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ABSTRACT This paper proposes a profit maximization model for a Decentralized Electric Vehicle
Supply Equipment (D-EVSE) equipped with a renewable energy sources system such as a solar energy
system. We acknowledge a power connection to the central power grid when necessary. We allow EV to
offer its surplus power as discharging power processes. We design a Decentralized Profit Maximization
Algorithm (DPMA) to help D-EVSEs take profit from the electricity price variation during the day when
selling or buying electricity respectively to EVs or from the grid or EVs as discharging processes. Finally,
numerical simulations with MATLAB are conducted to prove the effectiveness of our proposed solution.

INDEX TERMS Electric vehicles, electric vehicles supply equipment, decentralized-energy storage system,
decentralized-electric vehicle supply equipment, profitmaximization, photovoltaic system, smart cities, solar
energy.

I. INTRODUCTION
Curbing of air pollutions and Greenhouse Gas Emissions
(GHGs) from transportation and non-renewable power plants
in the smart city [1] is vital in providing a clean and green
environment. As an action from many governments aiming
to minimize the effect of transportation’s pollution upon the
climate, new plans have been were announced to ban cars
with gas engines throughout the world. For example, the UK,
Sweden, France, Germany, and Australia plan to ban such
vehicles by 2035 [2]–[4]. As these plans unfold, the presence
of EVs will grow very fast globally, especially in countries
such as Canada, where citizens are encouraged by several
types of financial incentives to buy EVs [5]. Consequently,
the necessity of initiating Electric Vehicles Supply Equip-
ment (EVSE) in the smart city in the form of public charging
stations is growing incrementally year by year. The EVSE
will offer and fulfill the EVs’ charging demand.

However, only allowing EVs charging process via
EVSEs, which are primarily connected to the power grid,
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will put pressure upon the centralized power grid, espe-
cially during peak demand periods. For a centralized
power grid, increasing the power production using non-
renewable energy sources (nuclear and gas) will increase
the environmental impacts by increasing the GHGs. More-
over, the massive power demands will affect the power
grid’s reliability and lead to increased costs of grid
maintenance and degradation [6]. Thus, we promote the
option to switch from EVSE based on non-renewable
energy to decentralize the EVSE (D-EVSE) based on
Renewable Energy Sources (RESs) and an Energy Storage
System (ESS).

D-EVSE is a promising solution and brings more benefits
than the EVSE which obtains power only from the power
grid. These benefits include increasing the quality of charging
power and offering the flexibility of EV charging power based
on its ability as well as eliminating power line losses. More-
over, unused generated power will be stored. Overall, the
D-EVSE will facilitate the integration of a massive number
of EVs in smart cities without causing an additional power
load that may jeopardize the power grid’s resilience and
reliability [6]–[8].
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In this paper, we propose an optimization model aim-
ing to maximize the D-EVSEs’ profits. Each D-EVSE will
manage its charging processes and maximize its profits by
using the proposed model. Our proposed model also takes
into account the D-EVSEs’ sustainability while maximiz-
ing the D-EVSEs’ profits. In the proposed model, we con-
sider that the D-EVSE is primarily powered by solar energy
and equipped with ESS to store the generated power. The
D-EVSE is not an entirely decentralized EVSE because it
has a connection to the power grid. The D-EVSE manages
the power grid’s interconnection and uses it to request power
from the power grid. However, the power requisition will be
used only when the D-EVSE does not have enough stored
power in the ESS.

In summary, our major contributions of the paper are pre-
sented as follows:

• First, we design a maximization profit model to manage
and control EVs’ charging and discharging processes.

• Second, we propose a Decentralized Profit Maximiza-
tion Algorithm (DPMA) based on RESs, power grid, and
EV discharging prices to help D-EVSEs take profit from
the electricity price variation during the day.

• Third, we consider five EV arrival rates to examine our
proposal. Also, we illustrate Time of Use (ToU) pricing
in our model.

• Fourth, we present the results of the numerical simu-
lation followed by a discussion to prove our proposed
solution’s effectiveness.

• Finally, we take into account the preservation of the
D-EVSEs’ sustainability in our proposed algorithm.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III defines the proposed
system model and problem formulation. In Section IV,
performance evaluations are addressed. Finally, Section V
concludes this paper.

II. RELATED WORKS
The challenges of EV charging and discharging processes
at EVSE in the smart city have attracted the interest of
many researchers from academic and industrial perspec-
tives. The EVSE infrastructure deployment was investigated
in [9]–[12]. A comprehensive survey of the EVs’ challenges
to the power grid is presented in [13]. The EV charging price
is an important aspect for EV drivers and EVSE owners. EV
charging price strategies are studied in [14]–[20]. Other areas
have been studied, such as minimizing the waiting time for
EV charging [21], [22], discharging processes [23]–[25], and
reducing EV’s charging cost [26]. Another perspective is that
the EVSE ownersmust also benefit [26], [27]. The benefitting
of EVSE owners, such as by increasing their profits, will
allow EVSE to be diffused in the city. Several studies using
many different techniques in [28]–[30] have investigated how
to increase the profit for the power provider and the EV
owner. In general, we have divided the related works of the
EVSE charging and discharging benefit management studies

into three groups based on the EVSE power source: 1) EVSE
based on the power grid, 2) EVSE based on the power grid and
PV, and 3) EVSE based on the power grid, the wind turbine,
and the PV.

Many studies have investigated EV charging impact and
discharging benefit management in EVSE powered from the
power grid [31]–[34]. The authors of [35] presented A plug-
in hybrid electric vehicle (PHEV) power management system
based on GT aiming to reduce the PHEV charging and battery
degradation costs for each PHEV owner. The presented sys-
tem considered the source of power to be the power grid. The
system investigated the PHEV patterns when gas and energy
prices were changed; as well, trip distance and trip time
were considered. A stochastic model was introduced in [36].
This model implemented the two cases of dynamic pricing
and optimal scheduling to examine the presented model. The
model studied the price influence on the revenue of the PHEV
charging station. The authors concluded that the presented
model showed a positive outcome. However, these papers did
not study the influence of EV power demands on the power
grid.

The EV charging and discharging processes benefitting
management in EVSE powered from the power grid and PV
are introduced in [37], [38]. An optimization and controlling
scheme are presented in [26]. The presented scheme proposed
an EVSE for charging and discharging processes. The target
of the proposed scheme is to minimize the final operational
cost. The EVSE is connected to the power grid and equipped
with a PV power production and ESS. In addition, a large
building was linked to the EV bidirectional station to pur-
chase energy whenever needed. The power price technique is
based on real-time pricing for charging as well as discharging
services. However, the EVSE is powered by the power grid
and stores the ESS’s power when the power grid’s price is
low. An optimization charging model is presented in [37]
for EVSE located in a parking lot. The EVSE is based on
the power grid, and the PV is linked to ESS as well as to
the power grid. The given model, which aimed to reduce the
charging cost, used ToU pricing. The study concluded that
the presented model reduced the charging cost and enhanced
the EV arrival rate.

The authors of [39] designed EVSE as a charging sta-
tion for charging and discharging processes; in this case,
the EVSE was equipped with RESs. The charging station
offered a price for each EV wanting to sell its surplus power.
In this study, the EVs’ owners were able to accept or decline
the offer. The sold power from EVs was injected into the
power grid. Likewise, the authors of [39] presented an online
pricing approach for EV charging or discharging requests
in [40]. This paper used the same mechanism as that which
was used in [39]. Both papers allowed the EV owner to choose
the extended deadline to reduce the charging cost and aimed
to maximize the charging station and EV owners’ revenue
with a fixed profit pricing strategy. However, the authors of
paper [40] did not consider the discharging process in their
study. All of these studies used the power grid as the primary
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FIGURE 1. Overview of our proposed model.

power source to the EVSE, and there were no investigations
into the EVSE’s impacts on the power grid.

Other researchers have examined the benefit of managing
EV charging and discharging processes in EVSE powered
from the power grid, the wind turbine, and the PV [41], [42].
Two case studies presented in [43] aimed to minimize the
power generation cost (wind and grid) and investigate the
EV traffic congestion. The wind turbines were connected
with the power grid. The EV profits were considered in the
study. In this study, all EVs were allowed to schedule charg-
ing or discharging services to control the traffic. The con-
clusion was that the presented model minimized the power
generation cost and the delivery cost while avoiding traffic
congestion.

The authors of [44] presented a risk-based auction with an
adaptive bidding energy trading system. The presented sys-
tem aimed to maximize the bidding energy trading revenue
by using the competitive equilibrium price prediction. The
authors of [45] proposed an iterative double auction model to
facilitate energy trading between participants using a central
controller. The proposed model used a distributed algorithm
to maximize the individual utility profits and the profits of
participants. These studies considered the power grid to be the
primary power source and did not show the power demand’s
effect on the power grid. A game-theoretic approach based
on the decentralized electric vehicle charging schedule was
implemented in [6] to minimize the EV charging expenses
and increase the power grid performance. The real-time price
system was used to increase the power grid’s profits and

the EV owners’ profits. Also, the battery degradation cost
and characteristics were both taken into account. The EV
charging location was at owner’s home with the day-ahead
request scheme. Paper [46] proposed a game theoretical-
based framework model to facilitate energy trading deci-
sions with the distributed ESSs. All ESSs could decide the
maximum amount of trading energy in the utility. However,
the proposed model has a trade-off between the profits and
costs of energy trading.

Unlike these studies, in this paper, we consider RESs
as the primary power source for the D-EVSEs (as a green
energy sources) and include EV charging and discharging
processes. We propose a Decentralized Profit Maximization
Algorithm (DPMA) to optimize the D-EVSEs’ profits and
maintaining the stations’ sustainability. However, in case of
bad weather, a connection to the power grid is used to fulfill
the EVs’ demands.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we consider D-EVSE as a public charging
station based on RESs (Solar Energy) and equipped with
ESSs, as shown in Figure. 1.We assume that each D-EVSE
has 12 plug-in sockets, and each plug-in socket has 108 time
slots [6 (time slots in each hour) *18 (hours) = 108 time slots].
We assume that the D-EVSE uses a fast charging process with
180 kWh as charging rate [47]. The ESS consists of many
connected batteries, and each battery has its cable connected
to the station. These batteries are considered one big battery
managed by D-EVSE. During the daytime, the ESS will be
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charged from solar energy production. During the nighttime,
the D-EVSE will be charged from the power grid if there is
not enough power in the ESS.

We suppose that each D-EVSE calculates the total power
cost and sets its profit. The D-EVSE broadcasts the charging
price to all EVs on the road. The EV charging price is based
primarily on the power source, and the discharging service
price is based on the needs of the D-EVSE. The D-EVSE
operation time extends from 6 a.m. until 12 a.m.

At the beginning of the day, the D-EVSE gathers the
power source information from ESS, and then the price is
determined. The symbol X represents the D-EVSE’s charging
prices. Eq. 1 gives the D-EVSE’s charging price Xj when the
D-EVSE is powered only from the solar energy source:

Xj(t) = Pprj (t) (1)

where:
• Xj: D-EVSE’s charging price [cent/kWh]
• j: D-EVSE’s number
• Pprj : RESs power price [cent/kWh]
• t: time variation
If the D-EVSE is powered from the power grid, then the X

is given by Eq. 2:

Xj(t) = CGpr
j (t) (2)

where:
• CGpr

j : cost of power from the power grid [cent/kWh]
In the case of purchasing power from EVs as discharging

power, the Xj is given by Eq. 3:

Xj(t) = CEVi
j (t) (3)

where:
• CEVi

j (t): EV discharging power price
• EVi: EV number

CEVi
j (t) = PrEVidis (t)+ [PrEVidis (t) ∗ 25%] (4)

where:
• PrEVidis (t): EV discharging power cost
In our model, we assume that all EVs can reach all

D-EVSEs and communicate wirelessly with each other. Each
EV on the road calculates its ability to reach the final desti-
nation by using Eq. 5 and Eq. 6:

SoCEVi
Trip = Tripi × Drate (5)

where:
• SoC : state of charge
• SoCEVi

Trip: required SoC to reach final destination
• Tripi: distance between EV and final destination
• Drat : EV consumption rate

dSoCEVi (t) = SoCEVi
Int − [SoCEVi

Trip + SoC
EV
min] (6)

where:
• SoCEVi

Int : initial EV SoC

• SoCEV
min: minimum EV SoC

EV computes the charging time and the charging power by
using Eqs. 7 and 8 respectively [48]:

tEV ich (t) =
SoCEVi

ch (t)

Rch
(7)

SoCEVi
ch (t) = |dSoCEVi (t)| (8)

where:
• tEV ich (t): EV charging time
• Rch: charging rate
The EV discharging time and the discharging power from

EV are given by Eqs. 9 and 10 respectively [23], [49]:

tEV idis (t) =
SoCEVi

dis (t)

Rdis
(9)

SoCEVi
dis (t) = dSoCEVi (t) (10)

where:
• tEV idis (t): EV discharging time
• Rdis: discharging rate
If each D-EVSE has an available plug-in socket for dis-

charging process, then the D-EVSE will admit EV to dis-
charge its surplus power. Eq.11 calculates the cumulative
total amount of sold power from EVs.

SoC
ESSj
EV (t) =

∑
SoCEVi

dis (t) (11)

where:
• SoC

ESSj
EV (t): cumulative total amount of sold power from

EVs
Eq. 12 used to calculate the amount of power that will be

requested from the power grid.

SoC
ESSj
Greq (t)=SoC

EVi
ch (t)+SoCESS

min −SoC
ESSj
RES (t)−SoC

EVi
dis (t)

(12)

where:
• SoC

ESSj
Greq : amount of power purchased from the power

grid
• SoCESS

min : minimum power in ESS

• SoC
ESSj
RES : amount of power from solar energy

The total amount of the power purchased from the power
grid is given by Eq. 13:

SoC
ESSj
G (t) =

∑
SoC

ESSj
Greq (t) (13)

where:
• SoC

ESSj
G : amount of power purchased from power grid

The total amount of the power in the ESSj is given by
Eq. 14:

SoCESSj (t)=SoC
ESSj
RES (t)+SoC

ESSj
G (t)+ SoC

ESSj
EV (t) (14)

where:
• SoCESSj : ESS current battery level
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All power generated from RESs is added into (SoC
ESSj
RES (t)).

At the beginning of the D-EVSE’s operations, the Pprj (t) is
based on the total amount of power that comes from RES
(SoC

ESSj
RES (t)). However, the SoC

ESSj
RES (t) must not reach 20% of

its battery capacity. If the D-EVSE requests power from the
power grid, then the purchasing power from the power grid is
added into SoC

ESSj
G (t). In addition, all power purchased from

the EVs as discharging processes is added into SoC
ESSj
EV (t).

Each D-EVSE which has sold power will update its sold
power tracker SoC

D-EVSEj
sold (t) immediately to maintain sus-

tainability as shown in Eq.15

SoC
D-EVSEj
sold (t) =

∑
SoCEVi

ch (t) (15)

where:
• SoC

D-EVSEj
sold (t): cumulative total amount of sold power

to EV
The D-EVSE battery status is calculated by using Eq. 16.

SoCD-EVSEj (t) = SoCESSj (t)−SoC
D-EVSEj
sold (t) (16)

• SoCD-EVSEj (t): D-EVSE battery status
Each D-EVSEwill receive the request messages fromEVs,

and the D-EVSE will use the proposed model to maximize its
profits. The D-EVSE’s profits will be calculated based on the
source of the sold power to EVs. Therefore, the D-EVSE uses
Eq. 17 to calculate its profits when the power source is from
the RES:

Fj(t) = SoCEVi
ch (t)× [Xj − Pcoj (t)] (17)

where:
• Fj(t): D-EVSE’s profit
• Pcoj : RESs power cost [cent/kWh]
If the source of power is from the power grid, then the

D-EVSE calculates its profit by using Eq. 18:

Fj(t) = SoCEVi
ch (t)× [Xj − CGco

j (t)+ IGj (t)] (18)

• CGco
j (t): power grid power cost [cent/kWh].

• IGj (t): Incentive from grid to the D-EVSE [cent/kWh].
The D-EVSE’s profit in the case of drawing power from

EVs as discharging power is given by Eq. 19:

F(t) = SoCEVi
ch (t)× [Xj − CEV

j (t)] (19)

• CEV
j (t): EV discharging power cost [cent/kWh].

Eq. 21 is our objective function, and it is used to maximize
the D-EVSEs profit. Furthermore, our objective function has
objective function constraints.

Maximize Fj(t) (20)

Subject to :

SoCESS
min ≤ SoC

ESSj
RES (t)+ SoC

ESSj
G (t)

+ SoC
ESSj
EV (t) (21)

Algorithm 1 Decentralized Profit Maximization Algorithm
(DPMA)

Input D-EVSE [ J, SoCEVi
ch (t), SoCEVi

dis (t), SoCESS
min ,

SoCD-EVSEj (t)]
for j = 1 .. J do
if SoCD-EVSEj (t) > SoCESS

min then
Obtain the power price (Pprj (t)) and cost (Pcoj ) from
Tables 3&5
Maximize the profit according to Eqs.17&21
update SoC

D-EVSEj
sold (t) according to Eq. 15

update SoCD-EVSEj (t) according to Eq.16
else

if there are EVs scheduled for discharging process
then
Obtain the power price (PrEVidis (t)) and cost
(CEV

j (t)) from Tables 3&5

Maximize the profit according to Eqs.19&21

update SoC
D-EVSEj
sold (t) according to Eq. 15

update SoC
ESSj
EV (t) according to Eq.11

update SoCD-EVSEj (t) according to Eq.16
end if
if the amount of power fromEV discharging process
is not enough then
Obtain the amount of power from the power grid
according to Eq.12
Based on the time of request:
Obtain the power price (C

Gpr
j &power cost (CGco

j )
)from Tables 2 & 4
Obtain the incentive price ( IGj (t) =) from Table 1

Maximize the profit according to Eq.s18&21
update SoC

D-EVSEj
sold (t) according to Eq. 15

update SoC
ESSj
G (t) according to Eq.13

update SoC
ESSj
EV (t) according to Eq.11

update SoCD-EVSEj (t) according to Eq.16
end if

end if
end for

SoCESS
max ≥ SoC

ESSj
RES (t)+ SoC

ESSj
G (t)

+ SoC
ESSj
EV (t) (22)

SoCEVi
ch (t) ≥ 10 (23)

SoCEVi
dis (t) ≥ 10 (24)

where:
• SoCESS

max : maximum power in ESS
We use Algorithm 1 to test our decentralized profit max-

imization algorithm (DPMA). The proposed model is initi-
ated once the D-EVSE receives the requested messages from
the EVs.
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TABLE 1. Simulation parameters.

IV. PERFORMANCE EVALUATION
This section discusses the proposed model’s performance
described by the Decentralized Profit Maximization Algo-
rithm (DPMA). We used MATLAB 2018b to perform our
simulation. We consider 12 D-EVSEs with each D-EVSE
having RESs prediction (solar panel). The RESs prediction
is connected with ESS. The ESS storage capacity is 30 MW.
We suppose that all D-EVSEs are equipped with a DC fast
charger, and each D-EVSE has 12 plug-in sockets for EV
charging and EV discharging.

Each D-EVSE will broadcast its charging price Xj
and charging availability schedule every five minutes.
All D-EVDEs will operate from 6 a.m. until 12 a.m. We sup-
pose that each D-EVSE will process the EVs for the charging
process using the DPMA to either admit or reject the EV.
Moreover, the D-EVSE will be based on a first-come, first-
served basis and will send EVs a reservation confirmation.
We assume that there are 12000 EVs distributed randomly on
the roads. The simulation parameters are shown in Table 1.
The time of the incentive’s prices and the incentive’s prices

from the power grid is shown on the simulation parameters’
2. The power price from the power grid will be based on the
Time of Use (ToU) pricing in the city of Ottawa [52] (shown
in Table 2).
The RESs and the EV discharging cost are shown

in Table. 3.
In the case of bad weather such as a rainy or cloudy

day, or in the case when the ESSj does not have enough power
in its battery, the D-EVSE will rely on the power grid and the
price will be based on the ToU pricing. Table 4 shows the
D-EVSE charging price based on the ToU pricing.

TABLE 2. List of power grid power costs based on ToU pricing.

TABLE 3. List of RESs and EV discharging costs.

TABLE 4. List of D-EVSE selling price based on ToU pricing.

TABLE 5. List of RESs’ and EV’s discharging prices.

The RESs’ and EV’s discharging selling prices are shown
in Table 5.

We assume that the proposed model is implemented in the
city of Ottawa, Canada, in the summertime. The D-EVSEs’
locations in the city of Ottawa are known and fixed. In this
study, we consider the following:
• EV charging and discharging processes
• Ottawa’s ToU pricing policy in the case of charging from
the power grid as shown in Table 2

• additional 15% charging fees D-EVSEfeesj in the case of
charging from the power grid as shown in Table 4.

However, we do not consider the flowing parameters in our
study:
• Battery Deep of Discharge (DoD)
• Time to live (TTL)
In our discussion, we calculate the D-EVSE price diversity

and profit for each hour, and we show the average of the
D-EVSE price diversity and the D-EVSE profit. We study
the following five EV arrival scenario rates in our simu-
lation discussion: our EV arrival rate estimation, Poisson
distribution, homogeneous Poisson processes, and two sce-
narios with non-homogeneous Poisson processes intensity.
To keep consistency in our explanation, we chose D-EVSEs
1 to 3 to present the performance of our proposed model.
Moreover, D-EVSEs-AVG shows average performance of
our proposed model in all D-EVSEs. There is no rational
reason behind choosing D-EVSEs 1 to 3 because, in some
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FIGURE 2. EV arrival rates with our arrival rate estimation.

cases, the D-EVSEs-AVG perform much better than the pre-
sented D-EVSEs 1 to 3, which means the other D-EVSEs
obtained better performance than the illustrated stations. Each
D-EVSE will have a random amount of power from Renew-
able Energy Sources (RESs) SoC

ESSj
RES between 11.5 to 19MW.

Also, each D-EVSE will receive a random number of EVs
with their unanticipated power demand SoCEVi

ch (t).

A. EV ARRIVAL RATES WITH OUR ARRIVAL
RATE ESTIMATION
In this scenario, the EV arrival rates in D-EVSEs are based
on the probability shown in Figure. 2. The EV arrival rates
are based on our estimation [53].

Figure. 3 compares the price diversities between D-EVSEs
1 to 3 and the average of all 12 D-EVSEs (D-EVSEs-AVG).
The price at the beginning of the operation time is almost
the same in D-EVSE-1 and D-EVSEs-AVG; however, the
D-EVSE-3 is almost completely reliant on the RES’s
price while D-EVSE-2 is almost dependent on the power
grid’s price. During the RESs’ power production time from
(10 a.m. - 4 p.m.), the amount of generated energy from
RESs contributes enough power for the stations. It mitigates
the power load on the power grid. However, at the time
(12 p.m. - 3 p.m.), the D-EVSEs are almost completely reliant
on RESs power production and price.

Table 6 shows the average charging price based on the
RESs, the power grid, and the EV discharging power prices.
As shown in Table 6, the average charging price during
the mid-peak time (7 a.m. - 11 a.m.) is between 17.66 to
17.86 cents in CAN$/kW. The RESs power price is 18 cents
in CAN$/kW, and the power grid price during mid-peak is
17.25 cents in CAN$/kW as shown in Tables 5 and 4. This
means that all D-EVSEs depend more on the RESs power
than on the power grid as depicted in Table 6. However,
during the on-peak time (11 a.m. - 5 p.m.), the average
charging prices rely on RESs’ price. From (5 p.m. -7 a.m.)
the charging price is between 16.88 to 17.17 cents in
CAN$/kW. This means that the EV discharging processes
also affect the charging prices because the power grid price
is 17.25 cents in CAN$/kW at mid-peak while the EV dis-
charged power price is 15 cents in CAN$/kW as presented

FIGURE 3. Average of the D-EVSEs’ diverse charging price comparing
D-EVSEs 1 - 3 with D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 6. Average D-EVSEs’ charging price (in CAN$).

in Tables 4 and 5 respectively. After sunset, the average charg-
ing price for all D-EVSEs is dependent on the power grid’s
price.

Figure. 4 compares the average profits of the D-EVSEs
1- 3 with all 12 D-EVSEs’ average profits presented as
D-EVSEs-AVG. The same figure with Figure 2 illustrates
that when the EV charging demands are high and the amount
of RESs’ energy production is high, the profit increases
accordingly and more specifically from (8 a.m. - 12 p.m.)
and (2 p.m. - 4 p.m.). Therefore, the D-EVSE will get the
most profits can get. However, when EV charging demands
are low and the amount of RESs energy production is high
such as between (12 p.m. - 2 p.m.), then the D-EVSE makes
a fair profit. The D-EVSE profit starts decreasing from
(6 p.m. - 12 a.m.) due to few EVs. The D-EVSEs rely on
the power grid price, which also shows that all D-EVSEs
obtained the lowest profit during the day.

As the results illustrate in Table 7, the total profit is
compared with the average profit for all 12 D-EVSEs
(D-EVSEs-AVG) during the ToU pricing classification. The
D-EVSEs is most profitable when the RESs power pro-
duction contributes to the power grid during mid-peak
(7 a.m. -11 a.m.) and on-peak (11 a.m. -5 p.m.) as shown
in Table 7. Table 7 also shows that the D-EVSEs-AVG
profit is greater than the profit of D-EVSE-3 at the time
(6 a.m. - 11 a.m.), which means that the other D-EVSEs
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FIGURE 4. Average of the D-EVSEs’ profits comparing D-EVSEs 1 - 3 with
D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 7. Average D-EVSEs’ profit (in CAN$).

TABLE 8. Comparison of purchased power for D-EVSEs 1 - 3 and
D-EVSEs-AVG.

are more profitable than D-EVSE-2. However, during the
on-peak period, D-EVSE-1 and D-EVSE-3 are far more prof-
itable than D-EVSE-2 and D-EVSEs-AVG.

Table 8 shows the percentage of power contributed from
RESs as well as the purchasing power from the power
grid and EV discharging processes. The table shows that
RESs’ power contributes more than 57% of the total sold
power. This means that the RESs are profitable for the
D-EVSEs and havemitigated the power demand on the power
grid. Also, the EV discharging processes have contributed
4% of the total sold power for D-EVSE-1 and 2% of the
total sold power for the other D-EVSEs. Since this model’s
objective is to maximize profit, EV charging processes are
prioritized.

FIGURE 5. EV arrival rates with poisson distribution.

FIGURE 6. Average of the D-EVSEs’ diverse charging prices comparing
D-EVSEs 1 - 3 with D-EVSEs-AVG of the 12 D-EVSEs.

B. EV ARRIVAL RATES WITH POISSON DISTRIBUTION
Figure. 5 shows the probability of EV arrival rates. The EV
arrival rate is assumed to be Poisson processes [54], [55] with
an arrival rate λ = 8.

At the time between (7 a.m. - 10 a.m.) when there
is a very high EV arrival rate with accompanying power
demands, the average price for all D-EVSEs relies on the
power grid price as shown in Figure 6. On the other hand,
the same figure demonstrates that the D-EVSE-3 obtains
enough power from the RESs from (12 p.m. - 6 p.m.). We can
observe that all D-EVSEs are totally reliant on RESs between
(3 p.m. - 6 p.m.) due to a low EV arrival rate.

Table. 9 illustrates the average charging price for all
D-EVSEs. Aswe can see from this table, the average charging
price at the time between (11 a.m. - 5 p.m.) is between 18 to
19.35 cents in CAN$/kW. This means that the power price
is based on RESs’ price because the power grid price at
these times is 24.955 cents in CAN$/kW. In contrast, most
D-EVSEs rely on the power grid price from (5 p.m. - 12 a.m.).

Due to a considerable number of EV arrivals between
(7 a.m. - 11 a.m.), as shown in Figure 5, the D-EVSEs
obtained the highest profit for all D-EVSEs. However,
D-EVSE-2 and D-EVSE-1 obtained the highest profit
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TABLE 9. Average charging price for D-EVSEs (in CAN$).

FIGURE 7. Average of the D-EVSEs’ profits comparing D-EVSEs 1 - 3 with
D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 10. Average D-EVSEs’ profit (in CAN$).

compared to other D-EVSEs except at the beginning of its
operation (6 a.m. - 7 a.m.).

The average total profit comparing all D-EVSEs is shown
in Table 10. The D-EVSEs’ profit begins to decrease from
1 p.m. to 7 p.m. After 7 p.m., the profit for each hour is mea-
gre; in some cases, such as for D-EVSE-1 and D-EVSE-2,
the profit is zero. As mentioned previously, the profit rate
decreases due to the low EV arrival rate with their accom-
panying power demand.

As mentioned previously, D-EVSE-2 and D-EVSE-1
obtained the highest profit compared to other D-EVSEs
because of the RESs’ power contribution to the D-EVSE-2
and D-EVSE-1 as shown in Table 11 and Table 9.. Also,

TABLE 11. Comparison of the purchased power for D-EVSEs 1 - 3 and
D-EVSEs-AVG.

FIGURE 8. EV arrival rates with homogeneous poisson processes.

FIGURE 9. Average of the D-EVSEs’ diverse charging price comparison for
D-EVSEs 1 - 3 with D-EVSEs-AVG of the 12 D-EVSEs.

the EV discharging processes contributed more than 3%, 4%,
5%, and 7% for D-EVSE-1, D-EVSE-3, D-EVSEs-AVG, and
D-EVSE-3, respectively.

C. EV ARRIVAL RATES WITH HOMOGENEOUS
POISSON PROCESSES
The EV arrival rates are based on homogeneous Poisson
processes [56], [57]. The EV arrival probability rate is shown
in Figure. 8.

From 9 a.m. to 1 p.m., the average charging prices for
all D-EVSEs is almost completely dependent on RESs’
price, as shown in Figure 9. However, from 1 p.m. to
6 p.m., all D-EVSEs (with the exception of D-EVSE-1) show
that the power price between RESs’ price and power grid
price is slightly higher than the RESs’ price. All D-EVSEs
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TABLE 12. Average D-EVSEs’ charging price (in CAN$).

FIGURE 10. Average of the D-EVSEs’ profits comparing D-EVSEs 1 - 3 with
D-EVSE- AVG of the 12 D-EVSEs.

are reliant on the power grid prices from 6 p.m. to
12 p.m. The red curve (D-EVSEs-AVG) demonstrates that
the D-EVSEs-AVG charging price is less than the D-EVSE-3
(black curve) from 1 p.m. to 6 p.m.

Table 12 demonstrates that the charging prices from
(6 a.m. - 7 a.m.) for D-EVSE-1 and D-EVSEs-AVG are close
to RESs’ price while the charging prices for D-EVSE-2 and
D-EVSE-3 are shared between the RESs’ price and the power
grid price. However, from (7 a.m. - 11 a.m.), which is mid-
peak, the charging price for all D-EVSEs is close to the
RESs’ price. By observing Table 12, we can see that from
5 p.m. to 7 p.m., the average charging prices for D-EVSE-2
and D-EVSE-3 as well as D-EVSEs-AVG are less than the
charging prices at mid-peak of 17.25 cents in CAN$/kW.
This means that these three D-EVSEs accept more EV dis-
charging processes than D-EVSE-1. In contrast, all D-EVSEs
from 7 p.m. to 12 a.m. are based on the power grid’s
price.

As shown in Figure. 10 the D-EVSE-3 and D-EVSE-2
profits (black and green curves) are higher than the other
curves. However, the D-EVSEs-AVG gained more profit than
D-EVSE-1 except at the end of its operation time from 7 p.m.
to 12 a.m.

As shown in Table 13, D-EVSE-2, D-EVSE-3, and
D-EVSEs-AVG obtained more profit than D-EVSE-1 from
6 a.m. to 7 p.m. while D-EVSE-1 gained more profit than
the other D-EVSEs from 7 p.m. to 12 a.m. From 7 a.m. to

TABLE 13. Average D-EVSEs’ profit (in CAN$).

TABLE 14. Comparison of the purchased power for D-EVSEs 1 - 3 and
D-EVSEs-AVG.

FIGURE 11. EV arrival rates with non-homogeneous poisson processes -
case (1).

5 p.m., we notice that D-EVSE-2 gained more than 20%,
5%, and 12% profit compared to D-EVSE-1, D-EVSE-2, and
D-EVSEs-AVG respectively.

Table 14 illustrated that D-EVSE-1, D-EVSE-2 and
D-EVSEs-AVG obtained 72%, 51% and 57% respectively
RESs powermore thanD-EVSE-3which obtained 41%RESs
power and the 57%power from the power grid. Also, the EVs’
discharging power contributes more than 2% in all D-EVSEs
except D-EVSE-1, which is 1%.

D. EV ARRIVAL RATES WITH NON-HOMOGENEOUS
POISSON PROCESSES INTENSITY - CASE (1)
In this subsection, the EV arrival rates are modelled as a non-
homogeneous poisson processes intensity [58]. The probabil-
ity of EV arrival rate is as shown in Figure. 11.
Figure. 12 shows that all D-EVSEs share the price between

RESs and the power grid from 6 a.m. to 10 a.m. How-
ever, from 10 a.m. to 5 p.m., the average charging price in
D-EVSEs-AVG is less than the average charging prices for
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FIGURE 12. Average of the D-EVSEs’ diversity charging price comparison
for D-EVSE 1 - 3 with D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 15. Average D-EVSEs’ charging price (in CAN$).

D-EVSEs (1 to 3). This means that the D-EVSEs-AVG is
dependent on the RESs’ price. The price of all D-EVSEs
decreases and is most likely dependent on the power grid
price from 5 p.m. to midnight.

The D-EVSEs-AVG charging price at the time (6 a.m. to
7 a.m.) and (11 a.m. to 5 p.m.) is less than the charging price
of D-EVSE-1, D-EVSE-2, and D-EVSE-3. This means that
the D-EVSEs-AVG is more reliant on the RESs than the other
D-EVSEs as shown in Table 15. From (7 a.m. to 11 a.m.),
all D-EVSEs are most likely dependent on RESs. As we see
in the same table, the EV discharging processes contribute
power, and the D-EVSEs’ charging prices are less than the
power grid’s price at the time (5 p.m. to 7 p.m.).

Figure. 13 shows that the profit obtained by D-EVSE-3
(black curve) is higher than the profit obtained by the other
D-EVSEs from 11 a.m. to 4 p.m. In addition, the profit
obtained by D-EVSE-2 (green curve) is higher than the profit
obtained by the other D-EVSEs from 7 a.m. to 10 a.m.
The profit begins dropping at 5 p.m. for all D-EVSEs and
especially after 7 p.m..

Table 16 shows that D-EVSE-3 and D-EVSEs-AVG
obtained more profit than D-EVSE-1 and D-EVSE-2 at the
beginning of the operation time. However, D-EVSE-3 gained
more profit than the other D-EVESs at all times except from
11 a.m. to 5 p.m. Between 11 a.m. to 5 p.m., D-EVSE-1
gained more profit than other D-EVSEs. We notice that
D-EVSEs-AVG and D-EVSE-3 obtained higher profit than
D-EVSE-1 and D-EVSE-2 from 5 p.m. to 12 a.m.

FIGURE 13. Average of the D-EVSEs’ profits comparing D-EVSEs 1 - 3 with
D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 16. Average D-EVSEs’ profit (in CAN$).

TABLE 17. Comparison of the purchased power for D-EVSEs 1 - 3 and
D-EVSEs-AVG.

D-EVSEs-AVG and D-EVSE-1 obtained more than 59%
and 55% RESs’ power respectively while D-EVSE-2 and D-
EVSE-3 relied on the power grid and obtained 52% and 53%
respectively as demonstrated in Table 17. The same table
shows that the EVs’ discharging power contributed more
than 3% to all D-EVSEs with the exception of contributing
approximately 2% to D-EVSE-2.

E. EV ARRIVAL RATES WITH NON-HOMOGENEOUS
POISSON PROCESSES INTENSITY - CASE (2)
The EV arrival rates are modelled as a non-homogeneous
Poisson process with intensity [58]. The probability of EV
arrival rates is presented in Figure. 14.

We can observe in Figure 15 that the EV charging
price from 7 a.m. to 10 a.m. is similar for all D-EVSEs.
The D-EVSE-2 is dependent on RESs’ price at the time
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FIGURE 14. EV arrival rates with non-homogeneous poisson processes -
case (2).

FIGURE 15. Average of the D-EVSEs’ diverse charging price comparing
D-EVSEs 1 - 3 with D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 18. Average D-EVSEs’ charging price (in CAN$).

(12 p.m. to 2 p.m.) while the D-EVSE-1 is most likely depen-
dent on the power grid’s price more specifically between
(12 p.m. to 1 p.m.). The D-EVSEs-AVG charging price is the
highest among the other D-EVSEs at 9 a.m. and 3 p.m. As
shown in Figure 15, the EV discharging power also influences
the EV charging price from 6 p.m. to 7 p.m.

Table 18 shows that D-EVSE-2, D-EVSE-3, and
D-EVSEs-AVG charging prices are close to RESs’ price
while D-EVSE-1 is close to the power grid’s price from
7 a.m. to 11 a.m. D-EVES-2 charging price is 20.70 cents
in CAN$/kW. This means that D-EVES-2 relies on both

FIGURE 16. Average of the D-EVSEs’ profits comparing D-EVSEs 1 - 3 with
D-EVSEs-AVG of the 12 D-EVSEs.

TABLE 19. Average D-EVSEs profit (in CAN$).

the RESs’ price and the power grid price but more on the
RESs’ price. Furthermore, all D-EVSEs’ prices from 5 p.m.
to 7 p.m. indicate that the EV discharged price contributes to
all D-EVSEs. The same table also presents that all D-EVSEs’
charging prices from 8 p.m. to 12 a.m. are dependent on the
power grid price.

As shown in Figure. 16, D-EVSE-2 presents the highest
profit compared to other D-EVSEs from 8 a.m. to 10 a.m.
while the D-EVSEs-AVG is the lowest. D-EVSE-3 obtains
the highest profit at 1 p.m. and 7 p.m. and the lowest profit at
11 a.m., 4 p.m., and 6 p.m. In contrast, D-EVSE-1 obtained
the highest profit compared to other D-EVSEs at 7 a.m. and
12 p.m. and from 4 p.m. to 6 p.m.

Table 19 presents the total average D-EVSEs’ profit.
D-EVSE-1 and D-EVSE-2 obtain more profit than
D-EVSE-3 andD-EVSEs-AVGat the time (7 a.m. – 11 a.m.).
From 11 a.m. to 5 p.m., D-EVSE-1 and D-EVSEs-AVG
obtain the highest profit compared to D-EVSE-2 and
D-EVSE-3. As we can see from the same table, the least
profitable D-EVSE from (7 a.m. - 5 p.m.) is D-EVSE-3, while
the most profitable is D-EVSEs-AVG.

In Table 20,, the RESs’ power contributes more than 49%
to all D-EVSEs with the exception of contributing more than
45% toD-EVSE-3. However, D-EVSE-1 is less than 50%, but
the purchasing power from the power grid is 48%. D-EVSE-3
obtained 45% from the total sold power and 53% from the
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TABLE 20. Comparing the purchased power for D-EVSEs 1 - 3 and
D-EVSEs-AVG.

power grid. Furthermore, the EVs’ discharging power con-
tributes more than 3% to all D-EVSEs, with the exception of
contributing 2% to D-EVSE-3.

According to D-EVSEs’ profit figures, when EV charging
demands are high and the amount of RESs’ energy production
is high, the profit increases accordingly. As demonstrated in
all figures and tables, RESs are profitable and mitigate the
power grid’s power load. Moreover, RESs make a signifi-
cant contribution to the D-EVSEs’ profit and charging price.
Furthermore, the EV discharging power and price contribute
to the EV charging price; however, due to this study’s aim,
which is maximizing the D-EVSE profit, the priority is to
reserve the plug-in sockets for charging processes. These
results prove that the D-EVSE with our proposed decentral-
ized profit maximization algorithm (DPMA) can maximize
its profits more efficiently and manage the EV charging
process more effectively. It can also efficiently manage the
connection between the D-EVSE and the power grid while
taking into account the D-EVSEs’ sustainability.

V. CONCLUSION
In this paper, we have proposed a Decentralized Profit
Maximization Algorithm (DPMA) aiming to optimize the
D-EVSEs’ profits. Solar energy was the primary power
source for the D-EVSE, while D-EVSE has a reciprocal
link to the power grid. D-EVSEs manage the reciprocal
link for the power grid’s requisition between D-EVSE and
the power grid. The DPMA helps D-EVSEs maximize their
profit from the electricity price variation during the day when
selling or buying electricity respectively to EVs or from
the grid and EV as discharged power processes. Moreover,
renewable energy production reduces the power load on
the power grid. For D-EVSEs’ charging prices and prof-
its, we presented a comparative study between different
D-EVSEs.

The proposed model maximized D-EVSE profits signifi-
cantly in all different scenarios and showed that the RESs are
more profitable than the power grid for D-EVSE. Five EV
arrival rate scenarios were considered to investigate the effi-
ciency of our proposed model. Simulation results conducted
to validate the proposed algorithm demonstrated its effective-
ness while satisfying the defined constraints. In future work,
we plan to extend our proposed model and test using other
RESs such as wind turbines to help the D-EVSE lower its
dependency on the power grid. Also, we plan to add battery
depth of discharge and battery time to live parameters to test

the proposed model. Moreover, the game-theoretic approach
will be applied to future work to maximize the D-EVSEs’
profit and also minimize the EVs’ charging cost.
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