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ABSTRACT Network management is facing a great challenge to analyze and identify encrypted network
traffic with specific applications and protocols. A significant number of network users applying different
encryption techniques to network applications and services to hide the true nature of the network com-
munication. These challenges attract the network community to improve network security and enhance
network service quality. Network managers need novel techniques to cope with the failure and shortcomings
of the port-based and payload-based classification methods of encrypted network traffic due to emergent
security technologies. Mainly, the famous network hopping mechanisms used to make network traffic
unknown and anonymous are VPN (virtual private network) and TOR (Onion Router). This paper presents
a novel scheme to unveil encrypted network traffic and easily identify the tunneled and anonymous network
traffic. The proposed identification scheme uses the highly desirable deep learning techniques to easily and
efficiently identify the anonymous network traffic and extract the Voice over IP (VoIP) and Non VoIP ones
within encrypted traffic flows. Finally, the captured traffic has been classified into four different categories,
i-e., VPN VoIP, VPN Non-VoIP, TOR VoIP, and TOR Non-VoIP. The experimental results show that our
identification engine is extremely robust to VPN and TOR network traffic.

INDEX TERMS Encrypted network traffic, onion router network, virtual private network, VoIP, anonymous
network traffic, convolutional neural network.

I. INTRODUCTION
In today’s world, the Internet is the fast growing technology
industry and become the essential need to facilitate human
being in widespread fields of life. Network traffic comprises
Internet activities in the shape of data encapsulated in network
packets. Network traffic needs accurate analysis methods
such as identification and classification for associating net-
work traffic flows to a specific application class according
to network planning and network management. Monitoring
encrypted network traffic becomes a challenging issue for
many network tasks, including firewall enforcement, quality
of service (QoS) implementations, traffic engineering and
network security. Due to the exponential proliferation of
numerous network applications, network traffic identification
techniques need to keep pace with many real-world devel-
opments. Generally, the obfuscation tools [1], encryption

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

protocols [2] and tunneling techniques [3] are used to mas-
querade network traffic control devices and provide secure
user’s online privacy-preserving.

Classifying encrypted network flows and anonymous
communications by their application types is the fundamental
process of many crucial network traffic flowmonitoring, con-
trolling tasks and forensic investigation of cybercrime. Gener-
ally, it mainly focuses on accurate identification and detailed
classification. Thus, encrypted and anonymous network traf-
fic lose their unique characteristics. Therefore, the traditional
traffic classification (TC) techniques are based on Trans-
mission Control Protocol TCP/ or User Datagram Protocol
UDP port mapping assigned by the Internet Assigned Num-
bers Authority IANA [3] and deep packet inspection (DPI)
classification approaches avoid detection due to the usage of
non-standard port and encryption techniques [4]. However,
these methods can attain high accuracy in the classification
of non-encrypted network traffic. Due to the rapid growth
of encrypted network traffic flows and emergent security
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technologies such as encapsulation e.g., Virtual Private Net-
work (VPN) and anonymization e.g., Onion Router (TOR)
networks, the traditional classification techniques become
obsolete. Hence, the feature-based TC techniques overcome
the failure of these conventional classification methods. TOR
is a publically available software tool to provide anonymiza-
tion to the internet user identity. TOR network consists of
three nodes (routers): entry node, middle relay, and exit node.
The network data is processedwith three layers of encryption.
Therefore, the VPN and TOR network traffic is difficult to
analyze.

In the last few years, the telecommunication arena received
unprecedented growth in Voice over IP (VoIP) protocols
for making phone calls between VoIP end-users due to low
end-to-end delay and high bandwidth requirements. Its dra-
matic functionality over the traditional telephone network and
cost-effectiveness radically revolutionized formal telephone
communication. VoIP also provides cheaper communication
forms for international calls, online meetings and educa-
tion. Moreover, the VoIP market attracts people to switch
from Public Switched Telephone Network (PSTN) because
it offers various features and manages a single network that
supports both voice and data. The majority of the VoIP ser-
vices are encrypted to hide the true contents of the flows.
However, VPN and TOR networks make it encapsulated and
anonymous to ensure the security of the user’s identity and
provide end-to-end secure communication.

Tunneled and anonymous VoIP services are essential to be
trace and classify them into different categories to either pri-
oritize or restrict them for commercial purposes. Therefore,
a competent identification engine is required to differentiate
encrypted encapsulated traffic and anonymous traffic and
further detect VoIP media traffic from Non-VoIP ones. How-
ever, the adoption of more and more anonymous networks
for VoIP services makes the analysis of VoIP media traffic a
challenging task.

The followings are the main research contributions of this
paper:

(1) The main objective of this paper is to present the Flow
Spatio-Temporal Features (FSTFs) for distinguishing VPN
and TOR traffic. These FSTFs set of attributes are composed
of packet length and timing components, which are more
suitable for characterizing the VPN and TOR network traffic
into VoIP and Non-VoIP ones.

(2) A prolific dataset is generated via FSTFs, which is
mature enough to train the classifier based on deep neural
network and accurately identify the VoIP traffic flow in VPN
and TOR network traffic.

(3) The light-weight proposed identification method is
validated via three state-of-art deep learning algorithms,
including multi-layer perceptron (MLP), convolution neural
network (CNN), and long-short term memory (LSTM). The
neural network models are trained with a training set, vali-
dated with a validation set and finally tested with 20% unseen
data of the total dataset. According to the consideration of
the practical implementation efficiency demand, only these

three deep learning techniques are employed and tested in this
paper.

The structure of the remaining paper is interrelated sec-
tions. The background and related work are enlightened in
Section II. The preliminaries are discussed in Section III.
Section IV outlines the main design of the proposed scheme.
Initially, this section described the data pre-processing, fea-
tures selection, and datasets generation. Secondly, the exper-
imental setup is explained. Thirdly, the architectures of the
proposed deep learning models are discussed. Section V
briefly evaluated the simulation results and discussed the
predictive power of the proposed scheme at the end of this
section. Section VI draws conclusions and forecasted future
directions.

II. BACKGROUND AND RELATED WORK
In this section, we provide a brief overview of the existing
methods of network TC. These are majorly categorized into
the port-based classification approach, payload-based inspec-
tion technique, and statistical classification. The brief review
of the recent work is given on plain network TC, encrypted
network TC, tunneled and TOR network traffic identification.
Finally, we also survey VoIP traffic detection methods.

A. EXISTING METHODS OF NETWORK TC
1) PORT-BASED CLASSIFICATION APPROACH
The oldest and easiest way of network TC is to classify
network traffic based on well-known port numbers, which
are visible in TCP/UDP headers of the IP packet as defined
by IANA [5]. This type of classification is possible for the
specific network application that scan default assigned port
numbers. However, due to the utilization of non-standard
ports and allocation of dynamic port numbers, usage of tun-
nels, and Network Address Port Translation (NAPT), it fails
to classify the network traffic accurately [6]. The success rate
of this classification approach is 70%, while the failure rate
is 30-70% of the time [7].

2) PAYLOAD-BASED INSPECTION TECHNIQUE
Payload-based network TC approach identify traffic flows
by inspecting payload to find distinctive application signa-
tures. It shows high accuracy for unencrypted network traffic
identification [8]. This approach have mainly two drawbacks;
firstly, it is not applicable to encrypted network traffic and
secondly, it needs the examination of the entire payload of
the traffic flow. As it is computationally expensive and not
capable of encrypted TC, therefore it is not recommended for
tunneled and anonymous network TC.

3) STATISTICAL CLASSIFICATION
The network management got attention to need a novel
method to overcome the limitations of the port-based and
payload-based classification techniques. Statistical paradigm
relies on hand-crafting the unique payload-independent net-
work traffic flow patterns [9]. Despite the payload inspection,
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this approach connects some flow-based (e.g., bytes per sec-
ond, packets per second, flow duration, inter packets idle
time, inter-arrival time, etc.) and packet-based (e.g., packet
length, standard deviation of packet size, packet direc-
tions, packet intervals etc.) attributes with the classifica-
tion task [10]. These hand-designed attributes are further
deployed to machine learning (ML) algorithms to classify the
specific network traffic flow and characterize them according
to the need of the network administrators. As the statistical
approach avoids inspection of the packet payload, hence
it is applicable to encrypted, encapsulated and anonymous
network traffic flows. In general, two types of ML strategies
are used for the classification task. The one is unsupervised
learning approaches like PCA, DBSCAN, and k-means. The
network traffic is classified with similar network traffic clus-
ters generated by diverse protocols. Some of the unsupervised
learning are contributed work in the arena of network TC
are [11]–[13]. The other is supervised learning approaches
like Support Vector Machine (SVM), Genetic Programming
(GP), Multi-Objective Genetic Algorithm (MOGA), Naïve
byes, and decision trees. A classification model is trained
and tested with a set of pre-labeled data entries with hand-
crafted statistical features. This learning approach maps an
input attribute to output class labels. A variety of supervised
learning techniques such as SVM, GP, MOGA, Naïve Bayes,
and decision trees are used for the identification goal such as
classification of P2P traffic, VoIP services and encrypted TC
with much higher accuracy [7], [14]–[19].

B. LITERATURE REVIEW ON NETWORK TC
Due to enormous growth in encrypted, tunneled and anony-
mous network traffic, the network administrators and traffic
engineers need to replace the traditional ways of network
traffic analysis. ML provides this opportunity to the network
research community to overcome the challenges of port-
based and payload-based classification respecting user’s con-
fidentiality. We paid attention to the research work done in
the field of network TC based on statistical classification and
ML techniques. Moreover, it will be the motivation for using
statistical classification and deep learning approaches. To this
end, Table 1 provide the comparative overview of the plain
TC along with multiple key features discussed in this section.
We have briefly discussed some of the recent work done in
the field of network TC.

Yu et al. [20] proposed a network video TC based
on statistical flow features. A Hierarchical K-Nearest
Neighbor (KNN) classifier was developed to classify
the network video traffic into six different applications,
i.e., QQ, HTTP-download, AHD, ASD, Sopcast, and Xunlei.
Lopez-Martin et al. [21] proposed a network TC scheme
based to classify multiple network traffic services. Six fea-
tures (inter-arrival time, TCP window size, direction of the
packet, source port, destination port, and number of bytes
per packet payload) were extracted from the packet headers
and employed recurrent neural network (RNN), CNN, and the
combination of CNN-RNN architecture for the classification

purpose. The CNN-RNN shows the enhanced performance
to classify 108 services among the three tested classifiers.
Chen et al. [22] identified the network protocols (HTTP, FTP,
TFTP, TLSV, and SSH) and network applications (Skype,
Instagram, Facebook, YouTube and WeChat) using CNN.
The authors converted the network flow packets into images
and then fed into CNN for the identification of specific
application type. Lotfollahi et al. [23] utilized the earliest
1500 byte of the flow packets and fed it into Stack Auto
Encoder (SAE) and CNN to classify encrypted network traf-
fic. The proposed ‘‘Deep Packet’’ scheme is able to differen-
tiate major classes (e.g., P2P and FTP) and further categorize
the network traffic applications like chat, FTP, email, torrent,
Skype, etc. The Deep packet scheme achieved 0.94 recall in
the classification of major traffic classes and 0.98 in the net-
work traffic application identification. Klenilmar et al. [24]
present Naïve Bayes video streaming TC. The proposed
study shows that video streaming network traffic can be
classified into Netflix streaming, YouTube streaming, and
background traffic with a 98.88% accuracy level. Recently,
Antonio et al. [25] focused on identifying IoT devices and
behavior in a smart home. Five standard ML techniques,
namely, RF, KNN, SVM, majority voting, and decision tree
are applied to identify the IoT traffic based on packet-based
features. The experimental results show that RF achieves up
to 96% accuracy in IoT device identification.

In today’s life, the usage of mobile messaging applications
increased abruptly due to multiple tasks, such as texting,
stream video chat, sharing photos, voice notes, location shar-
ing, ticket booking, paying utility bills, and shopping etc.
Therefore, communication services providers and network
managers need to properly monitor and priorities the huge
amount of encrypted network traffic generated daily. Some of
the research work done in the field of mobile TC are reported
in the past [26]–[28].

C. TUNNELED AND ANONYMOUS NETWORK TC
Besides tunneling network traffic, anonymous tools have
been employed to preserve user’s privacy in various factors,
i.e., hiding the nature of the communication between the
end-users, hiding the source and destination, or sometimes
the user’s identity too. During past years, many researchers
were attracted to anonymous network traffic identification.
We summarized the relevant works in Table 2, where columns
represents the key aspects of each research paper. Some of the
recent works are summarized here.

For instance, Gil et al. [29] employed time-related features
(inter-arrival time, duration of flow, flow bytes per second,
etc.) to characterize encrypted and VPN tunneled network
traffic into different categories e.g., streaming, browsing, File
Transfer, VoIP, etc. C4.5 and KNN were used as a classi-
fier and achieved accuracy above 80%. Shahbar et al. [30]
discussed multilayer-encrypted anonymity networks. Packet
momentum is employed to successfully identify multilayer-
encrypted anonymity network flows using a small quantity
of packets and attributes. Bagui et al. [39] used time-related
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TABLE 1. Summarized comparative review of the plain network TC.
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TABLE 1. (Continued.) Summarized comparative review of the plain network TC.

features to distinguish tunneled VPN traffic and normal
encrypted traffic. Six ML algorithms, namely SVM, Naïve
Bayes, RF, logistic regression, KNN and Gradient Boosting
Tree (GBT) are compared. The experimental results show

that the ensemble methods GBT and RF models outperform
the other classifiers in terms of low overfitting and higher
accuracy. Wang et al. [40] presented a one-dimensional
CNN-based end-to-end encrypted TC framework to
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distinguish VPN traffic from Non-VPN ones. The proposed
method is validated with a publically available ISCX dataset
[29] contains seven encrypted network traffic types and seven
protocol encapsulated network traffic. Lashkari et al. [41]
detected TOR network traffic based on time-related features
via WEKA [42]. RF, C4.5, Zero R, and KNN were employed
to characterize them into application types: VoIP, file transfer,
mail, audio streaming, video streaming, browsing, chat and
P2P. Deng et al. [43] identified TOR anonymous traffic
via gravitational clustering algorithm (GCA). Statistical fea-
tures were employed to four clustering algorithms, including
k-means, GCA, DBSCAN, and Expectation-Maximization
(EM). The standard evaluation criteria explicitly show that
GCA is a better choice for TOR traffic recognition. Sim-
ilarly, Shahbar et al. [44] studied the mechanism of I2P
network in terms of anonymizing a user’s activities and the
effect of bandwidth shared by the user’s traffic on the I2P
network. Huang et al. [45] proposed a CNN based multi-
task learning model to classify VPN network traffic recog-
nition, Trojan classification, and malware detection. The
experiments are validated on the public ISCX VPN traffic
dataset and CTU-13 malware dataset. Pescape et al. [46]
attempted flow-based anonymous traffic flows classification.
The anonymous traffic obtained is I2P, TOR, and JonDonym.
FiveML techniques (Multinomial Naïve Bayes, Naïve Bayes,
Bayesian Networks, RF, and C4.5) are used to differentiate
the three encrypted traffic flows. Collectively. C4.5 and RF
outperform other algorithms. Kim et al. [47] proposed a
method to classify TOR/Non-TOR traffic. The authors used
UNB-CIC [41] dataset to validate the proposed experiments.
The authors parsed the first 54 bytes of TCP/IP raw packet
header, which are fed to the 1D-CNN model as an input for
the classification task. Two sets of experiments were done.
In scenario 1, the anonymous traffic was classified as TOR
and Non-TOR. In scenario 2, the anonymous traffic was
characterized into eight classes, i.e., audio streaming, chat,
P2P, video streaming, file transfer, VoIP, and browsing, and
e-mail. Yao et al. [48] classified regular encrypted and VPN
network traffic flows using hierarchical attention network and
LSTM. Themodels used the preprocessed data in the shape of
M∗N-dimensional matrix, whereM represents the number of
packets in a network traffic flow and N represents the count
of bytes in a packet. Zeng et al. [49] proposed a deep learn-
ing model termed ‘‘deep-full-range (DFR)’’ to accomplish
encrypted network traffic classification and intrusion detec-
tion. In order to feed the deep learning models, the authors
generated idx files from raw traffic traces. The proposed DFR
model is validated with two publically available datasets,
ISCX 2012 IDS dataset [50] and ISCX VPN-nonVPN traffic
dataset [29]. Montieri et al. [51] investigated anonymity tools
for network TC purpose via a hierarchical approach. The pro-
posed hierarchial approach consists of four ML based classi-
fiers, i.e. Bayesian Network, C4.5, Naïve Bayes, and RF. The
ultimate goal of this approach is to classify I2P, JonDonym,
and Tor network traffic into Anonymity networks adopted
(L1), network traffic types (L2), and specific application

type (L3). Bovenzi et al. [52] addresses the anonymous
network TC generated by Tor, I2P, and JonDonym. The
authors presented a Big Data-enabled Hierarchical frame-
work (BDeH) to implement double parallelism i.e. model and
data parallelism, provided by the combination of Hierarchical
TC and big data technologies. Recently, Aceto et al. [53] pro-
posed a novelmultimodal deep learning based encryptedmul-
titask TC (termed DISTILLER). The proposed DISTILLER
classifier provides a solution of encrypted TC. The pro-
posed classifier is validated with the public dataset ISCX
VPN-nonVPN [29].

D. VOIP TC
In this section, we reviewed some of the previous research
studies on VoIP traffic identification and classification. Due
to significant growth in encrypted, tunneled, and anony-
mous network traffic utilization, the traditional classification
techniques, i.e., port-based or payload-based, are obsolete
now. Statistical classification and ML based classification
approaches are hot areas to be studied for VoIP traffic anal-
ysis. The previous studies are listed in Table 3 with key
features of the proposed methodologies. Some of the recent
reported research done in the field of VoIP traffic analysis are
discussed here.

Alshammari et al. [57] investigated encrypted VoIP traffic
generated by Skype, GTalk, and Primus softphone. Initially,
the NetMate toolset [58] is used to process the captured
network traffic and generate traffic flows with flow-based
features. For classification purposes, the authors tested three
famous classifiers (GP, C4.5, and Adaboost) to accomplish
the classification task based on extracted flow-based fea-
tures. Qin et al. [59] proposed an identification scheme based
on PSD instead of handcrafted attributes. The developed
model tested the initial few IP packets to derive the PSD
and employ it for the classification of P2P and VoIP appli-
cations. Recently, Mazhar et al. [60] studied encrypted and
tunneled network traffic and proposed a statistical analysis-
based method to detect VoIP traffic flows. After the call
initiation, the 6 seconds captured traffic is utilized to detect
real-time VoIP media calls with the FPR up to 0.00015% and
TPR up to 97.54%.

According to the previous studies done in the field of
network TC and identification, very few works focused on
normal network traffic analyses, mixed encrypted network
TC, and tunneled network traffic detection. Most of these
works based on traditional ML algorithms. With the pace of
time, the network management needs to monitor and control
the illegal usage of encryption tools such as VPN and TOR
networks. The cybersecurity engineers need novel techniques
and solutions to properly classify and identify the encrypted,
encapsulated, and anonymous network traffic flows world-
wide. Due to these considerations, this paper specifically
focused on VPN and TOR network traffic identification
based on deep learning. In addition to the identification task,
the VoIP traffic flows are detected both in tunneled and
anonymous network flows.
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TABLE 2. Tunneled and anonymous network TC.
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TABLE 2. (Continued.) Tunneled and anonymous network TC.

III. PRELIMINARIES
The following section presents a detailed description of the
deep learning models used in the proposed scheme and dis-
cussed the assessing predictive ability metrics used for eval-
uation of the experimental results. For reader’s convenience,
Table. 9 summarizes the acronyms used in the manuscript,
which are listed at the end of the paper.

A. DEEP LEARNING MODELS
This section briefly explained the deep learning models used
for proposed identification and detection purpose.

1) MLP
MLP is a kind of feed-forward neural network model consists
of multiple layers, including an input layer, multiple hidden
layers, and an output layer [65]. The dimension of these
layers varies model-to-model according to the nature of the
problem. The neurons of each layer are fully connected to the
neurons of the subsequent layer. Mathematically, MLP can be
succinctly expressed as;
f (n) = y(b(i+1) + w(i+1)(s(b(i) + w(i)n))) 1 ≤ i ≤ L (1)

where w indicates weight matrices of the hidden layer and
output layer, b is bias vector, s and y represents activation
functions of the layers. The weight matrices and bias vectors
are randomly selected in the initial phase, then updating
during the training session for optimization.

2) 1D-CNN
The convolutional neural network (CNN) is a widely-used
model of deep learning; initially, it is preferred for image
recognition problems. Later on, the researchers applied it
in various fields and achieved state-of-art accuracies such
as object detection, image classification, and network TC.
CNN has a strong ability to automatically extract the criti-
cal features via chaining convolutional layers. Each layer is
comprised of a set of filters (or kernels) that are convolved
with the input units to extract spatial features of the certain
input region. Another important feature of CNN architecture
is the pooling layer. It is located in between successive convo-
lutional layers, aiming downsampling to reduce complexity

and parameters and also reduce the overfitting [28]. The
output layer, commonly called the softmax layer, contains
the activation function to accomplish the classification task.
The output layer outputs N-dimensional (N is the number of
the output classes) probability distribution vector [0, 1]. Each
real value represents an output class score. The architecture of
the CNN could be 1D or 2D or 3D, depends upon the nature
of the specific problem.

3) LSTM
The RNN is an ineffective technique for long sequence mod-
eling due to gradient disappearance. To overcome the short-
coming of standard RNN, Hochreiter et al. [66] introduced
the developed form of RNN called long-short term mem-
ory (LSTM) model, which is able to model long-term depen-
dencies. LSTM works on the sequential form of data and has
been used in a variety of fields such as speech recognition,
handwriting recognition, natural language processing tasks
such as machine translation, speech recognition and con-
stituency parsing, and language modeling. LSTM contains
complex memory units instead of neurons in general neural
networks. LSTM units have the ability to store the informa-
tion for longer time periods in the shape of a state vector. The
memory units contain several gates such as input gate, forget
gate, output gate to control the information passing along a
sequence.

B. ASSESSING PREDICTIVE ABILITY
In order to examine the effectiveness of the proposed iden-
tification scheme, we employed a number of parameters to
evaluate the performance assessment metrics [67]. 1) True
Positive (TP): When the network traffic flow is classified
correctly as F. 2) False Positive (FP): When the network
traffic flow is classified incorrectly as F. 3) True Negative
(TN): When the network traffic flow correctly classified as
Not-F. 4) False Negative (FN): When the network traffic flow
is incorrectly classified as Not-F. The identification scheme
is evaluated with four performance assessment metrics to
determine the predictive power of the proposed scheme,
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TABLE 3. Summary of VOIP TC methods.

including 1) Precision (Pr). 2) Recall (Rc). 3) F-measure
(F-m). 4) Accuracy (acc).

These metrics are defined as [67];

Pr =
TP

(TP+ FP)
(2)

Rc =
TP

(TP+ FN )
(3)

F − m = 2×
Rc× Pr
Rc+ Pr

0 ≤ F − m ≤ 1 (4)

acc =
(TP+ TN )

(TP+ TN + FN + FP)
× 100% (5)

To visualize the correctly and incorrectly network traffic
classes, we used the confusion matrix. Each row in the con-
fusion matrix represents the actual class label, while each
column represents the predicted class label. The diagonal
of the confusion matrix indicates correctly classified class
labels. Furthermore, we have drawn the accuracy and loss of
the training phase and validation phase.

IV. WORK DESCRIPTION
The ultimate goal of the proposed work aims to detect VoIP
traffic flows in tunneled (VPN) and anonymous (TOR) net-
works. The general flow diagram of the VoIP detector is
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FIGURE 1. Overview of deep learning based tunneled and anonymous network traffic identifier.

TABLE 4. List of captured VPN and TOR traffic traces.

given in Figure. 1. Firstly, this section presents a detailed
description of data pre-processing. It includes the dataset
introduction, conversion of raw traffic into FSTFs based
flows. Then followed by network traffic flows labeling based
on the FSTFs set. Secondly, here the system parameters and
the experimental environment has been explained. Finally, the
experiments were done for the VoIP traffic detection in VPN
and TOR network flows.

A. DATA PRE-PROCESSING
1) DATASETS DESCRIPTION
One of the main tasks of this proposed work is to generate a
mixed dataset containing both VPN and TOR traffic. There-
fore, we merged two publically available datasets published
by the Canadian Institute of Cybersecurity (CIC), the Univer-
sity of New Brunswick, the ISCX VPN-NON_VPN dataset
[29], and ISCX TOR-NON_TOR dataset [41]. Both the
datasets consist of seven different types of traffic traces in
pcap format. VPN-NON_VPN dataset consists of seven types

(email, file transfer, VoIP, P2P, web browsing, chat, and
streaming of encrypted and tunneled traffic traces). As we
focused on VoIP detection in tunneled traffic, therefore we
separated VPN traffic traces (about 2.3 GB) and grouped
them into VPN VoIP and VPN Non-VoIP classes. Simi-
larly, we extracted only TOR network traffic traces (about
8.8 GB) and grouped them into TOR VoIP and TOR Non-
VoIP classes. Finally, we get an enriched dataset containing
VPN and TOR network traffic flows. The details of the
generated sub-dataset are given in Table 4.

2) CONVERSION OF RAW TRAFFIC INTO NETWORK TRAFFIC
FLOWS
The VPN and TOR traffic traces listed in Table 4 is further
processed to generate traffic flows based on five parameters,
i.e., Protocol (TCP/UDP), Src port, Dst port, Src IP, and
Dst IP with 76 FSTFs set. The CICFlowmeter (an open-
source java-based tool) is used as a bidirectional flow gen-
erator, which aggregated the pcap traces into network traffic
flows (CSV files) [68]. The flow latency period (FLP) is
controlled by the flow generator as the earlier studies men-
tioned that smaller FLP depict significant results [67]. There-
fore, we selected 15 sec FLP in the proposed VoIP detector.
The traffic flows obtained as an output of the CICFlowme-
ter are labeled according to the application type mentioned
in Table 4. The network traffic flows generated by chat, P2P,
streaming, file transfer, and email applications are grouped
into Non-VoIP class, while the flows computed by Hangouts,
Skype, Facebook, and VoIPbuster voice calls are labeled as
VoIP class. We eliminated the duplicate flows to ensure a
refined dataset for further identification task.

3) FLOW SPATIO-TEMPORAL FEATURES SELECTION
The CICFlowmeter discussed in the previous section gener-
ates network traffic flows with a handsome amount of FSTFs.
In the past, many researchers deployed the Netmate tool kit
[58] for the flow generation. Netmate tool kit can generate
network traffic flows with a maximum number of 22 flow
features. In contrast, CICFlowmeter produces a wide variety
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TABLE 5. Flow Spatio-Temporal features set.

of 76 FSTFs set, which is more than enough to accurately
classify encrypted network traffic. In the proposed identifi-
cation task, we truncated the features with zero or undefined
values because it will be ineffective in the next steps. The final
effective FSTFs set contains 60 attributes, which are finally
used in the proposed identification scheme listed in Table 5.

4) DATASET GENERATION
Several pre-processing steps, such as the conversion of raw
traffic into network traffic flows (CSV files), data truncation,
and flows labeling generates a compact set of data series. The
details of the tunneled and anonymous VoIP and Non_VoIP

TABLE 6. Details of FSTFs based dataset.

TABLE 7. Hyperparameters settings of MLP, 1D-CNN, and LSTM.

traffic flows instances are tabulated in Table 6. The dimension
of the XTotal dataset is (28438, 60), where 28438 is the total
number of instances and 60 FSTFs set. After the network
traffic flow generation, the XTotal dataset is normalized to get
a homogeneous dataset using Equation 6.

Xn(normalized) =
Xn − Xmin
Xmax − Xmin

, n = 1, 2, 3, 4, .....,N (6)

where n is the number of instances in the dataset, Xmax
and Xmin are the maximum and minimum values of the
dataset entries. The computed normalized dataset is divided
into training (XTrain), validation (XValid), and testing (XTest)
datasets. Initially, the XTotal dataset splits into 80% of training
data and 20% of testing data. For the validation purpose,
we further split the training data by cross-fold validation
into a ratio of 80:20. Furthermore, the proposed models are
evaluated with an unseen XTest dataset to check the VoIP
traffic predictive power in VPN and TOR networks. The
details of the final XTotal, XTrain, XValid and XTest datasets are
given in Table 6.

B. EXPERIMENTAL ENVIRONMENT
The raw traffic (pcap files) are processed through the
CICFlowmeter to generate network traffic bidirectional flows
with FSTFs. To execute the experiments, the Python Keras
platform is employed to build the deep learning frame-
work for identification and detection purposes. We used
the machine equipped with windows 64-bit OS with the
system specifications of 2.4 GHz Intel Core-i3 CPU and
6 GB of Random Access Memory (RAM) to run the python
codes. Python is used to evaluate the performance indexes
and confusion matrix discussed in Section III (B) to assess
the predictive ability of the identification engine. The train-
ing parameters configured in the VoIP detector for MLP,
1D-CNN, and LSTM are discussed in each section.

C. ARCHITECTURES OF THE PROPOSED DEEP LEARNING
MODELS
Our goal is to characterize tunneled and anonymous network
traffic into TOR VoIP/Non-VoIP and VPN VoIP/Non-VoIP
network traffic. Figure. 1 presents the overall framework of
the proposedwork to accomplish the identification and finally
detect the VoIP traffic. Different experiments are executed to
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FIGURE 2. General architecture of an MLP with single hidden layer.

select the optimal values for the three deep learning methods.
The selected hyperparameters are listed in Table 7.

The proposed deep learning architectures are briefly
explained in this section.

1) MLP BASED IDENTIFIER
The architecture of the MLP model employed is shown
in Figure 2. The proposed VoIP detector involves an input
layer, three dense layers, and the output layer. All the three
dense layers are composed of 32, 16, 8 neurons, respectively.
The model is feed with a 1D-feature vector that contains
60 FSTFs listed in Table 5. The first dense layer has 32 neu-
rons, which are fully connected to the input layer in the shape
of 1×60. The rectified linear unit (ReLU) activation function
is used throughout the three dense layers except for the output
layer. Every dense layer is followed by a dropout regular-
izer to reduce overfitting and achieve a better generalization.
The second and third dense layers are composed of 16 and
8 neurons, respectively. Finally, the output layer is composed
of 4 neurons, where a softmax classifier is applied for final
result labels. The model is trained with a categorical cross-
entropy loss function. It is worth mentioning that the adadelta
function is used as an optimizer. The optimizer is used to
update the weights of the model. The training parameters are
set as {BS=10, En=100}, where BS is the batch size, and En
is the number of Epochs. The proposed MLP model exhibits
satisfactory performance.

2) 1D-CNN BASED IDENTIFIER
1D-CNN shows better performance in 1D sequential data.
We developed the tunneled and anonymous network traffic
identifier using 1D-CNN. After the classification of these
encrypted network traffic, the proposed model further detect
VoIP traffic flows. The complete model structure is explained

FIGURE 3. The framework diagram of 1D-CNN based network identifier.

in this Section, and the model architecture is illustrated
in Figure. 3. The proposed identification model consists of
three convolutional layers, followed by max-pooling layers,
dropout layers, a fully-connected dense layer a final output
layer at the end of the model. Initially, the normalized dataset
is fed to 1D-CNN based identifier. The first convolution layer
processes the 1D-FSTFs vector as an input value. The first
convolutional layer consists of 64 filters and the kernel size
is 3. The result of this layer is inputted to the ReLU activation
function followed by a 1Dmax-pooling layer with a pool size
of 2 and stride 1. The 1D max-pooling layer is used to reduce
the model parameter while keeping useful information. The
ReLU activation function is kept the same all over the suc-
cessive convolutional layers. The pooled layer is followed
by the dropout layer to reduce the risk of overfitting. The
output values of the dropout layer are processed by the iden-
tical second and third convolution layer composed of 64 fil-
ters. Each layer consists of a dropout layer for regularization
purposes. L2 regularizer is employed in each convolutional
layer to reduce overfitting and produce better identification
results. The output of the third convolution layer is fed to the
fully connected dense layer, which maps multiple abstracted
features to a 1D tensor. The final layer used the softmax
activation function to identify the type of the network traffic
class. The training parameters are set as {BS=256, En=100}.
During the identification process, the loss function is defined
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FIGURE 4. The architecture of the proposed LSTM identifier.

by categorical cross-entropy and the adamax optimizer is
selected for enhanced results.

3) LSTM BASED IDENTIFIER
Figure. 4 illustrates the overview of the proposed three-
layered LSTM based identifier for VoIP traffic detection
in VPN and TOR network traffic. The first LSTM layer
contains 64 LSTM cells, which takes the 1D-feature vec-
tor (1 × 60) as an input. L2 regularization and dropout
layer are applied in every LSTM layer for better results.
The output of the first dropout layer is fed to the second
LSTM layer with 32 LSTM cells. Each layer is followed
by the same dropout layer. The second and third layers are
identical in structure. Finally, the output of the last dropout
layer is connected to the output softmax layer, which pro-
duces the probabilistic results for the four network traffic
classes. L2 regularizer and the dropout layers are added to

FIGURE 5. Accuracy and loss function illustration of the proposed MLP
based identifier. (a) Accuracy of the training and validation phase.
(b) Loss of the training and validation phase.

avoid model overfitting. The adam optimizer and categori-
cal cross-entropy loss function achieved better results dur-
ing the identification task. The training parameters are set
as {BS=100, En=100}.

V. RESULTS AND DISCUSSION
This section gives a thorough analysis of deployed deep
learning models to handle the multiclass identification and
detection task. The experimental results reveal that the FSTFs
are the effective set of attributes to successfully identify
VPN and TOR network traffic and further characterize them
into VoIP and Non-VoIP ones. The proposed DL models
(MLP, 1D-CNN, and LSTM) outputs four different class
outputs (VPN VoIP, TOR VoIP, VPN Non-VoIP, and TOR
Non-VoIP). We will discuss the effectiveness of the above
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FIGURE 6. VoIP detection results of the MLP based network traffic
identifier.

FIGURE 7. Accuracy and loss function illustration of the proposed
1D-CNN based identifier. (a) Accuracy of the training and validation
phase. (b) Loss of the training and validation phase.

three deep learning models for the aforementioned problem.
This section will evaluate the models in different aspects.
Firstly, we will visualize the accuracy and loss of the training
phase and the validation phase. Secondly, we will display the

FIGURE 8. Accuracy and loss function illustration of the proposed LSTM
based identifier. (a) Accuracy of the training and validation phase.
(b) Loss of the training and validation phase.

TABLE 8. Macro-averaged predictive ability comparison of the proposed
three deep learning based identification systems.

confusion matrix, which shows detailed identification results.
Finally, we will list the macro-average predictive ability of
the proposed system in terms of Pr, Rc, and F-m explained
in Section III (B). During the training phase, a sufficient
amount of data are fed into three DL-based (MLP, 1D-CNN,
and LSTM) identification engines. We visualized the accu-
racy and loss of the training phase and validation phase (see
Figure. 5). MLP based identifier achieved an accuracy of up
to 94.7%. During the testing phase, XTest dataset is employed
for VoIP traffic detection among the mixed VPN and TOR
network traffic. The test set contains unseen 5688 instances,
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TABLE 9. List of acronyms used in the manuscript.

which is 20% of the total dataset. Figure. 6 depicts the
detailed identification results based on the MLP identifier.
The diagonal of the confusion matrix represents correctly
identified network traffic flows.

FIGURE 9. VoIP detection results of the 1D-CNN based network traffic
identified.

FIGURE 10. VoIP detection results of the LSTM based network traffic
identified.

For better illustration, we computed the macro-averaged
Pr, Rc, and F-m of the MLP based VoIP traffic detector and
summarized in Table 8. Similarly, we computed the evalu-
ation results (see Table 8) for 1D-CNN and LSTM based
network traffic identifiers. The comparison Table of macro-
averaged values of Pr, Rc, andF-m confirms the overall sat-
isfactory performance of the deep learning models.

Figure. 7 and 8 illustrate the accuracy and loss of the
1D-CNN and LSTM based identifiers, respectively. 1D-CNN
and LSTM achieved 96% and 94% accuracy, respectively.
All the three deep learning models exhibits propitious
convergence (see Figure. 5, Figure. 7, and Figure. 8).
Figure. 9 and Figure. 10 visualized the confusion matrix to
illustrate the overall performance of the proposed 1D-CNN
and LSTM schemes. Overall the 1D-CNN is the better choice
for the aforementioned problem. In summary, from the exper-
imental results discussed above, we can conclude that all
three state-of-art methods exhibit better identification and
detection results.

VI. CONCLUSION
In today’s life, network user’s preferred to communi-
cate through encrypted channels. Due to the enormous
growth in tunneled and anonymous network usage, network
management needs novel techniques to monitor it and ana-
lyze the network traffic. In this paper, we analyzed tun-
neled (VPN) and anonymous (TOR) network traffic based on
deep learning techniques (MLP, 1D-CNN, and LSTM). Ini-
tially, we pre-processed the captured raw traffic and generated
the dataset based on FSTFs with 15 sec of FLT. Furthermore,
we employed the selected FSTFs to distinguish VPN network
traffic from TOR network traffic. After the classification of
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VPN and TOR network traffic, we characterized them into
four different categories, i-e., VPN VoIP, VPN Non-VoIP,
TOR VoIP, and TOR Non-VoIP. The experimental results
show an accuracy level of (94.7%, 96%, and 94%) for MLP,
1D-CNN, and LSTM, respectively. The evaluation indexes
indicate that the proposed scheme has a strong ability to
distinguish VoIP traffic from Non-VoIP ones within the VPN
and TOR networks. It is worthy to point out that all the
study of this paper is based on the assumption that there
are only one kind of flows, i.e. VoIP or Non-VoIP in the
VPN or TOR traffic. It can be imagined that when multiple
flows are mixed in one traffic, the accuracy will definitely
decrease. The severity of the impact from other mixing flows
and robustness of the identification under the mixed situation
should be analyzed and studied in the future work. Extensive
experiments are expected to be performed on bidirectional
LSTMs and bidirectional GRUs in the future work.
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