protocols in the last
decade has revolutionized the field of three-dimensional (3D)
microscopy [1]. It is now possible to image intact organs,
developing embryos and even whole mice [2]–[5]. Imaging
tissue samples without sectioning preserves tissue integrity,
cell shape and organization, and provides a more complete
view of the patterns and connections that enables organs
to function. Whole-organ imaging with single-cell resolu-
tion is bringing us toward organism-level systems biology,
where molecular and cellular interactions can be studied
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across organs, and the relationship between structure and
function can be explored at larger scales [6]. Additionally,
spatially resolved transcriptomics, especially fluorescence
in situ hybridization (FISH) and in situ sequencing (ISS)
can give ‘‘barcodes’’ to cells, adding even more functional
information to each image [7], [8]. Just as diseases affect
the inner function of individual cells, diseases can also bring
subtler changes in different but interacting cell populations
over whole organs and organisms. Tissue clearing, fast 3D
microscopy and more targeted fluorescent staining are now
allowing us to study these large-scale systems [2].

However, new data analysis tools are needed to extract
information from these large multi-channel 3D datasets.
To quantify protein expression levels across organs, or to
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determine how diseases affect cell migration or cellular dif-
ferentiation, tasks such as segmentation (e.g., cell, tissue,
layer), tracking, and spatial analysis of fluorescent markers
have to be performed. And with hundreds of thousands of
cells per mm3 of tissue, such data processing efforts would
be overly time-consuming and impractical if performed man-
ually on large 3D image sets. Automatic data processing
is thus essential to obtain quantitative measurements for
analysis.

The spatial organization of cells plays an important role
both in healthy and diseased organs, and studying cell orga-
nizationwould further our understanding of embryonic devel-
opment, aging, disease pathways, and treatment strategies.
However, few studies have looked into quantifying such
organizations, with most experiments focusing on qualitative
observations, or quantitative results obtained from a few cells.
Fields such as graph theory and spatial statistics includemany
formal techniques to characterize spatial point distributions.
Groups are starting to use such tools to analyze cellular dis-
tributions [9]–[13], but they require the location of each cell.
The powerful toolsets of graph theory and spatial statistics
could be used to study the 3D architecture of tissue at the
cellular level if a robust 3D centroid detection algorithm
could obtain a reliable spatial distribution.

In practice, 3D cell detection can be complicated by many
factors. Whole tissue, organs and embryos have a multitude
of different cell types, which are varied in shape and size,
and have heterogeneous appearances when stained with flu-
orescent markers. Thus, few assumptions should be pre-built
in cell detection algorithms. Additionally, low magnification
microscope objectives have poor resolution in the depth axis,
and the out-of-plane signal can make segmentation diffi-
cult. This is especially true since many existing algorithms
were developed for 2D images of tissue sections and cell
monolayers. However, using high magnification objectives
with superior depth sectioning is not always an appropriate
solution, since low magnification objectives have the long
working-distances necessary for imaging deep in tissue, and
their large field-of-view enables faster image acquisition.
Additionally, imaging whole organs with high magnification
objectives would generate a significant data burden.

An optimal 3D cell detection algorithm would accurately
find the centroid position of cells in unsectioned tissue.
It would perform optimally even on images acquired with
low magnification objectives regardless of cell type, shape,
and size. It would also translate easily from sample to sample
within a study, and even adapt to different organs or ani-
mal models. Accurate detection of cell centroids would also
enable spatial analysis of cell organization.

In this study we:
1) Propose a new segmentation-regression network

to locate nuclei centroids in high density intact
tissue.

2) Demonstrate the robustness of our approach by testing
it in two different tissue types (cardiac embryonic tissue
and brain stem tissue).

3) Perform spatial statistics analysis to determine which
nuclei detection approach best preserves the true spatial
organization of each tissue type.

II. RELATED WORK
Multiple methods for automatic nuclei detection have
been developed for different imaging modalities, includ-
ing approaches designed for volumetric datasets. Before
the recent advances in deep learning, approaches for cell
segmentation included nuclei thresholding, matching prede-
termined templates to the image, the watershed transform,
and deformable models [14]. To improve watershed results,
algorithms have been developed to either identify seeds, or
to iteratively refine the results based on the expected size
and shape of the segmented objects [11], [15]. In the case
of non-spherical nuclei found in muscle cells, complicated
sequences of ellipse fitting, ellipse refinement and clustering
have been used [16]. However, with the growing availabil-
ity of fast and affordable graphics processing units (GPUs),
approaches entirely based on deep-learning have become
increasingly popular.

Deep learning is a promising approach when it comes to
identifying objects with very few predetermined characteris-
tics such as the nuclei of multiple cell types, which are of
varied shapes and sizes. Most nuclei detection algorithms
can be separated into two classes: either one attempts to
segment each nucleus, or nucleus centroids can be directly
detected without the need for prior object segmentation.
The first option can provide many characteristics for each
nucleus in addition to segmentation, such as the centroid loca-
tion, the nucleus volume, and nucleus orientation. However,
the second optionmay perform better in datasets where nuclei
are clustered or overlapping, and where accurate segmenta-
tion is difficult. Recently, a third option has appeared, with
multiple algorithms combining both a segmentation arm and
a centroid detection arm, thus benefiting from the strengths
of both approaches.

We now review recent studies falling within these three
broad categories.

Many deep learning nuclei segmentation approaches in 2D
and 3D are based on the U-net architecture [17]. U-net
implementations are usually trained on two pixel classes,
nucleus and background, and as a result are not separat-
ing touching nuclei without additional processing. In early
publications, a thin line of ‘‘background’’ pixels was used
to separate neighboring cells, and these pixels were heav-
ily weighted during training to improve the final segmenta-
tion [17], [18]. U-net implementationswith three pixel classes
(nucleus, nucleus boundary, background) have also been used
in 2D with or without a variable weight distribution for train-
ing [19], [20]. The three pixel classes concept has also been
extended to 3D, and has provided good segmentation results
when paired with vectors pointing toward the nuclei center
during training [21]. U-net has also been combined with other
approaches, such as Mask R-CNN to separate clusters of
nuclei in histology slides and 2D fluorescence images [22],
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and Hessian analysis to separate connected objects in 2D and
3D datasets [23].

Nuclei segmentation approaches have also used other neu-
ral network architectures beside U-net to segment nuclei. The
idea of boundary detection was built in DCAN, a network
with two output branches for segmenting nuclei and nuclei
boundary separately in histology images [24]. Segmentation
networks inspired by the 3D U-net architecture have also
been proposed, such as DeepSynth which segments nuclei
after training on synthetic images, and separates touching
nuclei with a 3D watershed transform [25]. The V-net archi-
tecture [26], which is similar to 3D U-net but uses the Dice
loss to prevent class imbalance, has also been used for cell
segmentation using a multi-class approach to detect cells and
cell boundaries [27].

Centroid locations can be calculated once nuclei are seg-
mented, or they can be detected directly by a network.
Regression neural networks have been used to find object
positions, where they can be easier to train than classifi-
cation networks [28], [29]. For cell detection, a centroid
probability map can be calculated by a network, with the
local maxima identified in post-processing indicating the cell
centroid. A regression approach to detect nuclei has been
advocated for by Kainz et al. who compared classification
and regression approaches in random forests to localize cells
in histology images [30]. Regression also performed well in
convolutional neural networks [31], [32], fully convolutional
networks (FCN)[33], and residual networks [34], especially
on high cell density 2D images with clustered or overlap-
ping objects. Regression-based networks were also robust
and translated easily between different imaging modalities
and cell types [33], [34]. Höfener et al. systemically tested
different FCN implementations for centroid regression in
histology images, and highlighted the importance of the
post-processing steps to best identify centroids, recommend-
ing median filtering and Gaussian smoothing [35]. Finally,
Hirsh and Kainmueller compared the centroids predicted by
their proposed nuclei segmentation approach to a regression
network inspired by Höfener et al. and found the regression
method performed similarly to their own approach [21].

Recently, different groups have proposed pairing segmen-
tation and centroid detection algorithms to improve accuracy,
especially volumetric datasets with high nuclei density. One
approach has used two 3D U-net networks, one to segment
nuclei and the other to detect their centroid to improve seg-
mentation accuracy in embryo images [36]. Another network,
SphEsNet, was also inspired by a 3D U-net architecture
and added small centroid detection and radius estimation
branches to predict the size of spherical nuclei. This algorithm
was also able to improve detection accuracy over methods
such as Mask R-CNN and a previous network proposed by
the authors [37]. Finally, a 3D U-net inspired segmentation
network was combined with a small regression-based cen-
troid detection branch and obtained an F1-score of 82% in
a high nuclei density 3D fluorescent image set, and 93% in a
low nuclei density data set [38].

Although regression-based approaches have proven to be
especially strong at cell-detection tasks in 2D images, few
attempts have been made in 3D datasets. Additionally, when
segmentation and detection approaches have been paired,
the detection branches were usually composed of a few
convolutional layers at most, and not similar to the highly
accurate regression networks used in 2D [37], [38]. In
this manuscript we propose a new segmentation-regression
approach that can be applied in intact cardiac and brain
tissues, which both include irregularly shaped and clustered
nuclei. We also compare our own segmentation-regression
approach to other previously explored methodology, such as
the inclusion of a nuclei-boundary pixel class to improve
nuclei centroid detection.

III. PROPOSED MODEL
A. LEARNING TASK AND PROPOSED APPROACHES
Nuclei segmentation techniques have often been developed
with the assumption that nuclei are spherical objects that
do not significantly touch or overlap. In volumetric images
of intact cardiac tissue, many nuclei appear to be touching
because of the high tissue density and out-of-focus signal
from cells at various depths. Additionally, nuclei of muscle
cells tend to be elongated and elliptical in shape, while sur-
rounding nuclei can take various shapes. As in other muscle
cells [16], numerous small areas of high DAPI intensity are
present within the nuclei, which complicates intensity-based
thresholding and other segmentation algorithms that require
homogeneous intensity. For these reasons, many existing cell
segmentation and cell counting approaches lead to merged,
split or missed nuclei, and inaccurate nuclei counts.

In this manuscript, five different approaches were tested to
identify nuclei centroids in the DAPI stained embryonic heart
wall:

1) VRegNet: V-net with two classes followed by a
regression neural network,

2) Vnet-3: V-net with three classes and centroid
calculation,

3) Vnet-3W: V-net with three classes followed by 3D
watershed and centroid calculation,

4) Vnet-2W: V-net with two classes followed by 3D
watershed and centroid calculation,

5) Segmentation and nuclei labeling in CellProfiler
followed by centroid calculation.

VRegNet is our proposed two-step approach where nuclei
are first segmented from the background using V-net, fol-
lowed by a regression network to directly identify centroids.
The other four methods are inspired by promising cell seg-
mentation approaches found in the literature. Vnet-3 is a
variation on the more traditional segmentation-basedmethod,
where in addition to the usual two classes used for segmen-
tation (background vs nucleus), a third category (nucleus
boundary) is introduced in an effort to separate touching
nuclei. This approach has proven effective in 2D [20] and
has been attempted in 3D [21], [27]. In Vnet-3W, Vnet-3 is
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FIGURE 1. Visual summary of methods and the network architecture. (a) Two-step process to segment nuclei and identify centroid locations using a
combination of a two-class V-net and a regression network (first row), a three-class V-net followed by a distance transform and 3D watershed (second
row), or a two-class V-net followed by a distance transform and 3D watershed (third row). (b) Architecture of the regression network part of VRegNet.
Vnet (2): two-class V-net. Vnet (3): three-class V-net. Pnuclei: Probability of voxel being a nucleus. Sem-Seg: semantic segmentation. Dist. Tr.: distance
transform. BN: batch normalization. ReLu: rectified linear unit.

combined to 3D watershed in post-processing to increase
the separation between nuclei even more. To understand
if the three-class approach provides any improvement over
the more commonly used two-class approach (background
vs nucleus), Vnet-2W functions as a stand-in for the many
neural networks that have been proposed where nuclei are
first segmented from the background, then separated using
watershed [22], [25], [39]. A visual summary of VRegNet,
Vnet-3W and Vnet-2W can be seen in Fig.1a. Finally, nuclei
segmentation is also attempted using CellProfiler 4.0, a
commonly used open-source software for cell segmentation,
and a non-deep learning alternative that requires no upfront
training.

B. SEGMENTATION USING V-NET
V-net [26] is a fully convolutional network built for volumet-
ric image segmentation, and is used as the main segmentation
network in our first four approaches. It uses a Dice loss
layer to prevent class imbalance, an important factor since
the class ‘‘nucleus boundary’’ has the fewest voxels while
having an essential role in separating overlapping nuclei.
We found during training that V-net performed similarly or
slightly better at segmenting cardiac nuclei than other com-
mon 3D segmentation networks such as 3D U-net. We thus
decided to use V-net for all approaches to make comparisons
easier. We used aMATLAB (MathWorks, Natick, MA, USA)
implementation of V-net [40].

C. REGRESSION NETWORK
The regression network in VRegNet (Fig.1b) is a simple
encoder-decoder network, inspired by Xie et al [33] with
2D convolution layers extended to 3D, and with added

batch-normalization and dropout layers to regularize training
and prevent overfitting. The convolution layers have a size
of 5 x 5 x 5 voxels with a stride of 1 and zero-padding of
2 voxels around all edges. The transposed convolution layers
also have a size of 5 x 5 x 5 voxels with a stride of 2. The result
of each layer is cropped so that in each dimension the output
is double the input in size. Weights were initialized using the
Glorot initializer [41], and biases were initialized to zero.

The central task of the regression network is to deter-
mine the centroids’ position from the nuclei image. However,
contrary to examples from previous work where the regres-
sion network was applied directly to the DAPI image [33],
the input of our network is the output of the two-class V-net
before the final voxel classification layer (i.e., the proba-
bility of each voxel belonging to a nucleus). This first step
homogenizes the appearance of the nuclei and simplifies the
regression network’s task.

To train the regression network, a centroid probability map
is created by placing a small 3D Gaussian (e.g., standard
deviation: 3 voxels) at the location of each centroid in the
input volume to serve as the ground truth. During training,
the loss is calculated as the mean square error between the
ground-truth probability map and the predicted probability
map. In post-processing, the local maxima of the probability
map are identified as the centroid locations.

D. CELLPROFILER
Nuclei segmentation was performed in CellProfiler 4.0,
a widely used open-source software. ‘‘Optimal’’ settings
were found through trial-and-error and visual assessment
on each testing dataset. First, a morphological opening
operation was performed on the DAPI image with a disk
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structuring element. This homogenized the appearance of
each nucleus. Then Otsu thresholding was performed to
separate the background from the nuclei. A 3D watershed
transform was performed on the distance map of the binary
image, and each cell was then labeled with a unique identifier.
Centroid position for each of the labelled nuclei was then
calculated in MATLAB.

IV. EXPERIMENTAL METHODS
A. SAMPLE PREPARATION AND DATA ACQUISITION
Quail hearts at embryonic development day 9 were surgi-
cally removed, fixed overnight in 4% paraformaldehyde at
4◦C, then stained for 72h with DAPI (1mg/mL in 1% PBS).
Optical clearing was performed at room temperature using
LIMPID [42]. Three-dimensional image stacks of the poste-
rior left ventricle wall were acquired on an inverted confocal
microscope (SP8 with HyVolution 2, Leica Microsystems
Inc., Buffalo Grove, IL, USA) using a 20x/0.75 NA objec-
tive set for glycerol immersion. Voxel size was 177.6 ×
177.6 nm × ∼1.06 µm (x, y, z) and optical sectioning was
3.12µm.DAPI imageswere acquired using 405nm excitation
and 416-490 nm emission. The excitation light intensity was
progressively increased with depth to compensate for tissue
absorption.

Brain stem from adult mice (C57BL/6) were surgically
removed, fixed for two hours in 4% paraformaldehyde
at room temperature, then vibratome sliced, stained with
DAPI (10 ng/mL in 1% PBST), and cleared using LIMPID.
Three-dimensional image stacks were acquired on the same
microscope and objective as the quail heart sample, with a
voxel size of 0.75 x 0.75 x 0.8 µm (x, y, z).

All procedures were performed in accordance with rel-
evant guidelines and regulations under the approval of the
Case Western Reserve University Institutional Animal Care
and Use Committee (IACUC). IACUC approval was not
required for the quail embryos as the Policy for use of
Avian embryos at Case Western Reserve University states ‘‘if
embryos will be sacrificed prior to 3 days before hatching,
the research will not be subject to IACUC review.’’

B. GROUND TRUTH CREATION
The training dataset (400× 200× 129 voxels, approximately
200 nuclei) and validation dataset (200 × 200 × 129 voxels,
∼100 nuclei) were chosen from one embryonic quail heart
and each nucleus was manually segmented and assigned a
unique label in ITK-SNAP [43]. Three ground truth datasets
were created: 1) a two-label (background/nuclei) volume, 2) a
three-label (background/boundary/nuclei) volume where a
three-voxel wide boundary surrounded each nucleus, and 3) a
nuclei probabilitymapwith 3DGaussians (standard deviation
0.5 µm) located at each nuclei centroid.

Testing datasets were created from the same embryonic
quail heart (heart #1, 700 × 700 × 150 voxels), a second
quail heart of the same developmental stage but imaged in
a separate session (heart #2, 390 × 390 × 150 voxels), and a
mouse brain stem sample (brain #1, 390× 390× 265 voxels).

TABLE 1. Training parameters.

Small training and validation sets from brain #1 (200 × 390
× 36 voxels each) were also manually segmented and anno-
tated for fine-tuning of the brain stem data. Nuclei centroids
were manually identified by one user using ITK-SNAP in
all datasets and were considered as the ground truth. Two
more users also annotated all centroids in heart #1 to estimate
inter-user variability. It was determined that different users
positioned centroids on average 0.54 ± 0.36 µm away from
other users, with no significant bias in any directions.

C. DATA AUGMENTATION AND PATCH SELECTION
Small volume-patches were extracted randomly from the
larger training volume every iteration. In order to expand
the size of the training dataset and prevent overfitting, data
augmentation was performed on-the-fly on each patch during
training. One of following four operations was randomly
assigned: reflection with respect to the x or y axis, volume
rotation by 90◦ (counterclockwise) around the z-axis, or a
combination of reflection followed by 90◦ rotation. One of
these four operations was applied 50% of the time, and no
augmentation was applied the other 50% of the time.

D. DEEP LEARNING EXPERIMENTS
All experiments were implemented in MATLAB 2020a.
The computer had 256 GB of memory, a 24 core CPU at
2.2 GHz, and an 11 GBGeForce RTX 2080Ti GPU (NVIDIA
Corporation, Santa Clara, CA, USA).

Three networks in total were trained on the same train-
ing and validation dataset: 1) the regression network part
of VRegNet, 2) the two-class V-net part of VRegNet and
Vnet-2W, and 3) the three-class V-net part of Vnet-3 and
Vnet-3W. The training parameter space was explored and the
best parameters for each network were chosen based on the
segmentation accuracy and centroid placement achieved on
the validation set. The best network parameters found are
listed in Table 1. The Adam optimizer [44] was used with
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default parameters. Training was stopped if the validation
loss did not decrease for more than two epochs, or increased
for more than one epoch. Since a random image patch was
extracted from the training volume every iteration, the total
iteration number is equal to the number of unique image
volumes seen by the network during training.

The regression network can be difficult to train when most
voxels in the ground-truth probability map are equal to zero,
with few centroids corresponding to local peaks equal to 1 in
intensity (see Fig.1a, VRegNet/centroids panel). To facilitate
network convergence and avoid predicting every voxel to the
background value of zero, the ground-truth probability map
was multiplied by a factor of 10,000 during training, which
forces the network to fit the Gaussians [33].

E. DATA POST-PROCESSING
In VRegNet, the nuclei were identified in the original DAPI
volume using a two-class V-net one patch at a time. Thewhole
output volume of the V-net wasmedian filtered (filter size: 3 x
3 x 3 voxels) to smooth the transition between neighboring
patches while preserving the nuclei feature, then passed onto
the regression network. Once the output of the regression
network was obtained, the local maxima in the centroid
probability map were detected. First, an intensity threshold
was applied to the probability map to set background values
to zero. The volume was then filtered using a 3D gaussian
kernel (standard deviation: 4 x 4 x 2 voxels), taking care to
smooth each of the peaks without merging them with their
neighbors. Local maxima within a 2 µm radius region were
then identified as centroids and their locations recorded.

In Vnet-3W and Vnet-2W, the nuclei in the original DAPI
volume were identified using the two-class or three-class
V-net network. The voxels identified with a probability >
0.5 of belonging to a nucleus were separated from the back-
ground. The segmented volumes were smoothed using a 3D
gaussian filter (standard deviation: 5 x 5 x 5 voxels) and
resampled so that voxels were isometric (tricubic interpola-
tion). A distance map was then calculated on each binary
volume, and a 3D watershed transform was applied to label
all nuclei. The centroid position was then calculated for each
labeled nucleus.

Each of the five approaches, but especially VRegNet, did
not perform optimally when nuclei were intercepted by the
edges of the volume, since it is difficult to identify the cen-
troid of an incomplete object. To solve this issue, a 30 x
30 x 5 voxel border was removed from each volume in post-
processing, and nuclei in this region were not considered
during analysis.

F. SUCCESS METRICS FOR CENTROID DETECTION
Predicted centroid locations were compared to the
ground-truth to quantify the accuracy of each approach. Car-
diac nuclei were approximately 2-4µm in radius, while brain
stem nuclei were approximately 3-6 µm in radius depending
on the cell type and cell orientation. A centroid predicted
by one of the five approaches was thus considered as a

true positive (TP) if its position was within 3 µm of the
ground-truth centroid. Ground-truth centroids with no cor-
responding predicted centroid were considered false negative
(FN). Predicted centroids that were positioned further than 3
µm from any ground-truth centroids were considered false
positive (FP). Additionally, if two or more centroids were
predicted within the 3µm boundary of the same ground-truth
centroid, the closest would be considered as TP, and the others
as FP.

The precision (P), recall (R), and F1-score were calculated
as follow:

P =
TP

TP+ FP
(1)

R =
TP

TP+ FN
(2)

F1 =
2PR
P+ R

(3)

When a centroid was determined to be a TP, the distance
between the predicted and ground-truth centroid was calcu-
lated. The predicted cell count was obtained by adding the
number of TP centroids to the FP number. The cell count
error was calculated as the true cell count subtracted from
the predicted cell count, divided by the true cell count.

V. RESULTS AND ANALYSIS
A. COMPARISON OF CENTROID-FINDING NETWORKS IN
CARDIAC TISSUE
The performance of the five different approaches was first
evaluated in the intact, optically cleared, DAPI stained quail
embryonic heart (heart #1). The testing volume was from the
same heart as the volume used for training, and both were
collected in the posterior left ventricular wall. A representa-
tive 2D slice and a 3D rendering of the test volume can be
seen in Fig.2a, b. The test volume was acquired starting at
approximately 5µm in depth from the epicardium, to approx-
imately 164 µm in depth. The location of the TP, FP and
FN centroids predicted by VRegNet, Vnet-3W, Vnet-2W are
marked for the same 2D slice and 3D volume in Fig.2c-h
(see also supplementary videos 1-3). The 2D slice shown
(Fig.2a, c, e, g) was acquired at 115 µm in depth. It can
be seen that while VRegNet tends to miss a few nuclei (FN,
magenta, Fig. 2c), Vnet-3Wmore often double-counts nuclei
(FP, yellow, Fig. 2e) and Vnet-2W both misses some nuclei
(FN, Fig. 2g) and falsely labels background voxels as
centroids (FP, Fig. 2g).

The quantitative analysis of each approach’s performance
can be seen in Table 2 for heart #1. VRegNet had the highest
F1-score and the most accurate cell count. However, Vnet-
3W had the smallest distance between ground-truth and pre-
dicted centroids. Vnet-2W had a low F1-score compared to
VRegNet and Vnet-3W. Both Vnet-3W and Vnet-2W over-
counted the centroids, often by assigning more than one cen-
troid per nucleus. On the other hand, Vnet-3 (no watershed)
and the CellProfiler approaches were both very likely to
merge nuclei and thus undercount them.
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FIGURE 2. Nuclei centroid identification in a quail heart at embryonic day 9. (a) 2D slice from the original DAPI volume. (b) 3D rendering. (c-d) 2D and 3D
display of true positive (TP), false negative (FN) and false positive (FP) centroids obtained with VRegNet, (e-f) Vnet-3W, (g-h) Vnet-2W.

TABLE 2. Success Metrics: Heart #1.

The performance of all five approaches was also evaluated
on a second embryonic heart (heart #2), which was imaged
on the same microscope with similar image settings, but on
a different day as heart #1. This second sample tested how
well the different neural networks performed on a new sample
on which they had not been trained. The success metrics for
heart #2 can be seen in Table 3. The F-1 score for VRegNet
has decreased slightly, while it has increased slightly for
Vnet-3W. The cell count is also closer to the ground truth in
Vnet-3W than in VRegNet. The precision of Vnet-2W has
increased; however, the network is now undercounting the
nuclei.

The results from Table 3 were obtained without fine-tuning
or transfer learning to adapt to the new dataset. This indicates
generalization and robustness of both VRegNet and Vnet-
3W. Optimally, one could analyze multiple samples of the

same cohort for a larger study without requiring any addi-
tional training from one sample to another. Fine-tuning of the
regression and V-net networks was attempted using a small
200 x 390 x 32 voxels training sub-volume from heart #2, but
this did not lead to any noticeable improvement amongst the
centroid detection metrics. We thus report the result without
fine-tuning.

B. COMPARISON OF CENTROID-FINDING NETWORKS IN
BRAIN STEM TISSUE
Ideally, networks trained for centroid detection in one tis-
sue type would be robust and easily adaptable to different
samples and tissue types without the need for significant re-
training, which would require a large time commitment for
manual ground-truth labeling. We thus tested each of the
five approaches on a different tissue type: the adult mouse
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TABLE 3. Success Metrics: Heart #2.

FIGURE 3. Nuclei centroid identification in an adult mouse brain stem. (a) 2D slice from original DAPI volume. (b) 3D rendering. (c-d) 2D and 3D display
of true positive (TP), false negative (FN) and false positive (FP) centroids obtained with VRegNet, (e-f) Vnet-3W, (g-h) Vnet-2W. White arrow: example
neuron nucleus which is larger and low in intensity compared to other nuclei.

brain stem. The brain stem sample was optically cleared
and DAPI stained similarly to the quail embryonic hearts;
however, it was imaged with a different voxel size, on a
different day, and by a different user who manually adjusted
parameters such as excitation intensity. The brain stem cell
nuclei are also more spherical and homogeneous in appear-
ance. Additionally, the sample includes neuron nuclei, which
are significantly larger with lower fluorescent intensity than
the surrounding cells (see Fig. 3a, arrow). Many nuclei are
also clumped, which can make them difficult to segment
with traditional techniques. A 2D slice of the brain stem
data and a 3D rendering of the test volume can be seen
in Fig 3a, b.

As mentioned in section IV. B, small training and valida-
tion sets from the brain stem data were used for fine-tuning
the regression and V-net networks. Without this fine-tuning,
the F1-scores for VRegNet, Vnet-3W and Vnet-2W were
65.57%, 87.97% and 80.35% respectively. The test vol-
ume was kept separate from the training and validation
sub-volumes used for fine-tuning. To facilitate transfer learn-
ing, each patch from the brain stem data was resized during
training in the x-y dimensions to three times its original
size, to better match the apparent size of the cardiac nuclei.
For the regression network, a learning rate of 5e-5, with a
learning rate drop factor of 0.8 and a period of 5 epochs was
chosen. It trained for 45 epochs. For the three-class V-net
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TABLE 4. Success Metrics: Brain #1.

and two-class V-net, the learning rate for fine-tuning was
5e-5, with a drop factor of 0.8 and a period of 5 epochs. They
trained for 10 epochs after which no further improvement
in accuracy could be seen. The location of the TP, FP and
FN centroids predicted by VRegNet, Vnet-3W and Vnet-2W
after all networks were fine-tuned are marked for a 2D slice
and 3D volume in Fig.3c-h.

VRegNet performed well with few FP and FN seen in
Fig. 3c-d. Vnet-3W also performed well, but had particular
difficulties identifying neuron nuclei (Fig. 3e, white arrow).
Vnet-2W merged many close nuclei, which lead to many
two FNs (magenta) surrounding one FP (yellow), as seen in
Fig. 3g-h.

The quantitative evaluation of the different approaches in
the brain stem volume can be seen in Table 4. For each
approach, the F1-scores and cell count errors are similar
to the ones obtained in heart #1, with VRegNet and Vnet-
3W performing best. The distance between predicted and
ground-truth centroids were also similar between approaches.
Surprisingly, CellProfiler performed better on this sample
than on both cardiac samples, possibly because the spherical
shape of the nuclei was similar to the type of samples for
which CellProfiler is optimized. However, it still undercounts
nuclei by 20% and has the worst centroid distance of all
methods.

Overall, both VRegNet and Vnet-3W consistently had high
F1-scores, low centroid distance and accurate cell counts on
all embryonic quail heart and adult mouse brain stem datasets,
followed by much lower scores using Vnet-2W. These results
were achieved with no fine tuning after the original network
training in the heart data, or minimal fine tuning on a small
volume when adapting the networks to a different tissue
type. By being robust and flexible, both VRegNet and Vnet-
3W have strong potential for routine image analysis in a
biological research setting.

C. PROCESSING TIMES
Times required to detect nuclei in heart #1 (700 x 700 x
150 voxels, 993 nuclei) were compared for all methods. The
results can be seen in Table 5, and are broken down in
three sub-categories. Nuclei segmentation was accomplished
using the two-class V-net (VRegNet and Vnet-2W) or the

TABLE 5. Processing times.

three-class V-net (Vnet-3W and Vnet-3). Instance detec-
tion was performed using the regression neural network in
VRegNet to detect centroids, and the watershed transform in
Vnet-3W andVnet-2W to label individual nucleus. In Vnet-3,
connected components were used to label individual nucleus.
CellProfiler performed both nuclei segmentation and the
watershed transform in one process. Finally, centroid detec-
tion was performed either by identifying local maxima for
VRegNet, or calculating the centroid of each labeled nuclei
for all other methods. All times shown are the mean of five
trials.

As seen in Table 5, VRegNet is significantly faster than
other methods by directly detecting the centroids of nuclei
instead of relying on the watershed transform. It can accu-
rately detect nearly a thousand nuclei in under a minute.
However, VRegNet was mostly performed on a GPU, which
accelerated the process compared to Vnet-3W, Vnet-2W and
CellProfiler, which executed the watershed transform on a
CPU.

D. SPATIAL STATISTICS OF 3D NUCLEI DISTRIBUTION
In this manuscript, we present different approaches that
would replace manual cell identification and permit spatial
statistical analysis in organs such as the developing heart and
the brain stem. For those automated approaches to be most
useful, they would need to replicate as closely as possible
the spatial distribution of manually identified cells. We thus
compared all five approaches to the manually segmented
ground truth using three common spatial statistical func-
tions: the F-function, the G-function and the H-function [45].
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FIGURE 4. Spatial statistics analysis of nuclei centroid detection approaches. Graphical representation of the centroids (blue), with random locations
(x) selected, and the distribution of distances (yellow) represented for the (a) F-function, (b), G-function, and (c) H-function. (d) F-function, (e),
G-function, and (f) H-function calculated for each centroid-detection approach in the embryonic quail heart (heart #1), and in a mouse brain stem
(brain #1) (g-i). MAE: mean absolute error, calculated between each approach and the ground truth curve.

Each functionwas calculated in 3D using the Spatial Statistics
2D/3D plugin in ImageJ [9], [46], [47].

The F-function describes the cumulative probability for a
randomly chosen location anywhere in the test volume to be
within a certain distance of the nearest centroid as represented
in Fig.4a. The G-function describes the cumulative probabil-
ity of the average centroid to be within a certain distance
of its nearest centroid neighbor as seen in Fig.4b. Finally,
the H-function, which describes the cumulative probability of
a centroid to be at a certain distance from any other centroids
in the volume as can be seen in Fig.4c.

The F, G and H-functions for the ground-truth and all five
approaches for the embryonic cardiac nuclei (heart #1) can
be seen in Fig.4d-f, including the mean absolute error (MAE)
between each approach and the ground truth. For each spatial
statistics function, VRegNet most resembles the probability
distribution of the ground-truth followed by Vnet-3W. In the
F-function, curves are shifted to the right when a method
undercounts cells, since it leads to more empty space in the
image volume, and thus a larger distance on average between
a random location and the nearest centroid in the volume.

A decrease in the curve’s slope would also indicate that
regions without centroids have appeared in the volume more
often than in the ground-truth because of errors in centroid
identifications. In the G-function, curves are also shifted to
the right when undercounting, since the average distance
between nearest centroids is increased. A shift to the right
could also indicate that centroids are more regularly spaced
from each other, while a shift to the left could indicate clus-
ters. In the H-function, both under- and overcounting leads
to a shift to the right, since they are both more likely to
increase the average distance between one centroid and all
other centroids, than to decrease it.

The F, G and H-functions for the mouse brain stem data
can be seen in Fig.4g-i, respectively. It can be seen from
Fig. 3g, h that Vnet-2W tends to merge clustered nuclei,
which affected the G-function by shifting it to the right
without affecting the F-function. Vnet-3W also tends to
merge clustered nuclei, but this effect is balanced by over-
splitting larger neuron nuclei (Fig. 3e, white arrow), which
creates incorrect centroid clusters. This may explain why
Vnet-3W seems to perform well in the F and G-functions
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but fails to replicate the ground-truth distribution in the
H-function.

When comparing the G-functions of the ground truth,
we observed that 50% of nuclei were within 8.48 µm of their
nearest neighbor in the heart, while 50% of nuclei were within
10.34µmof their nearest neighbor in the brain. This indicates
that the cells in the embryonic quail heart might be more
tightly packed than in the mouse brain stem. Those distances
are 8.83 µm and 10.74 µm, respectively, when measured
using the VRegNet G-functions, indicating that the difference
between tissues is preserved.

In the cardiac embryonic dataset (heart #1), VRegNet
most closely resembles the spatial pattern of the manually
labeled ground truth in large part because it obtained the
most accurate cell count, but also because it did so while
maintaining the distribution of distances between centroids
and their neighbors. VRegNet also performs well across all
three functions in brain #1, even though it did not achieve the
most accurate cell count. This demonstrates that the position
of nuclei with respect to their neighbors, not just the total
nuclei count, plays an important role when describing spatial
distributions.

VI. CONCLUSION
In this manuscript, we present VRegNet, a new combination
of nuclei-segmentation and centroid-regression networks to
improve detection of nuclei in large 3D fluorescence datasets.
This new approach was able to detect centroids with high
accuracy in both intact quail embryonic hearts and the mouse
brain stem, even though the tissue types included clustered
nuclei of different shapes, sizes and fluorescent intensity.
VRegNet was robust and maintained similar accuracy when
tested on a heart sample that was not included in the training
dataset, and it easily adapted to the brain stem images with
minimal fine-tuning. VRegNet also maintained the spatial
distribution of the nuclei found in the manually segmented
ground-truth data, and thus could be used in further studies
of spatial cell patterns.

This is an additional demonstration that regression-based
approaches provide high accuracy nuclei detection, including
in 3D datasets. Nuclei centroids in 3D tissue images cannot
be accurately positioned by a 2D centroid detection algorithm
working on one image slice at a time. It is thus important
that algorithms that have proven effective in 2D [30]–[34] are
fully adapted to 3D image processing.

A V-net approach with three different classes (nucleus,
nucleus boundary and background) followed by a 3D water-
shed transform was also highly effective at separating nuclei
and obtained a higher accuracy when calculating the nuclei
position in 3D. If desired for analysis, the three-class
V-net would also provide more information about each
nucleus (e.g., size, shape and orientation especially for the
ellipsoid-shaped cardiac nuclei). However, we estimated it
took approximately 5 times longer for an expert user to man-
ually segment nuclei for three-class V-net training compared
to manually indicating centroid position for the same dataset.

It also took nearly 18 times longer to identify centroids in
testing data (heart #1) with Vnet-3W than with VRegNet
(see Table 5). A regression approach would thus be less
time-consuming at the initial training stage, when adapting
the networks from one tissue type to another, and when
detecting nuclei with a trained network.

VRegNet successfully detected nuclei in two hearts imaged
on different days and with slightly different imaging param-
eters (such as excitation laser power which was manually
adjusted every imaging session). However, the network might
need fine-tuning if samples were acquired on multiple micro-
scopes, with different staining and clearing protocol, or with
different objectives. Nonetheless, as shown in the brain stem
sample that was acquired with different imaging parameters
and voxel size, the architecture of VRegNet is robust and
high-quality results can be obtained after network fine-tuning
to new samples.

As indicated in Höfener et al., it is likely that centroid
detection would be improved by increasing the size of the
training datasets [35]. Additionally, different post-processing
steps to identify the local maxima of the centroid probability
map could also improve our results without changing the
regression network itself. We will explore those possibilities
in future studies.

In conclusion, we present VRegNet, a novel combination
of the segmentation architecture V-net, and our own 3D fully
convolutional regression network as a robust and accurate
method to locate nuclei centroids. Our method performed
similarly or better to segmentation-based methods combined
to 3D watershed, a common post-processing step. Addi-
tionally, VRegNet most closely resembled the spatial cen-
troid distribution obtained from manual nuclei identification
making it appropriate for future studies of tissue organization.
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