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ABSTRACT Strict restrictions on spectrum utilization and the rapid increases in mobile users have brought
fundamental challenges for mobile network operators in securing sufficient spectrum resources. In designing
reliable cellular networks, it is essential to predict spectrum saturation events in the future by analyzing
the past behavior of base stations, especially their frequency resource block (RB) utilization states. This
paper investigates a deep learning-based forecasting strategy of the future RB usage rate (RBUR) status of
hundreds of LTE base stations deployed in Seoul, South Korea. The dataset consists of real measurement
RBUR samples with a randomly varying number of base stations at each measurement time. This poses
a difficulty in handling variable-length RBUR data vectors, which is not trivial for state-of-the-art deep
learning estimation models, e.g., recurrent neural networks (RNNs), developed for handling fixed-length
inputs. To this end, we propose a two-step RBUR estimation approach. In the first step, we extract a useful
feature of the RBUR dataset that accurately approximates the behavior of the top quantile base stations. The
feature parameters are carefully designed to be fixed-length vectors regardless of the dimensions of the raw
RBUR samples. The fixed-length feature parameter vectors are readily exploited as the training dataset of
RNN-based prediction models. Thus, in the second step, we propose a feature estimation strategy where the
RNN is trained to predict the future RBUR from the input feature parameter sequences. With the estimated
RBUR at hand, we can easily predict the spectrum saturation of the future LTE systems by examining the
resource utilization states of the top quantile base stations. Numerical results demonstrate the performance
of the proposed RBUR estimation methods with the real measurement dataset.

INDEX TERMS LTE, recurrent neural network, resource block usage rate, spectrum saturation.

I. INTRODUCTION
Exploding mobile traffic demands, which mostly are
stemmed from the rapid increase in mobile communication
subscribers and the requirements for high-resolution mul-
timedia supports, have become severe problems in design-
ing wireless communication systems. Strict restrictions on
the utilization of wireless resources prohibit mobile network
operators (MNOs) from simply exploiting a wide range of
frequency spectrum. With limited frequency resources, base
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stations deployed in hotspot areas can hardly serve mobile
users rushed into busy hours. In cellular network systems, this
poses a spectrum saturation issue [2], [3] where the commu-
nication of mobile devices is no longer supported due to the
shortage of the capacity. A fundamental solution is to per-
form an efficient spectrum allocation across distributed base
stations such that base stations with bursty traffic require-
ments can get access to more frequency resources. To proceed
with this dynamic network optimization task, MNOs need to
accurately predict the behavior of cellular networks such as
changes in mobile traffic and resource usages of each base
station.
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Predicting short-term changes in wireless networks has
been intensively studied in various scenarios. A recursive
partitional clustering algorithm is presented in [7] to esti-
mate patterns of mobile network traffic. It characterizes geo-
graphic models of spatial traffic. The work in [8] designed a
mobility model for wireless multimedia networks to obtain
analytical expressions for traffic distribution. Although these
seminal works have opened new research opportunities to
network traffic predictions, such model-based approaches
lack generality for adapting real-world datasets that are typ-
ically unstructured and highly randomized with unavailable
distributions and unknown correlation measures. To handle
such a chaotic nature of mobile communication systems,
it is essential to develop a more sophisticated model-free
estimation method that does not require any prior knowledge
of networking models.

A. RELATED WORKS
Such a challenge can be addressed by regression techniques
in the machine learning field, where estimation rules of arbi-
trary systems are identified in a data-driven manner. The
time-varying properties of mobile networks make a traffic
estimation problem as a task of handling time series data.
Shallow structures, e.g., the support vector regression (SVR),
have been exploited to address such estimation formula-
tions [9], and they have been shown to be effective in certain
applications including user tracking scenarios [10]. However,
practical cellular networks consist of numerous base stations
distributed over a wide range of coverage area, and thus the
prediction of the mobile traffic flows need a more powerful
and intelligent architecture.

Recent successes of deep learning (DL) techniques [11],
[12] have brought intensive researches on various prediction
applications in wireless systems. Among diverse neural net-
work (NN) structures, recurrent NNs, in particular, the long-
short term memory (LSTM) [13] and the gated recurrent
unit (GRU) [14] have been proven to be suitable for time
series prediction problems. The feasibility of the LSTM for
the security of the internet-of-things environment has been
studied in [15]. A binary classification technique is provided
to detect attack events from network trace datasets including
packet payload. The work in [16] employs the LSTM to
forecast traffic and user location. It has been revealed that the
LSTM structure indeed outperforms shallow networks such
as the SVR and the autoregressive integrated moving average
model. However, it is confined to the short-term prediction of
fivemobile users, and such small-scale results cannot provide
any insights into the design of the large-scale network deploy-
ment. To handle the spectrum saturation issue effectively, it is
necessary to focus on the overall cellular network, which
typically consists of hundreds of base stations.

Traffic estimation techniques ofmultiple base stations have
been investigated in [17]. To capture the correlations among
spatially distributed base stations, the concept of multi-task
learning is employed which constructs an individual LSTM
for the traffic prediction of each base station. These individual

LSTMs are connected by a common shared NN that extracts
the spatial correlation features of distributed base stations.
The dataset of [17] comprises the traffic volumes of sixteen
base stations, and the multi-task LSTM architecture has been
proven to be efficient in their scenarios. For the network-wide
prediction tasks, however, a massive number of cells should
be considered, and the dataset of [17] is far from the practi-
cal network deployment problems. Therefore, the approach
in [17] would entail the scalability issue since it requires
to train and execute multiple LSTM modules dedicated to
particular base stations. Traffic loads of thousands of base
stations in China have been studied in [18]. Spatio-temporal
correlation features of the network-wide traffic dataset are
extracted by using autoencoder units. A similar multi-task
learning architecture is adopted so that multiple autoen-
coders, each developed for the prediction of each base station,
should be executed for the traffic estimation of the interested
network region, still lacking the scalability. To this end, [19]
presents a novel DL-based traffic prediction framework that
converts the traffic data of Milan into graphical images called
traffic heat maps. The traffic of base stations is represented
as intensities of a pixel in an image capturing the networking
area. The authors in [19] combined convolutional NNs and
LSTM to handle spatially and temporally correlated images.

Despite these recent progresses, the spectrum saturation
issue has not yet been addressed adequately since existing
researches are dedicated to predicting the mobile traffic data.
Base stations in LTE-A systems are assigned by hetero-
geneous capacity, i.e., frequency channels and bandwidth,
according to their target coverage. Although the mobile
traffic is suitable for quantifying the absolute capacity of
base stations, it cannot provide intuition on heterogeneous
network deployments and diagnosis of spectrum saturation.
To this end, our focus should be on the network-wide trends
of the capacity of base stations, rather than simply forecasting
the absolute capacity changes in the traffic curves. Hence,
the dataset needs to involve the utilization status of the fre-
quency resources of busy-hour base stations. Such a measure
is referred to as resource block usage rate (RBUR) [2]–[6],
which defines the ratio of the spectrum utilization to the total
available frequency bandwidth. The RBUR has been recently
analyzed in [2]–[6] as a crucial measure of the network behav-
iors including the spectrum saturation, spectral efficiency,
and upper limits on the mobile traffic. The RBUR measures
the margin of frequency resources to the maximum allowable
bandwidth, i.e., the relative capacity of heterogeneous base
stations. Thus, it can provide important guidelines to the
MNOs on how much spectrum should be reserved for future
communication services. Therefore, the RBUR is suitable for
the diagnosis of spectrum saturation issues [3].

For the target of analyzing the spectrum saturation,
the RBUR dataset only includes a subset of base stations with
bursty traffic demands that exhibit the top quantiles of the
RBUR. The number of base stations involved in the RBUR
dataset varies according to the measurement time, theMNOs,
and the operating frequency band. Thus, the dimension of the
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resulting training samples is not the same. Existing NN-based
approaches cannot be directly applied to this scenario since
they require the identical size of input data. This drawback is
mainly stemmed from the fact that NNs, especially the RNN
structure, are designed to accept inputs with fixed dimen-
sions. Therefore, to predict the busy-hour RBUR correctly,
it is essential to develop a novel DL technique that is flexible
to the input data size.

B. CONTRIBUTIONS
This paper proposes a DL-based RBUR prediction model
focusing on the long-term evolution (LTE)measurements and
LTE-advanced (LTE-A) systems in Seoul, South Korea. The
RBUR samples are measured at hundreds of base stations
deployed in hotspot areas in Seoul. The considered RBUR
dataset has recently been investigated in [3] collected for
24 months. Compared to this existing study, this work han-
dles a more high-dimensional RBUR dataset measured for
38 months. Due to the randomness in the number of base
stations operating at each month, the RBUR dataset consists
of sample vectors with lengths varying for each measurement
time. This blocks us to straightforwardly employ conven-
tional RNN-based prediction models as in [3], [15]–[19].
To address this difficulty, the authors in [3] a probabilis-
tic approach that identifies an empirical distribution of the
RBUR dataset. With properly chosen probability density
functions, the RBUR samples of unavailable base stations
are randomly generated so that all the data vectors have an
identical length. The resulting artificial realizations are read-
ily utilized for the training of RNNs. However, the method
in [3] degrades the prediction performance due to the random-
ness incurred in the artificial training dataset. Furthermore,
training RNN models with high-dimensional input features
is difficult, which typically leads to significant performance
degradation. Since we consider a more number of samples,
the conventional approach cannot be directly applied to our
scenario.

To handle this issue, we propose an efficient RBUR
estimation approach, which consists of two consecutive
machine learning procedures: feature extraction step and
feature estimation step. The feature extraction step identifies
a low-dimensional characterization of the high-dimensional
RBUR samples, referred to as a feature parameter. The feature
parameter is carefully designed such that it can accurately
approximate the real measurement RBUR dataset. We opti-
mize the feature parameter based on the nonlinear regression
concept. The resulting feature parameter is shown to be a
fixed dimensional vector for all measurement time, and thus it
is readily processed by conventional RNN structures. This is
achieved by the feature estimation step, whose target is to pre-
dict the extracted feature parameters, rather than forecasting
the high-dimensional RBUR samples. Notice that the exist-
ing work [3] has focused on estimating RBUR realizations
artificially sampled from the empirical distribution found
from the measurement data. Such an empirical sampling
approach incurs the random imperfection in a training dataset,

thereby leading to performance degradation. Moreover, this
conventional method directly tackles the estimation of the
high-dimensional dataset, requiring prohibitive training com-
plexity. The proposed feature estimation step addresses this
difficulty by predicting the extracted low-dimensional feature
parameters. For the feature estimation step, the RNN-based
prediction model is presented for predicting the time series
of the extracted features. To diagnosis the spectrum satura-
tion issue efficiently, a new performance metric is designed,
which measures the network-wide occupation states of fre-
quency resources by carefully aggregating the RBURs of
each frequency band. Numerical results verify the effective-
ness of the proposed RBUR prediction method.

The rest of this paper is organized as follows. Section II
explains the RBUR dataset and its pre-processing strategy
for the target of the spectrum saturation analysis. The feature
extraction step is presented in Section III, and it is followed
by the RNN-based feature estimation method in Section IV.
Numerical results for demonstrating the proposed approach
are given in Section V. The paper is terminated with conclud-
ing remarks in Section VI.

II. DATA DESCRIPTION
To analyze the network stability and the spectrum saturation
issues, MNOs collect their RBUR data [2], [3] of all base
stations. The RBUR is defined as the ratio of the number of
occupied RBs to the total number of available RBs within an
hour. In particular, the busy-hour RBUR indicates the highest
RBUR in a single day. In what follows, the RBUR implies the
busy-hour RBUR.

Base stations deployed in densely populated cells exhibit a
significantly higher RBUR than those in rural areas, which,
in general, have sufficient frequency resources for support-
ing only a small number of subscribers. We thus focus on
sampled cells showing the top 10% RBURs in hotspot areas
of Seoul, South Korea. More precisely, among total L cells
in Seoul, the RBURs of the top 10% quantiles, i.e., 0.1L
cells, are available in the considered dataset. Two anonymous
MNOsmeasure the RBUR for 38months fromMarch 2017 to
April 2020. For convenience, we denote these MNOs as
operators A and B. We focus on investigating the long-term
behavior of base stations to effectively address the spectrum
saturation diagnosis in a long period, e.g., a half year. Thus,
each RBUR sample stands for the average resource utilization
rate over weekdays in the third week of each month. Such a
long-term network prediction helps the MNOs to handle the
spectrum saturation problem in a network-wide perspective
[20], [21]. The estimated long-termRBUR can be exploited to
investigate the demands of mobile users at a certain spectrum
band, helping the MNOs set their strategies for the frequency
auction in the future.

Two MNOs operate in distinct frequency bands, each
having different bandwidths. The bandwidths of the LTE
and LTE-A systems are given by 10 MHz and 20 MHz,
respectively, each of which contains 50 and 100 RBs [1].
For anonymity requested from the MNOs, we do not specify
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the number of frequency bands and their bandwidths as well
as carrier frequencies. The b-th operating frequency band of
operator z ∈ {A,B} is referred to as band zb. Without loss
of the generality, operator z is assumed to have Fz distinct
frequency bands, i.e., b = 1, . . . ,Fz. The number of cells in
the dataset is not fixed but exhibits highly randomized proper-
ties. It changes for measurement month, operating frequency
band, and theMNOs. Such a variation is incurred due to some
practical issues, e.g., installing new base stations or removing
existing ones. These replacements occur monthly. Therefore,
predicting the RBUR of a specific base station is not mean-
ingful. Instead, we need to focus on analyzing the behavior
of the overall cellular network. In our dataset, the numbers of
top 10% cells vary 347 to 596 and 165 to 796 for operators
A and B, respectively. This heterogeneous data size blocks us
to employ NN-based prediction models, such as the LSTM,
as in existing studies [3], [15]–[19].

To handle this issue, we first pre-process the raw RBUR
dataset. Let Lzb,m be the number of cells of band zb, i.e., the
b-th frequency band of operator z (z ∈ {A,B}), measured at
month m (m = 1, . . . ,M ) where M = 38 is the total number
of the measurement months. The RBUR data of particular
zb and m can be represented by a Lzb,m-dimensional vector.
The elements of the RBUR vector are first sorted in the
decreasing order, and the resulting ordered vector is denoted
by yzb,m. Such an ordering is essential to facilitate the diagno-
sis of the spectrum saturation issues. For instance, if the i-th
element of yzb,m can be predicted accurately, we can get the
resource utilization status of the base station occupying the
i-th most spectrum resources in the top 10% cells.

Since the number of the cells Lzb,m highly fluctuates for
each monthm, we first normalize its domain into the bounded
range in the unit of percentage. Recalling that yzb,m contains
the RBUR of the top 10% cells, its i-th element becomes the
RBUR of the top 10i

Lzb,m
%base station. These collectively form

the quantile vector xzb,m of length Lzb,m defined as

xzb,m ,

[
10
Lzb,m

,
20
Lzb,m

, . . . ,
10(Lzb,m − 1)

Lzb,m
, 10

]T
. (1)

Finally, the pre-processed RBUR data on frequency band b
of operator z measured at month m consists of a pair of
vectors (xzb,m, yzb,m). The pre-processed ordered statistics
can be efficiently handled by machine learning techniques
that capture regular patterns in input data samples.

In what follows, we propose an efficient prediction method
of the RBUR dataset. A two-step approach is presented. First,
in the feature extraction step, we extract an important charac-
terization of the RBUR dataset that can accurately recover the
groundtruth samples with a low-dimensional feature param-
eter set. Next, in the feature estimation step, a RNN-based
prediction method is provided to predict the feature parame-
ters of the future months.

III. FEATURE EXTRACTION
The pre-processed data tuples (xzb,m, yzb,m) have different
dimension for each m, b, and z, and thus it is not trivial to

handle them with existing NN-based prediction models [3],
[17]–[19] that only accept fixed-length input vectors. For
the successful prediction performance, the temporal corre-
lations of the network-wide data samples typically require
to consider a group multiple units of the LSTM where each
LSTM module is dedicated to each operator and frequency
band [3], [17]–[19]. Since we have a total of eight distinct
spectrum bands for twoMNOs, such a direct approach would
not be practical in our dataset. Although fully convolutional
neural networks could handle variable-length input data,
it typically requires a deep architecture with a large number
of trainable parameters. Furthermore, high-dimensional data
vectors entail fundamental challenges in the training of very
deep NN structures. In particular, we may encounter the
curse of dimensionality issue [12] which incurs sparsely dis-
tributed datapoints in high-dimensional vector space. There-
fore, a very large number of training data samples are needed
to optimize NNs with high-dimensional quantile vectors.

A simple but effective way of addressing the curse
of dimensionality issue is to compress input data into
low-dimensional vector spaces. To this end, this section
presents feature extraction methods that characterize the
high-dimensional RBUR data by using few parameters with a
fixed size. The proposed feature extraction method employs
three trainable parameters which are optimized to gen-
erate the RBUR samples accurately. As will be shown
later, the accuracy of the feature extraction approaches the
upperbound R-square performance. Consequently, the pro-
posed feature extraction method is suitable for han-
dling the variable-length input data as well as extracting
low-dimensional feature of the RBURmeasurement samples.

The pre-processed RBUR vectors become monotonically
decreasing functions with respect to the quantile percentage
index. Based on this fact, we employ a generative model
f (x; θ ) with a learnable feature parameter θ which character-
izes the RBUR of the top x ∈ [0, 10] percentage cell. In this
work, the following power series model is considered.

f (x; θ zb,m) = αzb,mx
βzb,m + γzb,m, (2)

where αzb,m, βzb,m, and γzb,m are parameters to be trained.
They collectively form a three-tuple feature parameter
θ zb,m , (αzb,m, βzb,m, γzb,m). We refer (2) as a feature
model. A three-tuple of these trainable parameters θ zb,m =
(αzb,m, βzb,m, γzb,m) acts as a feature of the RBUR sam-
ples of a certain band zb measured on month m. With the
properly optimized θ zb,m at hand, we can create the RBUR
data of the top x percentage base station by using the pro-
posed feature model (2). The feature parameter θ zb,m can
also be regarded as a compression of the raw RBUR data
that can generate numerous realization of the RBUR sam-
ples from the generative model (2). As a result, the origi-
nal RBUR data of size Lzb,m, which is larger than 347 for
operator A, can be reduced into three-dimensional feature
parameter. As will be explained in Section IV, this feature
parameter becomes the target of our RNN-based predic-
tion model. Processing with the three-dimensional feature
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FIGURE 1. Comparison of generated and measured RBUR samples of
band A1.

parameter θ zb,m = (αzb,m, βzb,m, γzb,m) is more efficient
than handling the high-dimensional real measurement data
directly.

The remaining work is to determine a good feature param-
eter so that it can accurately characterize the stochastic prop-
erties of the RBUR data. To this end, the regression technique
is adopted to train the feature parameter in a supervised
manner. Let (xi, yi), ∀i = 1, . . . ,Lzb,m, be the i-th element
of the groundtruth RBUR tuple (xzb,m, yzb,m), i.e., xi and yi
respectively stand for the i-th elements of xzb,m and yzb,m. The
regression loss function is constructed as the mean-square-
error (MSE) written by

8(θ zb,m) =
1

Lzb,m

Lzb,m∑
i=1

(f (xi; θ zb,m)− yi)
2 (3)

=
1

Lzb,m

Lzb,m∑
i=1

(
f
(

10i
Lzb,m
; θ zb,m

)
− yi

)2

, (4)

where (4) comes from the definition (1). An efficient solution
to the MSE minimization problem can be efficiently attained
from non-linear least square methods [24].

The result for a particular dataset of band A1 measured at
six different months is plotted in Fig. 1. First, it is observed
that the RBUR curves generated by the proposed feature
extraction model effectively characterize the non-increasing
property of the pre-processed RBUR samples. Also, the gen-
erated RBUR data well matches with the real measurement
samples for all simulated months and top 10 quantile. This
implies that high-dimensional RBUR samples can be char-
acterized by three-dimensional feature parameter θ zb,m =
(αzb,m, βzb,m, γzb,m) with high accuracy, which are bridged by
the feature extraction model (2) and the data pre-processing
strategy presented in Section II. To see the estimation accu-
racy of the feature extraction model more clearly, Tables 1
and 2 present the R-squared (coefficient of determination)

TABLE 1. R-squared performance for proposed feature model for
operator A.

TABLE 2. R-squared performance for proposed feature model for
operator B.

performance for the proposed feature model. The R-squared
values of all cases are close to the unity, verifying the accu-
racy of the proposed feature extraction approach. Therefore,
we can conclude that the proposed feature θ zb,m can accu-
rately characterizes the real measurement data regardless of
the months and the operators.
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IV. FEATURE ESTIMATION
The three-dimensional feature parameter θ zb,m =

(αzb,m, βzb,m, γzb,m) successfully models the RBUR dataset
which contains high-dimensional vectors yzb,m with variable
length Lzb,m for eachm, b, and z. Hence, in the feature estima-
tion step, we alternatively tackle the estimation procedure of
the feature parameter θ zb,m instead of handling the rawRBUR
data yzb,m. As discussed, the proposed feature model accu-
rately characterizes the real-measurement RBUR samples,
which indeed form the time series dataset. This implies that
the well-trained feature parameter θ zb,m inherits time-varying
properties of the RBUR data for measurement month m =
1, . . . ,M . Therefore, the trained feature parameters θ zb,m
for m = 1, . . . ,M entails temporal correlations of the
real-measurement RBUR samples. To address this time series
data, we propose a RNN-based prediction approach which
is powerful for capturing the temporal correlations of input
data. For the implementation of the RNN, we examine both
the LSTM [13] and GRU architecture [14] in the simulation
which have been proven to be effective than a vanilla RNN
structure.

FIGURE 2. Proposed RNN structure.

Fig. 2 depicts the proposed multi-layer RNN for predicting
future values of the feature parameter. Two distinct RNNs
are employed for each operator. By observing the past S
months’ features θ zb,m, . . . , θ zb,m+S−1, ∀b = 1, . . . ,Fz,
we jointly estimate a group of future parameters θ zb,m+S+Q,
∀b = 1, . . . ,Fz, in Q months. Here, Q denotes the difference
between the target future month and the latest month in the
input sequence. Hence, the input is a sequence of the feature
parameters of length S months, and the corresponding output
becomes the Q-month forward future parameters. To this
end, a many-to-one RNN structure is employed as illustrated
in Fig. 2. As will be discussed in Section V, the choices of
S and Q significantly affect the prediction performance for
the considered RBUR dataset. Thus, the sequence length S
and the target difference Q are regarded as hyperparameters
should be carefully optimized through trial-and-error-based
grid search processes. In this work, we consider themaximum
bound of Q, denoted by V , as Q ≤ V with V < M since we
only haveM = 38 month-long data.

A. TRAINING AND TEST SET
This subsection describes the construction strategies of the
training and testing datasets. Let us define the collection of
the feature parameters θ zb,m for each operator z ∈ {A,B}.
For total M = 38 months m = 1, . . . ,M , the optimized
feature parameters θ zb,m = (αzb,m, βzb,m, γzb,m), ∀m, b, z,
collectively form an augmented data matrix Pz of size
M -by-3Fz denoted by

Pz =


θ z1,1 · · · θ zFz ,1
θ z1,2 · · · θ zFz ,2
...

. . .
...

θ z1,M · · · θ zFz ,M

 (5)

The n-th row vector of Pz denoted by Pz[n, :] becomes an
input to the proposed RNN-based prediction model. The
augmented matrix Pz is split into two sub-matrices Ptrain

z of
size (M − V )-by-3Fz and Ptest

z of size V -by-3Fz which are
utilized for generating train and test datasets, respectively.
More precisely, Ptrain

z and Ptest
z are composed of the first

M − V rows and the last V rows of Pz, respectively. These
are written by

Ptrain
z =

 Pz[1, :]
...

Pz[M−V , :]

 and Ptest
z =

Pz[M−V+1, :]...

Pz[M , :]

.
(6)

We now discuss the generation steps of train and test
datasets illustrated in Fig. 3. Each training sample is needed
to be constructed with an input sequence, i.e., the set of
the feature parameters for the past S months, and the corre-
sponding groundtruth label, i.e., theQ-month forward feature
parameters. Let Ptrain

z [n, :] be the n-th row of the augmented
data matrix Ptrain

z . The k-th training sample of operator z
is represented by a tuple (W(k)

z , t
(k)
z ) of an input sequence

matrixW(k)
z of size S-by-3Fz and the correspondingQ-month

forward groundtruth vector t(k)z of length 3Fz. These are
defined as

W(k)
z =


Ptrain
z [k, :]

Ptrain
z [k + 1, :]

...

Ptrain
z [k + S − 1, :]

 , t(k)z =P
train
z [k+S+Q, :].

(7)

SincePtrain
z containsM−V sequences of the feature param-

eters as row vectors, we can obtain total Ttrain = (M − V )−
(S+Q)+1 training samples by carefully combining the inputs
and their corresponding groundtruth values (see Fig. 3 (a)).
For example, when M = 38, V = 6, S = 4, and Q = 2,
we obtain Ttrain = (38− 6)− (4+ 2)+ 1 = 27 training data
sets. The first training sample in this example is composed
of first S = 4 months input row vectors (March, April, May,
and June 2017) and Q = 2 months later output row vector
(August 2017). In the sameway, the second training sample is
obtained by shifting one month compared to the first training
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FIGURE 3. Generation of train and test datasets.

data set, and then it is composed of S = 4 months input row
vectors (April, May, June, and July 2017) and Q = 2 months
later output vector (September 2017). Similarly, we can gen-
erate V test samples from Ptest

z as depicted in Fig. 3 (b).

B. TRAINING STEP
The training strategy of the proposed RNN with given Ttrain
samples is presented. Let g(·;2z) be a vector-valuedmapping
which characterizes the input-output relationship of the RNN
specified by a trainable parameter set2z for operator z. The
result of the RNN forward computation t̂(k)z = g(W(k)

z ;2z)
for the k-th training input W(k)

z is exploited as the estimate
t̂(k)z of the corresponding groundtruth of the feature parameter
t(k)z in (7). The estimated feature parameter vector t̂(k)z is
represented as

t̂(k)z = g(W(k)
z ;2z) (8)

, [θ̂ z1,k+S+Q · · · θ̂ zFz ,k+S+Q], (9)

where θ̂ zb,m , (α̂zb,m, β̂zb,m, γ̂zb,m) and α̂zb,m, β̂zb,m, and
γ̂zb,m respectively stand for the estimates of the groundtruth
feature parameters αzb,m, βzb,m, and γzb,m that have been opti-
mized through the regression task of (4). The cost function
Cost(k)z (2z) of the k-th training data (W(k)

z , t
(k)
z ) is designed

as the MSE between the proposed feature model in (2) evalu-
ated with the groundtruth t(k)z in (7) and its estimate obtained
by the RNN t̂(k)z = g(W(k)

z ;2z) in (8), i.e., the MSE between
f (·; θ zb,m) and f (·; θ̂ zb,m) for b = 1, . . . ,Fz. It is written
by (10) as shown at the bottom of this page.

As a result, the total MSE cost Cz(2z) for operator z is
given by

Cz(2z) =
1

Ttrain

Ttrain∑
k=1

Cost(k)z (2z).s (11)

The RNN parameter 2z is optimized such that the MSE
cost Cz(2z) is minimized. This can be carried out by the
standard gradient descent (GD) methods, e.g., the Adam
algorithm [23]. Denoting δ > 0 as the learning rate, the GD
update rule for minimizing Cz(2z) can be expressed as

2z← 2z − δ∇Cz(2z), (12)

where ∇ indicates the gradient operator. Such an update is
repeated until the predefined training epoches.

C. ESTIMATION STEP AND SPECTRUM SATURATION
PREDICTION
Once the RNN g(·;2z) is trained for specific input sequence
length S and target difference Q, we can readily obtain the
estimate of the feature parameter as in (8). With the RNN out-
puts θ̂ zb,m, ∀b, at hands, the estimated RBUR for monthm can
be created from the proposed feature model in (2). In partic-
ular, the RBUR of the top x ∈ [0, 10] percentage base station
operating on frequency band b of operator z at monthm can be
predicted as f (x; θ̂ zb,m) = α̂zb,mx

β̂zb,m + γ̂zb,m. By observing
the estimated RBURof a certain quantile x, theMNOs can get
the information regarding the level of the resource occupation
at the future month m. The results would be exploited for the
diagnosis of the spectrum saturation events.

Still, however, it is not easy to infer the status of the overall
network from the estimated RBUR data since it focuses only
on the a certain frequency band b. Furthermore, the perfor-
mance of the LTE and LTE-A systems typically vary for
the frequency bands due to several implementation issues.
For instance, the bandwidths assigned for each operating
spectrum are not the same, thereby resulting in the different
number of the RBs for each band zb. Also, the radius of the
cell coverage region is highly dependent on the frequency
bands [25]. This is due to the fact that the propagation envi-
ronments of radio-frequency signals rely on their carrier fre-
quencies. For this reason, the quality-of-service experienced

Cost(k)z (2z) =
1

Lzb,k+S+QFz

Lzb,k+S+Q∑
i=1

Fz∑
b=1

{(
αzb,k+S+Q

(
10i

Lzb,k+S+Q

)βzb,k+S+Q
+ γzb,k+S+Q

)

−

(
α̂zb,k+S+Q

(
10i

Lzb,k+S+Q

)β̂zb,k+S+Q
+ γ̂zb,k+S+Q

)}2
(10)

VOLUME 9, 2021 59709



H. S. Jang et al.: Deep Learning-Based Prediction of Resource Block Usage Rate

TABLE 3. Model parameters and values.

by mobile users significantly depends on their locations since
the available bandwidth varies according to the distance from
a base station.

To analyze the spectrum saturation effectively, we intro-
duce a new performance metric referred to as an weighted
average RBUR (WA-RBUR) which is designed to compen-
sate for the asymmetry in the bandwidths and cell coverages.
The WA-RBUR is defined as the weighted sum of the RBUR
vectors yzb,m with a predefined weight of ϕzb different fre-
quency bands b = 1, . . . ,Fz. The weight ϕzb with unit sum∑Fz

b=1 ϕzb = 1 represents the contribution of frequency band
b to the overall network capacity, i.e., the number of the RBs
assigned to band b. It is designed such that it can normalize
the effect of heterogeneous bandwidths and coverages. Let
BWzb in MHz and ξzb be the bandwidth and the coverage
of frequency band b of operator z, respectively. Since there
are five RBs per 1 MHz, the number of the RBs assigned
for frequency band zb is given by 5BWzb . Then, the effective
number of the RBs assigned to frequency band zb can be
calculated as

Nzb = ξzb × 5BWzb . (13)

The weight ϕzb can then be defined as

ϕzb =
Nzb∑Fz
i=1 Nzi

. (14)

Finally, the WA-RBUR of operator z at month m is written
by
∑Fz

b=1 ϕzbyzb,m. The WA-RBUR infers the network-wide
resource utilization states by aggregating the RBUR of all
operating spectrum bands with careful considerations of
individual bandwidths and coverages. Therefore, it is more
suitable to predict the spectrum saturation of an operator.
Notice that with the WA-RBUR can be easily evaluated
with the estimated feature parameter θ̂ zb,m obtained by the
proposed RNN.

V. NUMERICAL RESULTS
This section assesses the prediction performance of the pro-
posed RBUR estimation process. Table 3 lists the model
parameters and their values. For the RNN constructions,
we employ both the LSTM and GRUmodels. Various hidden
activations such as the hyperbolic tangent (tanh), rectified lin-
ear unit (ReLU), and leaky ReLU (LReLU) are investigated.
The prediction error of the trained RNNs is measured by the

TABLE 4. Prediction error (%) of operator A.

mean absolute error (MAE) evaluated over the test dataset in
the unit of percentage.

Table 4 presents the prediction error of the WA-RBUR
of operator A with the LSTM and GRU models for various
combinations of the input length S and the target differenceQ.
The best performance is highlighted in boldface blue letters
for each given Q. Regardless of the RNN structures, the tanh
activation exhibits good performance for all simulated Q.
We observe that the GRU performs better than the LSTM.
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The prediction error is less than only 1%whenQ is small, and
it slightly increases asQ grows. This is because predicting the
Q-month forward RBUR becomes more difficult as the target
difference Q gets larger. It is interesting to see that the best
input sequence length S is generally given by S = 1 or S = 2
for all simulatedQ. This implies that the temporal correlation
of the RBUR of operator A is not that strong, and one or two-
month samples are sufficient for successful prediction. Oper-
ator A has sufficient RBs since it occupies a wide range of
bandwidth compared to operator B. Therefore, the spectrum
saturation of operator A is dependent only on few-month past
data and becomes independent with its long-term history.

Operator B exhibits the opposite results. The WA-RBUR
prediction error of operator B is summarized in Table 5. We
can see that at all simulatedQ, using more past samples, i.e., a
larger S, is beneficial for achieving a good prediction perfor-
mance. The spectrum saturation issue becomes more severe
for operator B as it has insufficient frequency resources. This
leads to the time-dependent nature of the RBURwhose trends
highly rely on the changes in time-varying features such as the
number of subscribers. Thanks to the temporal correlations,
the prediction error of operator B is generally smaller than
that of operator A. In particular, the prediction error of the
Q = 6-month forward future is only given as 0.81% for the
GRU model, whereas that of operator A is large as 2.12%.
Fig. 4 shows the WA-RBUR prediction results of operator

A (Fig. 4 (a)) and operatorB (Fig. 4 (b)) with the best hyperpa-
rameters chosen from Tables 4 and 5. Six consecutive months
from November 2019 to April 2020 are considered. The blue
solid and red dotted lines represent the ground-truth and esti-
mated WA-RBUR, respectively. From the figure, we can see
that the WA-RBUR of both operators is accurately estimated
in all simulated months. There is a gap in the prediction
results of operator A in January 2020 and April 2020, but
the gap is small as discussed in Table 4. It is worth noting
that for the correct diagnosis of the spectrum saturation issue,
the behaviors of the top few base stations are more important
than other cells. In this regard, the proposed method still
provides a good prediction result for the top 5% quantiles in
all simulated cases.

One possible approach to diagnose spectrum saturation is
to examine whether top 5% WA-RBUR is greater than 70%.
Fig. 5 shows the prediction results of the top 5% WA-RBUR
for operators A (Fig. 5 (a)) and B (Fig. 5 (b)), respectively.
Among total 38 months, the WA-RBUR of the last 6 months,
i.e., from the 33-rd month to the 38-th month, are predicted
by the proposed frameworks. For comparison, the following
baseline schemes are considered.
• FNN: The feature estimation is carried out by a
fully-connected neural network (FNN) consisting of 9
dense layers each having 15/9, 30/18, 60/36, 120/72,
240/144, 120/72, 60/36, 30/18, and 15/9 neurons for
operators A/B. Similar to the proposed RNN, the hyper-
parameters of the FNN baseline, i.e., the activations,
the input length S, and the target difference Q, are care-
fully optimized as in Tables 4 and 5.

TABLE 5. Prediction error (%) of operator B.

• VAR:We employ a vector autoregression (VAR) method
[26], which is one of the popular machine learning tech-
niques addressing time series data. The VAR predicts the
feature parameter at a certain month by taking weighted
moving average of the last samples. Trainable variables,
i.e., weighting matrices and a bias vector, are optimized
through the linear least square method.

It is observed that regardless of the operators, the prediction of
the proposed method is more accurate compared to the FNN

VOLUME 9, 2021 59711



H. S. Jang et al.: Deep Learning-Based Prediction of Resource Block Usage Rate

FIGURE 4. Top 10% WA-RBUR prediction results.

and VAR baselines. This implies that the RNN structure is
suitable for estimating a sequence of the feature parameters.
According to the proposed method, we would expect that the
spectrum saturation does not occur for target months since
the estimated WA-RBUR does not exceed 70%. However,
the prediction values of both operators are quite close to the
threshold of 70% WA-RBUR. Therefore, it is recommended
for the operators to secure more spectrum resources not to
encounter the spectrum saturation problem. On the contrary,
the FNN and VAR baselines incorrectly diagnose the spec-
trum saturation events, especially for operator A, since their
prediction values are much lower than 70%. Such a failure
might cause difficulty in providing reliable communication
services in practice.

Finally, Table 6 compares the prediction error of the
WA-RBUR of the last six months investigated in Fig. 5.
The lowest prediction error is highlighted in boldface blue
letters. As expected from Fig. 5, the proposed RNN model
is superior to other baselines in all months and operators.
In particular, the WA-RBUR prediction error of operator B

FIGURE 5. WA-RBUR prediction results for 6 months.

TABLE 6. WA-RBUR prediction error (%) for 6 months.

is smaller than 1%. The result validates the effectiveness of
the proposed RNN-based approach. The FNN is not intended
for analyzing sequential data and may fail to estimate the
future RBUR correctly. The VAR generally performs better
than the FNN baseline, but compared to the RNN model, its
prediction error is not sufficiently small. This becomes pro-
nounced for operator A. The estimation processes of the VAR
rely on linear filtering operations to the past input sequences,
posing difficulty for extracting the inherent nonlinearity of
the RBUR dataset. On the contrary, the FNN can effectively
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capture complicated properties of the RBUR measurements
by adding nonlinear activations and hidden layers. For this
reason, the prediction error of the FNN is lower than that of
the VAR baseline in some cases. Both the nonlinearity and
temporal correlation can be addressed by the RNN architec-
ture, leading to the superiority of the proposed RNN approach
to other baselines. Therefore, we can conclude that the RNN
model is effective in handling the considered RBUR dataset.

VI. CONCLUSION
This paper investigated a deep learning-based forecasting
strategy of the future RBUR status of hundreds of LTE
base stations deployed in Seoul, South Korea. We solved
the fixed-length input problem in traditional RNN-based
forecasting methods by proposing a two-step approach: a
feature extraction step and a feature estimation step. Based
on the proposed feature extraction method, we can easily
handle a large number (hundreds) of RBUR data only with
three-dimensional feature parameters. The effectiveness of
the proposed feature extraction strategy is verified by the
R-squared values. The proposed RBUR estimation methods
were then trained with LSTM and GRU models with the
three-dimensional feature parameters of each operating band.
Also, we introduced a new performance metric referred to as
a weighted average RBUR (WA-RBUR), which is designed
to compensate for the asymmetry in the bandwidths and cell
coverages. We evaluated the performance of the proposed
RBUR estimation methods in terms of WA-RBUR. The pre-
diction accuracy of the proposed methods is less than only
3% and 1% for operators A and B, respectively. Hopefully,
the proposed RBUR estimation methods can be utilized to
diagnose spectrum saturation for mobile network operators
with limited frequency resources.
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