
Received April 1, 2021, accepted April 12, 2021, date of publication April 19, 2021, date of current version April 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073955

Efficient Inter-Device Task Scheduling Schemes
for Multi-Device Co-Processing of Data-Parallel
Kernels on Heterogeneous Systems
LANJUN WAN 1,2, WEIHUA ZHENG3, AND XINPAN YUAN1
1School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
3College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China

Corresponding author: Lanjun Wan (wanlanjun@hut.edu.cn)

This work was supported in part by the National Natural Science Foundation for Young Scientists of China under Grant 61702177, in part
by the Natural Science Foundation of Hunan Province, China, under Grant 2019JJ60048, in part by the National Natural Science
Foundation of China under Grant 61672224, in part by the National Key Research and Development Project under
Grant 2018YFB1700204 and Grant 2018YFB1003401, and in part by the Key Research and Development
Project of Hunan Province under Grant 2019GK2133.

ABSTRACT Heterogeneous systems consisting of multiple multi-core CPUs and many-core accelerators
have recently come into wide use, and more and more parallel applications are developed in such a
heterogeneous system. To fully utilize multiple compute devices to cooperatively and concurrently execute
data-parallel kernels on heterogeneous systems, a feedback-based dynamic and elastic task scheduling
scheme is proposed, which can provide a better load balance, a greater device utilization, and a lower
scheduling overhead by flexibly and dynamically adjusting the workload between devices during execution.
The proposed method is more suitable for data-parallel kernels whose computation and data are uniformly
distributed, but is less suitable for data-parallel kernels whose computation and data are non-uniformly
distributed. Thus, an asynchronous-based dynamic and elastic task scheduling scheme is proposed, which
can avoid device underutilization, load imbalance across devices, and frequent kernel launches, inter-device
data transfers and inter-device synchronizations by dynamically adjusting the chunk size according to the
performance change during runtime. A series of experiments are conducted with 8 representative parallel
applications on a hybrid CPU-GPU-MIC system, the results show that the proposed two inter-device task
scheduling schemes can achieve the efficient CPU-GPU-MIC co-processing of different parallel applications
by effectively partitioning work across devices.

INDEX TERMS Data-parallel kernels, heterogeneous systems, many-core accelerators, multi-core CPUs,
multi-device co-processing, parallel applications, task scheduling.

I. INTRODUCTION
Heterogeneous CPU-accelerator systems have recently been
widely used in high-performance computing and cloud com-
puting due to their advantages of high performance and
low power consumption. Many works have focused on uti-
lizing both CPUs and accelerators to accelerate solving
a specific application, such as matrix multiplication [1],
sparse matrix-vector multiplication [2], QR factorization [3],
Cholesky factorization [4], branch-and-bound algorithm [5],
Smith-Waterman algorithm [6], subset-sum problem [7], par-
ticle swarm optimization [8], graph processing [9], range

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

query [10], computational fluid dynamics [11], and atmo-
spheric numerical simulation [12]. These works demonstrate
that the CPU-accelerator co-processing yields better perfor-
mance than the CPU-only execution or accelerator-only exe-
cution. However, the full utilization of all compute devices
requires researchers to carefully consider the distribution
of workload between devices. Therefore, it is necessary to
provide a general task scheduling mechanism which sup-
ports the efficient multi-device co-processing of most parallel
applications.

Recently, many studies have focused on inter-device
task scheduling mechanisms for heterogeneous systems,
mainly including static scheduling [13]–[17] and dynamic
scheduling [18]–[37]. Static scheduling aims to statically

59968 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7236-3589
https://orcid.org/0000-0003-1118-7109

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

determine the optimal distribution of workload between
devices before execution. For example, Luk et al. [13] built
an analytical model based on offline training to find a
near-optimal task partition between CPU and GPU. Grewe
and O’Boyle [14] proposed a static task partition method
based on predictive model and code features to efficiently
partition work between CPU andGPU for OpenCL programs.
Zhong et al. [15] proposed a data partitioning method based
on functional performance model, which can effectively bal-
ance the workload of data-parallel applications on heteroge-
neous CPU-GPU systems. Static scheduling can well balance
the workload between devices and avoid runtime scheduling
overhead. However, finding the optimal workload assignment
is difficult as it relies on time-consuming offline training or
code analysis, and any change in the application, problem size
or system configuration may require a new training run.

Dynamic scheduling aims to effectively partition work
across devices during execution, which has attracted more
and more attentions recently. Many researches have con-
centrated on dynamic scheduling strategies designed for
task-parallel applications, such as work-stealing schedul-
ing [18], speedup-based scheduling [19], locality-aware
scheduling [20], feature-aware scheduling [21], load-aware
scheduling [22], energy-aware scheduling [23]. Recently
some dynamic scheduling strategies designed for data-
parallel applications have also been proposed. For exam-
ple, Belviranli et al. [26] proposed a two-phase dynamic
self-scheduling strategy for loop iterations on heteroge-
neous platforms. Wang et al. [27] proposed a asymptotic
profiling-based dynamic co-scheduling method to assign the
workload to CPU and GPU. Kaleem et al. [28] proposed
two online profiling-based dynamic scheduling schemes to
split the work between CPU and GPU. Scogland et al. [29],
[30] developed a set of adaptive chunk-based scheduling
policies for data-parallel loops to split work across het-
erogeneous devices. Navarro et al. [31] proposed a novel
adaptive partitioning strategy named LogFit for parallel
for-loops in irregular applications, which can dynamically
find a near-optimal chunk size for the GPU and CPU to
maximize utilization of the GPU and avoid load imbalance.
Clarke et al. [32] developed new dynamic load balanc-
ing algorithms based on the partial functional performance
models of heterogeneous processors, which are suitable for
data-intensive parallel iterative routines and different het-
erogeneous platforms without any restriction on the prob-
lem size. Lastovetsky et al. [33] proposed a performance
optimization method of scientific applications on parallel
platforms, which can find the optimal partition of compu-
tations between processors through the functional perfor-
mance model of the data-parallel application. To support
CPU-accelerator co-execution of OpenCL applications, sev-
eral novel dynamic scheduling approaches [34]–[37] have
been designed for data-parallel OpenCL kernels on hetero-
geneous CPU-accelerator systems.

Compared with static scheduling, dynamic scheduling has
stronger adaptability and does not require time-consuming

offline training, but it could easily lead to load imbal-
ance, device underutilization, and frequent kernel launches,
inter-device data transfers and inter-device synchronizations.
In this paper, we propose two inter-device task scheduling
schemes to support the efficient multi-device co-processing
of data-parallel kernels on heterogeneous CPU-accelerator
systems, they can be expected to keep load balance across
devices, give a greater device utilization, and avoid frequent
kernel launches, inter-device data transfers and inter-device
synchronizations by making dynamic and elastic workload
distribution between devices during execution.

This paper makes the following main contributions:

• A feedback-based dynamic and elastic task schedul-
ing scheme is proposed to effectively split and balance
the workload between heterogeneous devices, which is
more suitable for data-parallel kernels whose computa-
tion and data are uniformly distributed.

• An asynchronous-based dynamic and elastic task
scheduling scheme is designed to effectively partition
work across an arbitrary set of devices, which is more
suitable for data-parallel kernels whose computation and
data are non-uniformly distributed.

• Experiments are conducted to verify the effectiveness of
the proposed task scheduling schemes, and the results
show that they can efficiently support the multi-device
co-processing of data-parallel kernels on heterogeneous
CPU-accelerator systems.

The rest of this paper is organized as follows. Section II
gives an overview of the heterogeneous system architec-
ture. Section III describes the inter-device task schedul-
ing schemes. Section IV analyzes the experimental results.
Section V concludes this paper.

II. OVERVIEW OF THE HETEROGENEOUS SYSTEM
ARCHITECTURE
This section gives a brief overview of the hardware architec-
ture of a commonly used heterogeneous system. As shown
in Fig. 1, the heterogeneous system consists of p comput-
ing devices interconnected via the PCI-E bus, including one
host device (i.e., multi-core CPUs) and p − 1 accelerators
(such as GPU or MIC). For each accelerator that partici-
pates in multi-device co-processing, we may need to transfer
the required data from host memory to accelerator memory
before performing the computational task assigned to the

FIGURE 1. An overview of the heterogeneous system architecture.

VOLUME 9, 2021 59969

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

accelerator, and we may need to transfer the results back to
host memory after the accelerator has finished its work.

In this paper, the multi-device co-processing aims to fully
exploit multiple compute devices of a heterogeneous sys-
tem to cooperatively and concurrently execute a data-parallel
kernel. However, different compute devices have different
processing capability, memory capacity, and communication
capability, which brings a great challenge to multi-device
co-processing. The key issue of multi-device co-processing
is how to effectively partition work across compute
devices.

III. INTER-DEVICE TASK SCHEDULING
In this paper, a task refers to a collection of iterations within
a data-parallel kernel (i.e., data-parallel for-loop). The total
workload of a given task is the total number of iterations.
Inter-device task scheduling aims to find the best partition
of loop iterations across multiple devices. This section first
discusses the previous scheduling schemes and then presents
our proposed scheduling schemes.

A. PREVIOUS TASK SCHEDULING SCHEMES
This subsection discusses two simple and practical task
scheduling schemes proposed by Scogland et al. [29], includ-
ing quick scheduling and split scheduling.

1) THE QUICK SCHEDULING SCHEME
The quick scheduling scheme breaks the whole execution of
a data-parallel kernel into the profiling phase and execution
phase. In the profiling phase, it assigns a small portion of
the total workload to each compute device according to the
initial partition ratios, after each device has finished its work,
it collects the execution time of each device to calculate the
new partition ratios. In the execution phase, it assigns the
remaining workload to each compute device according to the
partition ratios calculated in the profiling phase. Moreover,
if a data-parallel kernel needs to be executed many times,
from the second time, the total workload is split according
to the partition ratios calculated in the previous execution.

The chosen of profiling size is critical for quick scheduling.
If the profiling size is too small, the partition ratios calculated
in the profiling phase may not be suitable for the execution
phase, this is due to the compute devices may perform dif-
ferently in the two phases. In fact, the performance of one
compute device may change with the workload assigned to
it due to the effects of device utilization, data transfer, data
race, etc. It is risky to execute a large portion of the workload
once the inaccurate partition ratios are used in the execution
phase. If the profiling size is too large, this could easily result
in load imbalance in the profiling phase, this is because the
initial partition ratios are usually not accurate enough.

By running four different benchmarks with large problem
size on two Intel Xeon E5-2640v2 CPUs and an NVIDIA
Tesla K40c GPU (details of the benchmarks and hardware
configurations are given in Section IV-A), the performance of
CPU-GPU co-processing using quick scheduling for different
profiling sizes are presented in Fig. 2, whereW represents the

FIGURE 2. Performance of CPU-GPU co-processing using quick
scheduling for different profiling sizes.

total workload of a data-parallel kernel. As shown in Fig. 2,
the profiling size has much effect on the performance of
quick scheduling, and the appropriate profiling size varies
with different benchmarks.

2) THE SPLIT SCHEDULING SCHEME
The split scheduling scheme first splits the whole iteration
space of a data-parallel for-loop into n equal-sized chunks
and then uses multiple devices to cooperatively execute each
chunk of iterations. Namely, it splits the total workload W
into n equal parts and completes them in n steps. Specifically,
in the first step, it assigns the workload of the first chunk to
each compute device according to the initial partition ratios.
After each device has completed its work, it collects the
execution time of each device to calculate the new partition
ratios. Begin from the second step, it assigns the workload of
the i-th chunk to each device according to the partition ratios
calculated in the previous step, where 2 ≤ i ≤ n.
Although split scheduling can dynamically adjust the par-

tition ratios to balance the workload across devices, it is
sensitive to the chunk size (i.e.,W/n). If the chunk size is too
large, this could easily result in load imbalance because one
device may have to wait for the other devices to finish exe-
cution. If the chunk size is too small, this will cause frequent
kernel launches, inter-device data transfers and inter-device
synchronizations. The computing power of an accelerator
may also be underutilized due to the workload assigned to
it is too small. Fig. 3 shows the performance of CPU-GPU
co-processing using split scheduling for different chunk sizes.
The results demonstrate that the performance of split schedul-
ing is greatly affected by the chunk size, and the appropriate
chunk size varies with different benchmarks.

B. THE FEEDBACK-BASED DYNAMIC AND ELASTIC TASK
SCHEDULING SCHEME
Although quick scheduling and split scheduling can intel-
ligently and adaptively partition work across devices dur-
ing runtime, the performance of quick scheduling and split
scheduling are sensitive to the profiling size and chunk size
respectively. In this paper, we propose a novel inter-device
task scheduling scheme, Feedback-based Dynamic and Elas-
tic Task Scheduling (FDETS), which is designed to main-
tain load balance across devices and provide greater device

59970 VOLUME 9, 2021

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

FIGURE 3. Performance of CPU-GPU co-processing using split scheduling
for different chunk sizes.

utilization and lower scheduling overhead by making flexible
and dynamic workload adjustments during execution.

Unlike split scheduling, FDETS dynamically splits the
entire iteration space of a data-parallel for-loop into several
unequal-sized chunks. It takes 1/n of the total number of iter-
ations (i.e.,W/n) as the initial chunk size, and the chunk size
is continuously adjusted based on the observed performance
during execution. To facilitate our discussion, some notations
used in our proposed inter-device task scheduling schemes
are listed in Table 1.

FDETS is described in Algorithm 1, which consists of the
following steps.

Step 1: FDETS uses p devices to cooperatively execute
the first chunk whose size is W/n. Specifically, FDETS first
assigns a part of the workload of the first chunk Wcurr.i to
device Di according to the initial partition ratio Ri, where
Wcurr.i = Wcurr × Ri, Wcurr = W/n, and 1≤i≤p. The ini-
tial ratios can be set statically by programmers, or they
can be calculated automatically according to the theoretical
peak performance of these devices. Second, FDETS exe-
cutes the device-specific computational kernel on device Di
to complete the workload Wcurr.i. If Di is an accelerator,
the required data need to be uploaded to Di before exe-
cution. Third, after device Di has completed its assigned
workload, FDETS collects the current execution time Tcurr.i
and calculates the current execution speed Vcurr.i ofDi, where
Vcurr.i = Wcurr.i/Tcurr.i. If Di is an accelerator, the processed
data need to be downloaded from Di, and the data transfer
time is included in the current execution time of Di. Fourth,
after all devices have finished their respective work, FDETS
calculates the relative execution speed RVi of Di, where RVi
= Vcurr.i/

∑p
j=1 Vcurr.j. Here, the relative execution speeds are

used as the new partition ratios, thus the partition ratios can
be updated as follows: Ri = RVi. Fifth, FDETS calculates
the current cooperative execution speed Vcurr, where Vcurr =
Wcurr/Tcurr and Tcurr = max(Tcurr.1, · · · ,Tcurr.p). Finally,
FDETS updates the completed workload Wf and the remain-
ing workloadWr, whereWf =Wf+Wcurr andWr =W −Wf.

Step 2: If there is any remaining workload, FDETS uses
p devices to cooperatively execute the second chunk whose
size is 2 × W/n. Similar to Step 1, FDETS first assigns

Algorithm 1 The Feedback-Based Dynamic and Elastic Task
Scheduling Scheme
Require: p, W , the initial chunk size W/n, the initial parti-

tion ratios R1, R2, . . . , Rp, and the threshold α
1: Initialize Wf = 0, Wr = W , Wprev = 0, Wcurr = 0, Wnext
= W/n, Vcurr = 0, and j = 1;

2: while Wr > 0 do
3: Wprev_prev =Wprev; Wprev =Wcurr; Wcurr =Wnext;
4: for each compute device Di, 1≤i≤p, in parallel do
5: Assign a part of the workload of the j-th chunk

Wcurr.i to Di according to the partition ratio Ri;
6: Execute the device-specific computational kernel on

Di to complete the workload Wcurr.i;
7: Collect the current execution time Tcurr.i of Di;
8: Calculate the current execution speed Vcurr.i of Di;
9: end for
10: Calculate the relative execution speed of each compute

device: RVi = Vcurr.i/
∑p

j=1 Vcurr.j (i = 1 to p);
11: Update the partition ratios that will be used to split the

next chunk: Ri = RVi (i = 1 to p);
12: Update the previous cooperative execution speed:

Vprev = Vcurr;
13: Calculate the current cooperative execution time:

Tcurr = max(Tcurr.1,Tcurr.2, · · · ,Tcurr.p);
14: Calculate the current cooperative execution speed:

Vcurr = Wcurr/Tcurr;
15: if This is the first chunk, i.e., j == 1 then
16: Wnext = 2×W/n;
17: else
18: if Vcurr > Vprev × (1+ α) then
19: if Wcurr ≥ Wprev then
20: Wnext = Wcurr × 2;
21: else ifWcurr < Wprev andWcurr≥Wprev_prev then
22: Wnext = Wcurr;
23: else Wnext = Wcurr/2; end if
24: end if
25: if |Vcurr − Vprev| ≤ Vprev × α then
26: if Wcurr == Wprev and Wcurr ≥ Wprev_prev then
27: Wnext = Wcurr × 2;
28: else Wnext = Wcurr; end if
29: end if
30: if Vcurr < Vprev × (1− α) then
31: if Wcurr < Wprev then
32: Wnext = Wcurr × 2;
33: else if Wcurr > Wprev and j==2 then
34: Wnext = Wprev/2;
35: else Wnext = Wcurr/2; end if
36: end if
37: end if
38: Update the completed workload: Wf = Wf +Wcurr;
39: Update the remaining workload: Wr = W −Wf;
40: if Wnext > Wr or Wr −Wnext ≤ Wcurr then
41: Wnext = Wr;
42: end if
43: j = j+ 1;
44: end while

VOLUME 9, 2021 59971

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

TABLE 1. Notations used in our inter-device task scheduling schemes.

the workload of the second chunk to each device according
to the partition ratios updated in the previous step. Second,
FDETS executes the device-specific computational kernel on
each device to complete its assigned workload. Third, after
each device has completed its work, FDETS calculates the
relative execution speed of each device and updates the parti-
tion ratios that will be used to split the next chunk. Fourth,
FDETS calculates the current cooperative execution speed
according to the collected information. Fifth, FDETS adjusts
the size of the chunk to be executed next; i.e., it determines
the workload that will need to be completed in the next step.
By comparing the previous cooperative execution speed Vprev
and the current one Vcurr and comparing the previous chunk
sizeWprev and the current oneWcurr, FDETSmakes a decision
about whether the next chunk size Wnext should be doubled,
unchanged or halved compared to the current one Wcurr. The
details of adjusting the chunk size are given in lines 18-36
of Algorithm 1. Finally, FDETS updates the completed and
remaining workload.

Step 3: FDETS repeats Step 2 until the remaining workload
has been completed.

As can be seen from Algorithm 1, FDETS continuously
adjusts the size of the next chunk according to the dynamic
changes of cooperative execution speed and workload, but
Wnext should not more thanWr. Moreover, considering that a
smaller chunk may result in device underutilization at the end
of the entire iteration space, FDETS calculates the difference

between Wr and Wnext in every step, if the difference is less
than or equal to Wcurr, then Wnext = Wr, otherwise Wnext
remains unchanged.

It can also be seen from Algorithm 1 that the setting
of threshold α may affect the performance of FDETS. The
default value of α is set to 0.1 in our experiments, and the
results show that the setting is reasonable but not neces-
sarily optimal for different benchmarks (see Section IV-E).
Programmers can manually tune the value of α, and it is
suggested to adjust α from 0 to 1 at an interval of 0.01, 0.02,
0.03, 0.04, or 0.05.

In addition, for some applications such as K-means clus-
tering, a data-parallel kernel may need to be executed repeat-
edly, meaning that there is a need for repeated execution of
the schedule. Generally, each run of the kernel consists of
the several steps described above. One difference, however,
is that starting with the second run of the kernel, the initial
partition ratios and the sizes of the first and second chunks are
determined in the previous execution of the kernel. Specif-
ically, FDETS finds a chunk executed at the fastest speed
from the previous execution of the kernel, the partition ratios
corresponding to that chunk are used as the initial partition
ratios, and the size of that chunk is used as the sizes of the
first and second chunks.

C. THE ASYNCHRONOUS-BASED DYNAMIC AND ELASTIC
TASK SCHEDULING SCHEME
Comparing to quick scheduling and split scheduling, our
proposed FDETS has many advantages, but it has the fol-
lowing drawbacks: (i) the synchronization overhead between
devices may be relatively large for data-parallel kernels that
need to be executed repeatedly many times; (ii) FDETS
is more suitable for data-parallel kernels whose computa-
tion and data are uniformly distributed, but is less suitable
for data-parallel kernels whose computation and data are
non-uniformly distributed, this is mainly because the parti-
tion ratios updated in the previous execution may not suit-
able for the current execution. To avoid the disadvantages
of FDETS, we propose another new inter-device task schedul-
ing scheme, Asynchronous-based Dynamic and Elastic Task
Scheduling (ADETS).

Similar to FDETS, ADETS also takes 1/n of the total
number of iterations of a data-parallel for-loop as the initial
chunk size, and continuously adjusts the chunk size according
to the performance change during runtime. Unlike FDETS,
ADETS assigns a chunk of iterations to one compute device
once it becomes idle. In other words, once the compute device
has finished its work, the next unassigned chunk is assigned
to it immediately. ADETS is described in Algorithm 2, which
consists of the following steps.

Step 1: ADETS firstly assigns a chunk whose size is W/n
to device Di and updates the remaining workload Wr, where
Wr = W − Wf, Wf = Wf + Wcurr.i, Wcurr.i = W/n, and
1 ≤ i ≤ p. Then, ADETS executes the device-specific
computational kernel on device Di to complete the
workload Wcurr.i. After device Di has finished its assigned

59972 VOLUME 9, 2021

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

workload, ADETS collects the execution time of Di to calcu-
late its execution speed Vcurr.i, where Vcurr.i = Wcurr.i/Tcurr.i.
Step 2: If there is remaining workload, similar to Step 1,

ADETS firstly assigns the next unassigned chunk whose size
is W/n to device Di immediately and updates the remaining
workload Wr, where 1 ≤ i ≤ p. Then, ADETS executes the
device-specific computational kernel on device Di to finish
the workloadWcurr.i. After Di has finished its assigned work-
load, ADETS collects the execution time ofDi to calculate its
execution speed. In order to avoid device underutilization and
reduce the overhead caused by frequent kernel launches and
inter-device data transfers, ADETS calculates the variance of
the previous and current execution speeds of Di, and adjusts
the size of the chunk that will be assigned to Di in the
next step according to the variance. Specifically, if Vcurr.i >
Vprev.i×(1+α), the chunk size will be doubled, i.e.,Wnext.i =

Wcurr.i×2, where 0 ≤ α < 1. If |Vcurr.i−Vprev.i| ≤ Vprev.i×α,
the chunk size will remain unchanged, i.e., Wnext.i = Wcurr.i.
If Vcurr.i < Vprev.i × (1 − α), the chunk size will be halved,
i.e., Wnext.i = Wcurr.i/2.
Step 3: Repeat Step 2 until all the remaining workload has

been completed. In every step, the size of the chunk assigned
to device Di is determined in the previous step, once device
Di has finished its assigned workload, ADETS continues to
adjust the size of the chunk that will be assigned to it in the
next step according to the change of its execution speed.

To avoid the load imbalance caused by assignment of large
chunks to slower compute devices at the end of the entire
iteration space, in every step, ADETS checks whether the
remaining workload Wr is less than or equal to

∑p
j=1Wcurr.j

before assigning work to each device. If Wr ≤
∑p

j=1Wcurr.j,
ADETS assigns the next unassigned chunk whose size is
Wr×RVi to deviceDi, where RVi = Vi/

∑p
j=1 Vj. If deviceDi

has completed its current work, thenVi is its current execution
speed Vcurr.i; otherwise, Vi is its previous execution speed
Vprev.i. IfWr >

∑p
j=1Wcurr.j, the sizes of the first and second

chunks assigned to device Di are W/n, and the size of each
subsequent chunk assigned to Di is adjusted according to the
variance between Vprev.i and Vcurr.i, but the size of each chunk
should not exceed Wr−

∑p
j=1Wcurr.j.

Moreover, if a data-parallel kernel needs to be executed
repeatedly, starting with the second run of the kernel, ADETS
finds a chunk executed at the fastest speed from the previous
execution of the kernel, and the size of that chunk is used as
both the initial chunk size and the size of the second chunk.

Finally, the performance of FDETS andADETS are related
to the initial chunk size, but our experiments verify that the
initial chunk size has little impact on performance as long as
it is not too small or too large (see Section IV-D). Generally,
we can take a small portion of the total workload W as the
initial chunk size, such as W /16, W /32, W /64, W /128, etc.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
Our experiments are carried out on a hybrid CPU-GPU-MIC
system, which consists of two Intel Xeon 8-core

Algorithm 2 The Asynchronous-Based Dynamic and Elastic
Task Scheduling Scheme
Require: p, W , the initial chunk size W/n, the threshold α
1: Initialize Wf = 0, Wr = W , Wnext.i = W/n, and Vcurr.i =

0 (i = 1 to p);
2: for each compute device Di, 1 ≤ i ≤ p, in parallel do
3: while Wr > 0 do
4: Wcurr.i = Wnext.i;
5: Assign a chunk whose size is Wcurr.i to device Di;
6: Update the completed workload: Wf =Wf+Wcurr.i;
7: Update the remaining workload: Wr = W −Wf;
8: Execute the device-specific computational kernel on

device Di to complete the workload Wcurr.i;
9: Collect the current execution time Tcurr.i of Di;
10: Update the previous execution speed of Di:

Vprev.i = Vcurr.i;
11: Calculate the current execution speed of Di:

Vcurr.i = Wcurr.i/Tcurr.i;
12: if Wr ≤

∑p
j=1Wcurr.j then

13: Calculate the relative execution speed of Di:
RVi = Vi/

∑p
j=1 Vj;

14: Wnext.i = Wr × RVi;
15: else
16: if This is the first step then
17: Wnext.i = W/n;
18: else
19: if Vcurr.i > Vprev.i × (1+ α) then
20: Wnext.i = Wcurr.i × 2;
21: end if
22: if |Vcurr.i − Vprev.i| ≤ Vprev.i × α then
23: Wnext.i = Wcurr.i;
24: end if
25: if Vcurr.i < Vprev.i × (1− α) then
26: Wnext.i = Wcurr.i/2;
27: end if
28: end if
29: if Wnext.i > Wr −

∑p
j=1Wcurr.j then

30: Wnext.i = Wr −
∑p

j=1Wcurr.j;
31: end if
32: end if
33: end while
34: end for

E5-2640v2 CPUs (16 cores at 2.0GHz), 64GB host memory,
an NVIDIA Tesla K40c GPU (2880 CUDA cores at 745MHz,
12GB GDDR5 memory), and an Intel Xeon Phi 7110P
Coprocessor (61 cores at 1.1GHz, 8GB memory).

Table 2 lists 8 representative benchmarks: GEMM,
N-body, BLKS, CG, and MC-PI are from NVIDIA CUDA
SDK [38]; K-means, LUD, and BFS are from Rodinia
benchmark suite [39]. Each benchmark contains one or
more data-parallel kernels, and they cover different ker-
nel executing characteristics. For example, GEMM has one
data-parallel kernel that needs to be executed one time and

VOLUME 9, 2021 59973

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

TABLE 2. Benchmarks used in our experiments.

whose computation and data are uniformly distributed, and
LUD has two data-parallel kernels that need to be exe-
cuted many times and whose computation and data are
non-uniformly distributed.

For each benchmark, we consider three different problem
sizes and only measure the execution time of data-parallel
kernels, including kernel computation time, data transfer
time, kernel launch time, synchronization time, and schedul-
ing overhead. The memory allocation and deallocation time,
initialization time, and data preparation time are excluded.

To evaluate the effectiveness of our proposed inter-device
task scheduling schemes, we implement these 8 bench-
marks with the following nine different methods on the
hybrid CPU-GPU-MIC system: 16-core CPU-only execu-
tion, GPU-only execution, MIC-only execution, CPU-GPU-
MIC co-processing with static scheduling, quick scheduling,
split scheduling, LogFit, FDETS, and ADETS.

B. COMPARISON OF FIVE DIFFERENT INTER-DEVICE
DYNAMIC SCHEDULING SCHEMES
This subsection gives the performance comparison among
five different inter-device dynamic scheduling schemes for
different benchmarks on the hybrid CPU-GPU-MIC system.
These scheduling schemes include quick scheduling [29],
split scheduling [29], LogFit [31], and our proposed FDETS
and ADETS. Given that quick scheduling is sensitive to
the profiling size and split scheduling is sensitive to the
chunk size, we manually choose the suitable profiling size
and chunk size for each benchmark, respectively. For our
proposed FDETS and ADETS, the initial chunk size is set
to 1/128 of the total workload and the threshold α is set to
0.1 for each benchmark. Although we can manually find the
optimal settings for each benchmark with different problem
sizes, this is time-consuming and the adaptive advantage of
the two dynamic scheduling schemes is lost.

Fig. 4 presents the speedups of CPU-GPU-MIC
co-processing using five different scheduling schemes over
the 16-core CPU-only execution for eight different bench-
marks with three different problem sizes. The results show
that the CPU-GPU-MIC co-processing is much faster than
the 16-core CPU-only execution for most benchmarks. For
example, the speedup of CPU-GPU-MIC co-processing using
FDETS over the CPU-only execution is up to 3.94×, 7.94×,
2.30×, and 6.04× for GEMM, N-body, BLKS, and MC-PI,
respectively. The speedup of CPU-GPU-MIC co-processing

using ADETS over the CPU-only execution is up to 3.23×,
5.39×, 3.67×, and 4.93× for K-means, CG, LUD, and BFS,
respectively. The performance gain is mainly due to the
full utilization of the computing power of the hybrid CPU-
GPU-MIC system. Logically speaking, the more that the
computing resources of a heterogeneous system are utilized,
the better is the performance of multi-device co-processing.
However, the data transfer between CPU and GPU/MIC can
easily become the performance bottleneck of CPU-GPU-
MIC co-processing for some benchmarks, such as K-means.

As shown in Fig. 4, the CPU-GPU-MIC co-processing
using our proposed FDETS or ADETS performs better than
that using quick scheduling or split scheduling. For example,
compared with split scheduling, FDETS achieves an average
speedup of 1.20×, 1.15×, 1.30×, and 1.35× for K-means,
N-body, CG, and BFS, respectively. Compared with quick
scheduling, ADETS achieves an average speedup of 1.15×,
1.18×, 1.32×, and 1.13× for GEMM, BLKS, LUD, and
MC-PI, respectively. The results from Fig. 4 also show
that our proposed FDETS and ADETS outperform LogFit
in the CPU-GPU-MIC co-processing of most benchmarks.
Specifically, FDETS yields the performance improvements
of 5.95%, 8.12%, 7.95%, and 8.16% on average than LogFit
for GEMM, N-body, BLKS, and MC-PI respectively, and
ADETS achieves the performance improvements of 9.12%
and 6.53% on average than LogFit for K-means and LUD
respectively. The performance improvement is attributed to
the fact that FDETS andADETS can keep load balance across
devices, provide a greater device utilization and reduce the
overhead caused by frequent kernel launches, inter-device
data transfers and inter-device synchronizations by making
flexible and dynamic workload distribution between devices
according to the performance change during execution.

In Fig. 4, it is noticeable that LogFit gives an average
improvement in performance of 5.06% and 5.18% over
ADETS for CG and BFS respectively, which shows that
LogFit is more suitable to cope with some fine-grained and
irregular parallel applications (such as CG and BFS) than
our proposed scheduling schemes. This is mainly because
LogFit provides a more sophisticated workload distribution
scheme taking into account the irregularity of the workload.
Actually, how to maximize the performance of multi-device
co-processing for some irregular applications is still a chal-
lenge. Therefore, in future work, we will develop a more
efficient scheduling scheme especially designed for the

59974 VOLUME 9, 2021

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

FIGURE 4. Performance comparison among five different dynamic scheduling schemes for different benchmarks on the hybrid
CPU-GPU-MIC system.

multi-device co-processing of irregular data-parallel applica-
tions on heterogeneous CPU-accelerator systems.

As also can be seen from Fig. 4, for GEMM, N-body,
BLKS, and MC-PI, FDETS achieves an average improve-
ment in performance of 2.93%, 4.25%, 4.16%, and 5.13%
over ADETS, respectively. However, for K-means, CG, LUD,
and BFS, ADETS achieves an average improvement in per-
formance of 4.92%, 6.92%, 8.58%, and 7.98% over FDETS,
respectively. The results show that FDETS is more suitable
for data-parallel kernels whose computation and data are uni-
formly distributed andwhich only need to be executed once or
several times (such as GEMM, N-body, BLKS, and MC-PI),
while ADETS is more suitable for data-parallel kernels that
need to be executed many times and/ or whose computation
and data are non-uniformly distributed (such as K-means,
CG, LUD, and BFS).

C. COMPARISON WITH STATIC SCHEDULING
This subsection compares the performance of our proposed
dynamic scheduling schemes with that of static schedul-
ing. In the case of static scheduling, we manually find the
near-optimal distribution of workload among CPU, GPU and
MIC for each benchmark through offline training. Specifi-
cally, we first find the near-optimal partition ratios before
execution and then assign the workload to CPU, GPU and
MIC with the partition ratios.

Fig. 5 presents the performance comparison among static
scheduling, FDETS and ADETS for different benchmarks
with large problem size. As seen in Fig. 5, FDETS
and ADETS perform slightly worse than static scheduling
for the following benchmarks: GEMM, K-means, N-body,

FIGURE 5. Performance comparison among static scheduling, FDETS, and
ADETS for different benchmarks with large problem size.

BLKS, and MC-PI. These benchmarks have one or more
data-parallel kernels whose computation and data are uni-
formly distributed. Compared with static scheduling, the exe-
cution time of CPU-GPU-MIC co-processing using FDETS
andADETS are increased by an average of 3.83% and 6.15%,
respectively.

Fig. 5 also presents that FDETS and ADETS perform
better than static scheduling for the following benchmarks:
CG, LUD, and BFS. These benchmarks have one or
more data-parallel kernels whose computation and data are
non-uniformly distributed and that need to be executed many
times. Compared with static scheduling, the execution time
of CPU-GPU-MIC co-processing using FDETS and ADETS
are reduced by an average of 5.97% and 12.75%, respec-
tively. For these benchmarks, it is very difficult to find a
near-optimal workload assignment that is suitable for every
run of a data-parallel kernel for static scheduling.

In general, static scheduling is suitable for some
data-parallel kernels that need to be executed once or sev-
eral times and whose computation and data are uniformly
distributed, but it requires a time-consuming offline training

VOLUME 9, 2021 59975

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

to find the best partition ratios, and any change in the appli-
cation, problem size or system configuration may require
a new training run, as the best partition ratios are likely
to change under new conditions. The poor partition ratios
may cause load imbalance, this will degrade the overall
performance of multi-device co-processing. Fig. 6 demon-
strates this by running GEMM and K-means on two Intel
Xeon E5-2640v2 CPUs and an NVIDIA Tesla K40c GPU.
In Fig. 6, the x-axis shows the percentage of work allocated
to the GPU is varied from 0% to 100%, and the y-axis shows
the normalized execution time. The results show that the best
partition differs by applications and problem sizes for static
scheduling.

Compared with static scheduling, our proposed FDETS
and ADETS can adapt to different applications, problem
sizes and system configurations without requiring any offline
training, while having lower runtime scheduling overhead.

D. IMPACT OF THE INITIAL CHUNK SIZE
Considering the initial chunk size may have an impact on
performance, we evaluate the performance of CPU-GPU-
MIC co-processing using our proposed FDETS and ADETS
with three different initial chunk sizes: W /64, W /128, and
W /256, where W is the total workload of a data-parallel
kernel within a benchmark.

Figs. 7 and 8 present a performance comparison of three
different initial chunk sizes used in our proposed FDETS and
ADETS for different benchmarks with large problem size,
respectively. The results show that there is a small variance
in the performance achieved among different settings for
GEMM, N-body, BLKS, and MC-PI. The variance becomes
smaller for K-means, CG, LUD, and BFS, because these four
benchmarks have one or more data-parallel kernels that need
to be executed many times, whereas the initial chunk size
only affects the first run of a kernel. The results verify that
the performance of FDETS and ADETS are related but not
sensitive to the initial chunk size. A relatively small initial
chunk size is preferable for some data-parallel kernels, but if
it is too small, the performance of FDETS and ADETS will
be degraded because the utilization of many-core accelerator
is limited for smaller workload.

E. IMPACT OF THE THRESHOLD α

In view of the setting of threshold α may also have an impact
on performance, we evaluate the performance of CPU-GPU-
MIC co-processing using our proposed FDETS and ADETS
with ten different settings of threshold α, where α is varied
from 0.05 to 0.50 at 0.05 intervals.

Fig. 9 presents a performance comparison of ten different
settings of threshold α used in FDETS for three different
benchmarks with large problem size. The results show that
the setting of α will affect the performance of FDETS. The
mean square error is 1.0909, 0.8489, and 0.7680 for GEMM,
K-means, and CG, respectively. Fig. 10 presents a perfor-
mance comparison of five different settings of threshold α
used in ADETS for different benchmarks with large problem

FIGURE 6. Performance of CPU-GPU co-processing using static scheduling
for two different benchmarks with small and large problem sizes.

FIGURE 7. Performance comparison of three different initial chunk sizes
used in our proposed FDETS for different benchmarks with large problem
size.

FIGURE 8. Performance comparison of three different initial chunk sizes
used in our proposed ADETS for different benchmarks with large problem
size.

size. It can be found from Fig. 10 that the different settings
of threshold α have a little impact on the performance of

59976 VOLUME 9, 2021

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

FIGURE 9. Performance comparison of ten different settings of threshold
α used in our proposed FDETS for different benchmarks with large
problem size.

FIGURE 10. Performance comparison of five different settings of
threshold α used in our proposed ADETS for different benchmarks with
large problem size.

ADETS for different benchmarks. The results demonstrate
that the performance of ADETS is related but not sensitive
to the threshold α.
As shown in Fig. 9, the best performance is achieved when

α is set to 0.10, 0.15, and 0.05 for GEMM, K-means, and
CG, respectively. As shown in Fig. 10, the best performance
is achieved when α is set to 0.10, 0.14, 0.08, 0.10, 0.06, 0.08,
0.10, and 0.12 for GEMM, K-means, N-body, BLKS, CG,
LUD, MC-PI, and BFS, respectively. The results illustrate
that the default setting of threshold α (i.e., α = 0.10) in our
proposed FDETS and ADETS is reasonable but not necessar-
ily optimal for different benchmarks, and programmers can
manually tune the threshold α.

V. CONCLUSION
In this paper, in order to support the efficient multi-device co-
processing of data-parallel kernels on heterogeneous CPU-
accelerator systems, we propose two different inter-device
task scheduling schemes, including FDETS and ADETS,
which can provide lower scheduling overhead and higher
device utilization andmaintain load balance across devices by
making flexible and dynamic workload adjustments accord-
ing to the performance change during runtime. FDETS is
more suitable for data-parallel kernels whose computation
and data are uniformly distributed, while ADETS is more
suitable for data-parallel kernels whose computation and
data are non-uniformly distributed. By conducting experi-
ments with eight different parallel applications on a hybrid
CPU-GPU-MIC system, we found that the proposed two
inter-device task scheduling schemes can effectively partition
work across CPU, GPU, and MIC, and the CPU-GPU-MIC

co-processing of each application significantly outperforms
the CPU-only execution.

Anyone who has worked in load balancing knows that
there is no definitive solution to the problem, because the
optimal workload partition differs by applications, platforms,
problem sizes and so on. For example, LogFit [31] out-
performs our proposed scheduling schemes in two parallel
applications (i.e. CG and BFS). In [32], the authors devel-
oped advanced dynamic load balancing algorithms based on
partial functional performance models of heterogeneous pro-
cessors, which are applicable to data-intensive iterative appli-
cations on heterogeneous parallel platforms. Our proposed
scheduling schemes don’t take into account the advanced
functional performance models. It is worth to integrate the
partial functional performance models into our scheduling
schemes to further improve the performance of multi-device
co-processing in the next work.

Moreover, for some data-parallel applications, inter-device
communication can easily become the performance bottle-
neck of multi-device co-processing. In future work, we will
explore the inter-device communication optimization meth-
ods to further improve the performance of multi-device
co-processing.

REFERENCES
[1] F. Song, S. Tomov, and J. Dongarra, ‘‘Enabling and scaling matrix com-

putations on heterogeneous multi-core and multi-GPU systems,’’ in Proc.
26th ACM Int. Conf. Supercomput. (ICS), Jun. 2012, pp. 365–376.

[2] J. Nie, C. Zhang, D. Zou, F. Xia, L. Lu, X. Wang, and F. Zhao, ‘‘Adaptive
sparse matrix-vector multiplication on CPU-GPU heterogeneous archi-
tecture,’’ in Proc. 3rd High Perform. Comput. Cluster Technol. Conf.,
Jun. 2019, pp. 6–10.

[3] R.-B. Chen, Y. M. Tsai, and W. Wang, ‘‘Adaptive block size for dense
QR factorization in hybrid CPU–GPU systems via statistical modeling,’’
Parallel Comput., vol. 40, nos. 5–6, pp. 70–85, May 2014.

[4] J. Chen and Z. Chen, ‘‘Cholesky factorization on heterogeneous CPU and
GPU systems,’’ in Proc. 9th Int. Conf. Frontier Comput. Sci. Technol.,
Aug. 2015, pp. 19–26.

[5] I. Chakroun, N. Melab, M. Mezmaz, and D. Tuyttens, ‘‘Combining
multi-core and GPU computing for solving combinatorial optimization
problems,’’ J. Parallel Distrib. Comput., vol. 73, no. 12, pp. 1563–1577,
Dec. 2013.

[6] H. Zou, S. Tang, C. Yu, H. Fu, Y. Li, and W. Tang, ‘‘ASW: Accelerating
Smith–Waterman algorithm on coupled CPU–GPU architecture,’’ Int. J.
Parallel Program., vol. 47, no. 3, pp. 388–402, Jun. 2019.

[7] L. Wan, K. Li, J. Liu, and K. Li, ‘‘Efficient CPU-GPU cooperative com-
puting for solving the subset-sum problem,’’ Concurrency Comput., Pract.
Exper., vol. 28, no. 2, pp. 492–516, Feb. 2016.

[8] M. P. Wachowiak, M. C. Timson, and D. J. DuVal, ‘‘Adaptive parti-
cle swarm optimization with heterogeneous multicore parallelism and
GPU acceleration,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 10,
pp. 2784–2793, Oct. 2017.

[9] S. Zhou and V. K. Prasanna, ‘‘Accelerating graph analytics on CPU-FPGA
heterogeneous platform,’’ in Proc. 29th Int. Symp. Comput. Archit. High
Perform. Comput. (SBAC-PAD), Oct. 2017, pp. 137–144.

[10] J. Kim and B. Nam, ‘‘Co-processing heterogeneous parallel index for
multi-dimensional datasets,’’ J. Parallel Distrib. Comput., vol. 113,
pp. 195–203, Mar. 2018.

[11] Y.-X. Wang, L.-L. Zhang, W. Liu, X.-H. Cheng, Y. Zhuang, and
A. T. Chronopoulos, ‘‘Performance optimizations for scalable CFD appli-
cations on hybrid CPU+MIC heterogeneous computing system with mil-
lions of cores,’’ Comput. Fluids, vol. 173, pp. 226–236, Sep. 2018.

[12] W. Xue, C. Yang, H. Fu, X.Wang, Y. Xu, J. Liao, L. Gan, Y. Lu, R. Ranjan,
and L. Wang, ‘‘Ultra-scalable CPU-MIC acceleration of mesoscale atmo-
spheric modeling on Tianhe-2,’’ IEEE Trans. Comput., vol. 64, no. 8,
pp. 2382–2393, Aug. 2015.

VOLUME 9, 2021 59977

L. Wan et al.: Efficient Inter-Device Task Scheduling Schemes for Multi-Device Co-Processing of Data-Parallel Kernels

[13] C.-K. Luk, S. Hong, and H. Kim, ‘‘Qilin: Exploiting parallelism on het-
erogeneous multiprocessors with adaptive mapping,’’ in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchit. (Micro), Dec. 2009, pp. 45–55.

[14] D. Grewe and M. F. O’Boyle, ‘‘A static task partitioning approach for
heterogeneous systems using OpenCL,’’ in Proc. 20th Int. Conf. Compil.
Const. (CC), Saarbríźcken, Germany, Apr. 2011, pp. 286–305.

[15] Z. Zhong, V. Rychkov, andA. Lastovetsky, ‘‘Data partitioning onmulticore
and multi-GPU platforms using functional performance models,’’ IEEE
Trans. Comput., vol. 64, no. 9, pp. 2506–2518, Sep. 2015.

[16] R. K and N. N. Chiplunkar, ‘‘A survey on techniques for cooperative CPU-
GPU computing,’’ Sustain. Comput., Informat. Syst., vol. 19, pp. 72–85,
Sep. 2018.

[17] S. Sandokji and F. Eassa, ‘‘Task scheduling frameworks for heterogeneous
computing toward exascale,’’ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 10,
pp. 234–243, 2018.

[18] J. V. F. Lima, T. Gautier, V. Danjean, B. Raffin, and N. Maillard, ‘‘Design
and analysis of scheduling strategies for multi-CPU and multi-GPU archi-
tectures,’’ Parallel Comput., vol. 44, pp. 37–52, May 2015.

[19] Y. Wen, Z. Wang, and M. F. P. O’Boyle, ‘‘Smart multi-task scheduling for
OpenCL programs on CPU/GPU heterogeneous platforms,’’ in Proc. 21st
Int. Conf. High Perform. Comput. (HiPC), Dec. 2014, pp. 1–10.

[20] O. S. Simsek, A. Drebes, and A. Pop, ‘‘Leveraging data-flow task par-
allelism for locality-aware dynamic scheduling on heterogeneous plat-
forms,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops
(IPDPSW), May 2018, pp. 540–549.

[21] P. Du, Z. Sun, H. Zhang, and H. Ma, ‘‘Feature-aware task scheduling
on CPU-FPGA heterogeneous platforms,’’ in Proc. IEEE 21st Int. Conf.
High Perform. Comput. Commun.; IEEE 17th Int. Conf. Smart City;
IEEE 5th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Aug. 2019,
pp. 534–541.

[22] J. Fang, J. Zhang, S. Lu, and H. Zhao, ‘‘Exploration on task scheduling
strategy for CPU-GPU heterogeneous computing system,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2020, pp. 306–311.

[23] X. Liu, P. Liu, L. Hu, C. Zou, and Z. Cheng, ‘‘Energy-aware task schedul-
ing with time constraint for heterogeneous cloud datacenters,’’ Concur-
rency Comput., Pract. Exper., vol. 32, no. 18, Sep. 2020, Art. no. e5437.

[24] Z. Zhu, J. Zhang, J. Zhao, J. Cao, D. Zhao, G. Jia, and Q. Meng, ‘‘A hard-
ware and software task-scheduling framework based on CPU+FPGA
heterogeneous architecture in edge computing,’’ IEEE Access, vol. 7,
pp. 148975–148988, 2019.

[25] B. Wang, Y. Song, J. Cao, X. Cui, and L. Zhang, ‘‘Improving task schedul-
ing with parallelism awareness in heterogeneous computational environ-
ments,’’ Future Gener. Comput. Syst., vol. 94, pp. 419–429, May 2019.

[26] M. E. Belviranli, L. N. Bhuyan, and R. Gupta, ‘‘A dynamic self-scheduling
scheme for heterogeneous multiprocessor architectures,’’ ACM Trans.
Archit. Code Optim., vol. 9, no. 4, p. 57, Jan. 2013.

[27] Z. Wang, L. Zheng, Q. Chen, and M. Guo, ‘‘CPU+GPU scheduling with
asymptotic profiling,’’ Parallel Comput., vol. 40, no. 2, pp. 107–115,
Feb. 2014.

[28] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali,
‘‘Adaptive heterogeneous scheduling for integrated GPUs,’’ in Proc.
23rd Int. Conf. Parallel Achitectures Compilation (PACT), Aug. 2014,
pp. 151–162.

[29] T. R. W. Scogland, B. Rountree, W.-C. Feng, and B. R. de Supinski,
‘‘Heterogeneous task scheduling for accelerated OpenMP,’’ in Proc. IEEE
26th Int. Parallel Distrib. Process. Symp., May 2012, pp. 144–155.

[30] T. R. W. Scogland, W.-C. Feng, B. Rountree, and B. R. de Supinski,
‘‘CoreTSAR: Core task-size adapting runtime,’’ IEEE Trans. Parallel Dis-
trib. Syst., vol. 26, no. 11, pp. 2970–2983, Nov. 2015.

[31] A. Navarro, F. Corbera, A. Rodriguez, A. Vilches, and R. Asenjo, ‘‘Het-
erogeneous parallel_for template for CPU–GPU chips,’’ Int. J. Parallel
Program., vol. 47, no. 2, pp. 213–233, Apr. 2019.

[32] D. Clarke, A. Lastovetsky, and V. Rychkov, ‘‘Dynamic load balancing
of parallel computational iterative routines on highly heterogeneous HPC
platforms,’’ Parallel Process. Lett., vol. 21, no. 2, pp. 195–217, Jun. 2011.

[33] A. Lastovetsky, L. Szustak, and R.Wyrzykowski, ‘‘Model-based optimiza-
tion of EULAG kernel on intel xeon phi through load imbalancing,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 787–797, Mar. 2017.

[34] R. Nozal, B. Pérez, and J. L. Bosque, ‘‘Towards co-execution of massive
data-parallel OpenCL kernels on CPU and Intel Xeon Phi,’’ in Proc. 17th
Int. Conf. Comput. Math. Methods Sci. Eng. (CMMSE), Cádiz, Spain,
Jul. 2017, pp. 1561–1572.

[35] R. Nozal, B. Perez, J. L. Bosque, and R. Beivide, ‘‘Load balancing in a het-
erogeneous world: CPU-xeon phi co-execution of data-parallel kernels,’’
J. Supercomput., vol. 75, no. 3, pp. 1123–1136, Mar. 2019.

[36] B. Pérez, E. Stafford, J. L. Bosque, R. Beivide, S. Mateo, X. Teruel,
X. Martorell, and E. Ayguadé, ‘‘Auto-tuned OpenCL kernel co-execution
in OmpSs for heterogeneous systems,’’ J. Parallel Distrib. Comput.,
vol. 125, pp. 45–57, Mar. 2019.

[37] M. Damschen, F. Mueller, and J. Henkel, ‘‘Co-scheduling on fused CPU-
GPU architectures with shared last level caches,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 11, pp. 2337–2347,
Nov. 2018.

[38] NVIDIA Corporation. NVIDIA CUDA SDK Code Samples. Accessed:
Nov. 25, 2019. [Online]. Available: https://developer.nvidia.com/cuda-
downloads

[39] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous computing,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44–54.

LANJUN WAN was born in Hunan, China,
in 1982. He received the B.S. and M.S. degrees
in computer science and technology from the
Hunan University of Technology, Zhuzhou, China,
in 2005 and 2009, respectively, and the Ph.D.
degree in circuits and systems fromHunan Univer-
sity, Changsha, China, in 2016. He is currently an
Assistant Professor with the School of Computer
Science, Hunan University of Technology. He has
published many research articles in international

conferences and journals, such as JPDC, CCPE, Parallel Computing, Sen-
sors, and IEEE ACCESS. He also serves as a Reviewer for the JPDC, CCPE,
and IEEE ACCESS. His research interests include industrial big data analy-
sis, industrial equipment fault diagnosis, high-performance computing, and
parallel computing.

WEIHUA ZHENG was born in Guangxi, China,
in 1969. He received the B.S. degree in computer
science and technology from the National Uni-
versity of Defense Technology, Changsha, China,
in 2002, the M.S. degree in computer science and
technology from Xiangtan University, Xiangtan,
China, in 2010, and the Ph.D. degree in computer
science and technology from Hunan University,
Changsha, in 2015. He is currently an Associate
Professor with the College of Electrical and Infor-

mation Engineering, Hunan University of Technology, Zhuzhou, China.
He has published many research articles in international conferences and
journals, such as SPL, TCS, and TCBB. His research interests include fast
Fourier transform, audio signal processing, image processing, and parallel
computing.

XINPAN YUAN was born in Hunan, China,
in 1982. He received the B.S., M.S., and Ph.D.
degrees in computer science and technology
from Central South University, Changsha, China,
in 2005, 2008, and 2012, respectively. He is cur-
rently an Associate Professor with the School of
Computer Science, Hunan University of Technol-
ogy, Zhuzhou, China. He has published many
research papers in international conferences and
journals, such as IJNS, JIPS, and Information. His

research interests include industrial big data analysis, industrial equipment
fault diagnosis, information retrieval, data mining, and natural language
processing.

59978 VOLUME 9, 2021

