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ABSTRACT Machine learning (ML) is becoming an integral part of networks security arsenal, where Inter-
net of Things (IoT) structures play an increasingly important role. However, IoT networks havemany specific
requirements, mostly due to limited energy availability and stringent computing resources. This results in
limitations for traditional ML approaches to security, in particular for anomaly detection. Consequently,
new focuses for solutions that range from architectural to data processing ones are necessary. Therefore,
appropriate lightweight ML algorithms have to be designed and deployed in appropriate architectural
settings, which is the main contribution of this paper. In addition, insights into ML functioning are needed
to better understand the observed anomalies. To enable these insights (and support a wider applicability of
ML based approaches), the results have to be as explainable as possible. The research presented in this
paper addresses this problem through the functional and data transparency of ML applications, tailored
to the specifics of anomaly detection in IoT networks. To tackle accordingly also the architectural issues,
the presented approach builds on the well-established layering principle from computer communications
reference models. This principle not only supports flexibility but also increases security in these new
environments of growing importance.

INDEX TERMS Computer networks, Internet of Things, security architectures, anomaly detection, machine
learning, functional transparency, data transparency.

I. INTRODUCTION
Internet of Things (IoT) devices are penetrating contempo-
rary networks at a still surprising rate. These devices along
with their networks (and various IoT-based agglomerations)
are about to become the mostly numerous and dominant kind
of devices in the global network [1]. They need increased
attention because of their importance to digital transforma-
tion, which is currently extending from services to tangi-
ble goods sectors. Consequently, digital transformation also
affects critical infrastructures deployments and deployments
in industrial production settings, where one central structure
are cyber-physical systems (CPS). These systems are largely
built on top of IoT [2]. Therefore, security provisioning for
IoT structures is becoming a must and anomaly detection is
one of the top priorities.
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IoT devices have many specific characteristics, but the
most commonly mentioned ones are limited computing
resources and constrained energy availability. Related to
these, but almost unaddressed, are architectural deployment
consequences. In addition, ML specifics related to their
transparency are important if one wants the results to be
explainable and enable further advances in the field [3].
Therefore, this paper presents a new architectural approach
to lightweight ML based anomaly detection deployments tai-
lored to IoT networks, being further complemented by trans-
parency of ML functioning. More precisely, explainability of
ML results remains an important topic not only in the ML
domain, but also in the areas ofML deployments like security.
This requires the selection of an appropriate family of ML
algorithms, which we undertake in this research paper.

The paper is structured as follows. The necessary basics,
which are crucial for ML based anomaly detection in IoT
networks, are given in Section II. After identifying secu-
rity relevant issues, a new architectural approach and a new
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algorithm are given in Section III. ML based transparency
issues and proposed solutions are covered next in the same
section. In Section IV there is a discussion, followed by
conclusions in Section V, with references and the authors’
CVs at the end.

II. OVERVIEW OF THE FIELD AND IDENTIFYING
CHALLENGES
To provide an overview of the filed, anomaly detection in
traditional networks will be addressed in this section first,
followed by ML related issues.

Traditional networks follow a classical TCP/IP archi-
tectural model [4]. When aligned with the OSI reference
model [5], this model consists of physical layer that enables
physical connection of devices to a medium, a link layer that
meets particular medium requirements, a network layer that
basically covers routing with an IP protocol, and a transport
layer that provides end-to-end connectivity with TCP and
UDP protocols. It ends with an application layer (no explicit
presence of presentation or session layer), where services like
WWW and e-mail are offered.

Due to computational power and energy resources related
constraints in IoT networking, TCP/IP architectural model
has been adapted and this adapted model is shown in Fig.1.

FIGURE 1. IoT network model with most common protocols.

The IoT model has a sensing layer that is often specific
and covers physical and link layers. The network layer is
covered by 6LoWPAN [6], which is an IPv6 adapted protocol,
while routing is provided by an adapted energy efficient RPL
protocol [7]. The transport connection is often covered by a
traditional UDP protocol. The application protocol is most
often CoAP [8], which is similar to HTTP [4] but has lower
latency and draws less power from the device that it runs on.

Putting this reference model into a typical IoT architectural
setting, Fig. 2 is obtained. The weakest building elements
of IoT networks are sensors and actuators. To enable their
further integration via physical and link connections, hubs are
deployed, which are able to run the IoT stack protocols. Hubs
communicate with one another and enter the global internet
(or cloud) though one (or more) edge routers, which may also
convert IPv6 to IPv4.

From a security point of view the key anomaly-based
detection points for protecting IoT network are hubs

FIGURE 2. Deployment architecture of IoT networks and their integration
with the internet.

(computationally relatively weak), and edge routers (rela-
tively strong with sufficient computing resources).

A. ANOMALY DETECTION
Based on the brief background provided above, let us now
look at anomaly detection in traditional networks (for an
extensive overview of this area the reader is advised to look
at [9]). As stated in [9], monitoring network traffic is essential
to preserving network security, with anomaly detection as one
key goal of this monitoring. In classical settings monitoring
is done on hosts with installed intrusion detection systems
(IDSs). But such host-based approaches cause scalability
issues, have limited access to data (i.e. they provide no ‘‘big
picture’’ of the situation) and can run only on appropriate,
and sufficiently powerful hosts. Therefore, network-based
approaches are often deployed instead. In this case, the so-
called probes are located at central observation point routers,
which are located at, for example, endpoints of trunk connec-
tion lines. Here they are capturing packets at the network layer
and inspecting their payloads. But this traditional approach
is becoming ineffective as the packets’ payloads are often
encrypted nowadays, and there are processing demands for
duplication and storage of whole packets with ever-increasing
traffic.

Therefore, storing only IP specific packet data (IP
addresses and parameters like time stamps, the number of
packets exchanged and flags) in the form of streams is becom-
ing a frequently deployed option. Streams-based capturing is
also supported by the IETF standard IPFIX [10]. However,
one should be cautious – streams-based anomaly detection
leads to lower granularity compared to packets capturing and
may introduce artefacts that can make it less efficient [11].
In general, network-based IDSs (compared to host-based
IDSs) are weaker when it comes to compromise detection and
have higher false positives. So, due to the nature of captured
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data they warn about the presence of attacks regardless of
their success, i.e. if attacks have led to the compromise of
a device. False positives can also be the result of data trans-
formations (from raw packets to streams).

Finally, and more specifically related to the research pre-
sented in this paper, the work given in [12] proves that
network flow data analysis can achieve good performance.
It is important to add that this research is focused on the
deployment of unsupervised clustering algorithm(s).

B. ML TRANSPARENCY ISSUES
Despite the huge recent success of ML solutions, one funda-
mental open problem that is still a matter of intensive research
is explainability, also referred to as transparency. The issue is
particularly acute for more complex ML solutions like deep
neural networks (DNN). In short, an ML implementation
successfully learns how to solve a problem (categorization or
prediction within the problem domain), but despite its good
or perfect results it is very hard or impossible to infer how
this ‘‘knowledge’’ was obtained, or how it emerged [3]. Put
another way – correlations are discovered, while causalities
may remain hidden. And transparency in this case would
be very helpful as it would enable insights into the stages
of conceptualization, and knowledge formation, within ML
operations. This would make the gathered knowledge trans-
ferable to humans and other ML systems. In the case of
DNN some efforts have produced promising insights into
how concepts emerge in DNNs and evolve along their layers.
However, these are still quite early stage results [3], [13].

The above insights into ML functioning will be referred
to as functional transparency. Within the scope of this paper
we will define another kind of transparency, and this will be
referred to as data transparency. Although this latter kind of
transparency is coupled with functional transparency, it still
differs from it. Assuming the same ML architecture (algo-
rithm), different sets of data will lead to different results.
Moreover, even the same set of data represented differently,
or pre-processed in another way (like tagging and cleaning)
may lead to different results. Finally, different ML architec-
tures may use the same data set, but may require different
pre-processing activities. In brief, data transparency for secu-
rity is about data sets standardization.

Clearly, data transparency is an important problem area if
general ML explainability is to be achieved.

III. ML-BASED IoT SECURITY – FROM NOVEL
ARCHITECTURE AND ALGORITHMS TO ENHANCED
TRANSPARENCY
This section first presents the new, layered ML architecture
for security provisioning in IoT networks, followed by sub-
sections presenting a new algorithm and solutions for func-
tional and data transparency. The presented solutions extend
recent, rather rare research efforts in this specific area. One of
themost similar types of research to ours can be found in [14],
which focuses on cloud and edge-based solutions for anomaly
detection. However, the solutions in this paper make a further

push towards IoT hubs, making them independent of clouds,
and therefore very suitable for more autonomous settings.

A. ARCHITECTURAL APPROACH
Based on the IoT network architecture and its integration
with the internet (see Fig. 1 and Fig. 2) the following can
be concluded. The IoT part, where the hubs perform cen-
tral security activities, is computationally weak with con-
strained energy resources. These resources are now further
deployed to run light ML solutions. As opposed to hubs,
edge routers have considerably more resources and can be
therefore used to run more precise, but also more resource
demanding ML solutions. This leads to ML level one, and
ML level two deployments, as presented in Fig. 3. This archi-
tecture reflects the networking reference models principle,
where an implementation at one level (layer) is independent
of the implementation at another level, while together they
provide the required functionality through, e.g. service net-
work access points. In our case this means the possibility
of deploying (statistically) independent anomalies detection
approaches, while their outputs can be combined via APIs
with standardized data exchange formats to improve the
results by following the basic laws of statistics.

FIGURE 3. Two levels ML based anomaly detection for IoT networks.

So, for level I ML implementations, algorithms like DNN
can be deployed (this part belongs to the ‘‘full-blown part’’
of traditional computing environments). These solutions,
located at edge gateways, also have a better ability to store
and use larger data sets needed for their training. Clearly,
it is level I (i.e. edge) gateways in the given architecture that
operate on gathered data flows from all hubs, which they are
also able to store.

Hubs deploy level II ML based solutions for anomaly
detection. Due to their nature hubs are able to deploy sim-
pler algorithms such as those with unsupervised learning for
clustering, or with supervised learning with linear regression.
Unsupervised learning is more appropriate, because hubs are
not able to store (large) flows and have to learn on the fly as
much as possible. In short, the pipeline nature of processing
and a reduced amount of data favors unsupervised learning
on streams.

Therefore, both levels’ solutions are expected to operate
on flows, which (as already mentioned) is most common
approach used today. Furthermore, this two stages architec-
ture has another advantage. Although level II implementa-
tions are expected to have (notably) weaker performance
than level I implementations (in terms of precision and recall
values), this architecture actually presents a cascade of two

VOLUME 9, 2021 60609



A. Huč, D. Trček: Anomaly Detection in IoT Networks: From Architectures to ML Transparency

statistically independent ML implementations (e.g. unsuper-
vised clustering at level II and DNN at level I). Consequently,
the results from both points can be combined in a straight-
forward way taking into account the principles of statistics.
Precision and recall (which corresponds to the true positive
rate for classification), specificity (i.e. true negative rate) and
F1-score are defined as follows are defined as follows [15]:

precision = truePositives/(truePositives+ falsePositives)

recall = truePositives/(truePositives+ falseNegatives)

specificity = trueNegatives/(trueNegatives+falsePositives)

F1-score = truePositives/(truePositives

+ 0.5(falsePostives+ falseNegatives)) (1)

When it comes to anomaly detection, recall has priority,
because we in principle want as high a proportion of correctly
identified positives as possible. Clearly, from the operational
point of view good precision is also desired, because poor
precision exhausts network operators with false alarms if
it is low (but due to the nature of ML systems, these two
requirements of recall and precision are often in tension). So,
by taking into account the basic laws of statistics, cascaded,
two-level ML applications can improve recall by reducing
false negatives. In such settings even weaker ML imple-
mentations can notably improve the overall performance of
anomaly detection solutions.

Therefore, when anomaly detection implementations con-
sist of serially linked computationally weak and computation-
ally strongML implementations, security can be considerably
improved, if each implementation deploys statistically inde-
pendent procedures on the analyzed set of data. For the sake
of simplicity suppose that each ML application has a false
negatives rate of 40%. Running both strong and weak ML
applications on the same set of data, the probability of false
negatives is reduced to 16%. Therefore, even if the full-blown
level I implementation has a false negative rate FN1, and the
weak level II implementation only FN2, the overall false rate
is improved as FN1

∗FN2. Indeed, improving false negative
rates with cascaded classifiers found its way into practical
implementations with e-mail spam filters more than a decade
ago [16].

B. NEW LIGHTWEIGHT ML LEVEL II IMPLEMENTATION
A new lightweight ML level II implementation called Pro-
file and Hierarchical Incremental Clustering-based Anomaly
Detection (PHICAD) is described next. Its pseudocode is
given in Fig. 4, while its detailed architecture and one exam-
ple detection run are presented in Fig. 5 and Fig. 6 in the
appendix.

Compared to more general supervised and batch-based
approaches, PHICAD has the following operational advan-
tages. A potentially infinite data stream of raw network flows
is represented by the input Sflow, where each new flow Fi
is incrementally and efficiently preprocessed, analyzed and
then discarded. It is unsupervised, so there is no need for a
prerequisite knowledgebase of anomalous flows. It works on

FIGURE 4. PHICAD algorithm high-level pseudocode.

the assumption that a large number of frequent flows repre-
sent the ‘‘normal’’ activity of the network and small number
of infrequent and abnormal flows present ‘‘anomalous’’ activ-
ity. This also enables detection of new and unknown anoma-
lies. It uses only eleven basic network flows features that can
be provided by almost every flow collector available. Finally,
most of the computation is done inside profiles, which are
independent and can be run in parallel.

PHICAD aggregates flows into profiles, where each profile
represents a model of network activity of a single network
entity determined by its IP address. Each profile holds two
network activity models, one for the flows where the profiles
address is the source address, and the other where the profile
address is the destination address. Each flow is sent to two
profiles: the first determined by the flow’s source IP address
Pipsrc and the second determined by the flow’s destination
address Pipdst .
Inside a profile, the flows are first transformed into vectors

Ti where all flow parameters (except timestamp and destina-
tion IP address) are directly represented by a single value, and
the latter two are expanded to multiple values. Destination
IPv4 address 8-bit parts are expanded into 4 integer values
and a timestamp: days, hours, minutes, seconds, which are
each represented by a sine and cosine value (see Fig. 5).
This enables us to model the time difference between two
timestamps, where the values in between jump through the
minimum/maximum value barrier, which is a consequence of
the periodicity. This means that the time difference between
two timestamps, where the values in between 22:59 and
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23:00 is one minute even though the values that present
minutes changed from 59 to 0. Consequently, a flow with
11 features becomes a vector with 21 values.

After transformation, all values in the vector are normal-
ized (Vi), where theminimum andmaximum values are easily
determined for all the vector values except for the maximum
values of forward and backward packets and bytes. These
four values were set at a threshold that covers 99.9% of all
flows, while the 0.1% of flows with really large values are
truncated to this threshold, which still enables us to discrim-
inate between flows with values close to the minimum.

The models are built incrementally using a hierarchical
clustering algorithm based on the BIRCH algorithm [17] (the
process takes place on the hubs). The clustering algorithm
continuously builds a height balanced tree, where each tree
node holds cluster features that aggregate the nodes below it
and the leaf nodes hold cluster features that present clusters.
Each cluster feature stores only the number and sum of the
fading weights of aggregated vectors, linear sum, and square
sum for each dimension of the clustered vectors in this node,
and not actual full vectors. These values enable us to easily
combine multiple nodes into one when the tree structure is
rearranged to improve the model and adapt to changes by
reducing the importance of old vectors over time with the use
of a fading function [18].

New vector Vi is first packed into a new cluster feature
Inew and starts clustering at the root node INi of the tree.
It descends through the closest child node INi+1 on each level
until it reaches the leaf node without children, updating the
cluster features on its descent. If the closest leaf clustering
feature Iclosest_leaf is still too far (d(Inew, Iclosest_leaf ) > Tε),
then Inew is added to the leaf node. For calculating the distance
between cluster features and nodes Euclidean distance is
used.

When Inew is clustered into a closest leaf cluster fea-
ture Iclosest_leaf , the following three different approaches are
used to test if an anomaly has occurred in each dimension
separately:

1. We track the Iclosest_leaf centroid changes over time
with adaptive window approach called ADWIN [19]
for each of the dimensions. A potential anomaly in a
window is detectedwhen the harmonicmeans of the two
sub-windows differ for more than a dynamic threshold
derived from Hoeffding’s inequality.

2. If the distance from Iclosest_leaf centroid to Inew is greater
than three standard deviations calculated from all the
previously aggregated vectors in Iclosest_leaf , then we
have detected a potential anomaly.

3. Every time Iclosest_leaf is updated, its size is compared to
all other leaf nodes. If its size is smaller than the half of
the harmonic mean of all the leaf nodes sizes in a tree,
then this cluster can present a potential anomaly.

Otherwise, Inew is added to the leaf node INi+1, where
we check the distance of a Inew to the centroid of all
the neighboring leaf nodes. If the distance is greater than
three standard deviations, calculated from all the previously

aggregated vectors in neighboring leaf nodes, then we have
detected a potential anomaly.

Each test has a short-term memory for each of the dimen-
sions that stores the times when changes were detected in the
last 1000 updates to the profile. Fewer than 5% of the updates
to the profile will be flagged as final anomaly detections.
This is aligned with our assumption that anomalies are rear,
abnormal events. The pseudocode for the above description
is given in Fig. 4.

For a better understanding, a sample detection is shown
in Fig. 6 in the appendix. It starts with the raw flow data,
which is sent to the appropriate profile on the basis of the
flow source IP address. The flow is then transformed and
normalized and packaged into a cluster feature. The cluster
feature descends through the tree until it comes to the leaf
node, selecting the closest child node at each step. In the leaf
node the new cluster feature is too far from other seven cluster
features to be clustered into them.

We initiate the anomaly check by calculating the distance
centroid of all other seven cluster features and the centroid of
the new cluster feature, and if the distance is larger than three
times the standard deviation of all the vectors aggregated
in the seven other cluster features, then we have detected
a change (this happens for the parameters flow duration,
forward and backward packets, and bytes).

Next, a check is done if detections at those parameters were
less frequent than 0.5% in the last 1,000 updates to the cluster.
All of them passed the short-termmemory check, so this flow
is now flagged as anomalous. The detection is based on a
large increase in forward and backward packets and bytes
values which corresponds to the DoS attack that this flow
presents. Consequently, PHICAD enables us to see why a
certain flow was flagged as anomalous and we can transform
the values in cluster features back to raw values for an even
easier representation and understanding at any time.

C. PHICAD EVALUAITON
PHICAD has been evaluated using ISCX-IDS-2012 [20] and
CIC-IDS-2017 [21] datasets, which consist of network flows
for normal traffic and some of the most common network
threats (DoS, DDoS, port scan, brute force, Heartbleed, web
attacks, infiltration, bot net). These datasets were chronolog-
ically ordered, all non-TCP or UDP flows were discarded
and then run through PHICAD algorithm in a single pass
like a data stream. If a detection triggers inside a group of
flows that present an anomaly, all those flows are classified
as anomalous.

The anomaly detection performance and execution times
of PHICAD are presented in Table 1 and Table 2. Overall,
it achieves good performance with a F1-score of 0.81 for
the ISCX-IDS-2012 dataset and 0.91 for the CIC-
IDS2017 dataset. The execution times on a PC are also good,
where we analyze roughly 20,000 flows per second, which
makes PHICAD suitable for smaller IoT networks, where
network traffic and computational resources are limited.
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TABLE 1. The performance and execution times of PHICAD.

TABLE 2. The performance and execution times of PHICAD for each type
of anomaly in the CIC-IDS-2017 dataset.

TABLE 3. Anomalies in CIC-IDS-2017 dataset.

We focused on the CIC-IDS-2017 dataset because it is
newer and because it represents multiple different types of
network attacks, and not only DDoS. This dataset comprises
eight files, where one contains only normal traffic and each
of the other seven files contains normal traffic with a specific
type of anomaly mixed in. Table 3 shows the number of all
flows, anomalous flows and detected flows for each type of
anomaly.

Next, Table 3 also shows the performance that was
achieved with only a single file as the input stream. These
figures prove that it achieves good performance for detecting
denial of service, distributed denial of service, port scan and
web attacks, where anomalous patterns clearly differ from
normal activity patterns.

However, it should be added that the algorithm has issues
with detecting anomalies, which do not exhibit a clear change
in parameter values, like for example an Infiltration attack on
the application layer.

Table 4 shows the PHICAD’s performance compared to
commonly used supervised approaches with a CIC-IDS-2017

TABLE 4. The performance and execution times of PHICAD compared to
other approaches for the CIC-IDS-2017 dataset.

dataset. It achieves the best precision, good recall, as well as a
competitive F1-score and execution time. However, we have
to take into account the operating advantages of PHICAD
such as unsupervised learning, incremental execution, low
use of computing resources, the use of only raw flow param-
eters that every network appliance can provide, no need
for feature pre-selection before running the analysis and no
parameters to set.

Clearly, the proposed solution contributes to both the func-
tional and data transparency. As to functional transparency,
using light level II approaches inherently leads to better
explainability. For example, linear regression is a well under-
stood principle. Therefore, using it in ML helps to enable at
least partial explainability of what ML systems have learnt.

Something similar holds true for unsupervised clustering.
In PHICAD algorithm we analyze the raw flow parameters
that are just transformed and normalized for the ease of use
and can be rolled back to their raw values at any time. The
clusters and distances in our model are just aggregates of the
raw values and present a group of similar flows or distance
between them. Furthermore, anomaly detection is based on
a comparison of mean values, standard deviations, Euclidean
distances or simple ratios. Therefore, the decision as to why
a certain flow has been flagged as an anomaly is explainable,
due to using simple and therefore explainable functions in a
space defined by the flow parameters.

As to data transparency, the following, which we refer
to as raw data sets alignment, needs to become a standard
practice. Many sources of data are aiming at the same kind
of deployment, and / or the same setting within this deploy-
ment. Therefore, the data elements and their types need to
be defined in a standardized way, such as by JSON [22],
or XML [23]. XML seems a better alternative due to complete
data managements enabled via XML schemas, standardized
data transformations support, and semantics support, while
JSON focuses primarily on programming languages. When
a standardized XML schema is available, the most extensive
data set structure is defined. Then for any subsequent oper-
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ations like cleaning and tagging, XML transformations can
be used and transform templates stored in a data repository
together with the very raw data that they are related to. This
way all the training and testing data from their very raw form
to the final real-field application would remain transparent.

Therefore, for level II data streams acquisition and process-
ing in IoT settings the following schema is proposed and used
in our implementation:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="flow">
<xs:complexType>
<xs:sequence>
<xs:element name="sourceIP" type="xs:string"/>
<xs:element name="sourcePort" type="xs:decimal"/>
<xs:element name="destinationIP" type="xs:string"/>
<xs:element name="destinationPort"
type="xs:decimal"/>
<xs:element name="protocol" type="xs:decimal"/>
<xs:element name="timestamp" type="xs:datetime"/>
<xs:element name="duration" type="xs:decimal"/>
<xs:element name="forwardPackets"
type="xs:decimal"/>
<xs:element name="backwardPackets"
type="xs:decimal"/>
<xs:element name="forwardBytes"
type="xs:decimal"/>
<xs:element name="backwardBytes"
type="xs:decimal"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

IV. DISCUSSION
First, although the presented solutions have wider deploy-
ments potential, they are particularly well suited for IoT
networks. These networks are small and weak, but numerous.
Unfortunately, this is a good basis for distributed denial of
service attacks with one of the most disastrous kind of attacks
being flooding attacks. Mirai was exactly based on exploiting
IoT massiveness [24]. Furthermore, anomalies at the level
of IoT networks (like body area networks) can be the result
of ordinary malfunctioning, failures as such, which is also a
safety issue. Consequently, the produced outliers are rather
easy to be detected early, at the level II implementations,
which is essential for body area networks in, e.g. medical
settings [25].1

Second, despite the fact that streams-based anomaly detec-
tion is becoming a frequently deployed option, one has to be
aware of its potential drawbacks, which may be subtle [11].
One group of drawbacks comprises measurement artefacts,
so that traffic metadata do not resemble the original traffic

1This paper also provides the details about previous work related to this
research with additional references.

anymore. These are the consequence of deployed devices
deviations like under-dimensioned network links, race con-
ditions, etc. Consequently, flows may contain time stamp
errors, or gaps due to drops, etc. Another group are network
artifacts, and they are the result of the deployed measurement
setting in general. These comprise equipment calibration
problems, retransmissions problems (which can be discrim-
inated only at the transport layer, as counting them at the
network layer where flows are formed gives false results), etc.
Third, data transparency problems need addressing soon.

It is a basic fact that the more data there is the better the
results of ML applications are. This has led to open data
initiatives and available data sets are growing daily, being
hosted by various repositories. One of the most widely rec-
ognized repositories with a variety of data from numerous
domains is Kaggle (see https://www.kaggle.com/datasets).
If data transparency issues are not addressed early enough,
the exploding mass of raw data lacking adherence to some
minimal principles for supporting data transparencymaywell
influence explainability efforts in general.
Last but not least, even ML implementations themselves

may be subject to security attacks as described in [26]. For
example, even apparently minor modifications of submitted
data like the proportion of a white background compared to
the core content (e.g. the shape of a human body) can mislead
an ML application and result in a wrong decision. But the
very field of anomalies detection may pose other threats,
which have yet to be identified.We believe that an appropriate
synthetic dataset, which is high on the agenda of our future
work, would counter this problem.

V. CONCLUSION
The recent penetration of IoT devices on the internet is
fueling its growth and contributing to a data explosion. IoT
networks, while weak in terms of available computing and
energy resources, are a good target for attacks. The traditional
security arsenal has recently been bolstered by ML applica-
tions, and IoT networks will be no exception.
However, these networks havemany specific requirements,

mostly due to limited energy availability and stringent com-
puting resources. This results in limitations for traditional
ML-based security approaches, in particular for anomaly
detection. In order to achieve good results, appropriate ML
algorithms have to be designed and deployed in appropriate
architectural settings, which is why we have presented a new
suitable architectural approach and corresponding ML solu-
tion in this paper. Furthermore, to enable a better understand-
ing of the events behind detected anomalies, better insights
intoML outputs are needed. Such explainability of the results
leads to their transparency and a better understanding of
the observed anomalies. This requirement also determines
the most suitable ML approaches like clustering algorithms,
which is the case in this paper.
Summing up, this paper presents a new approach to anoma-

lies detection in IoT networks as follows:
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FIGURE 5. PHICAD algorithm for anomalies detection in IoT settings.

• First, the general architecture reflects the network-
ing reference models principles, where the implemen-
tation at one level (layer) is independent from the

implementation at another level, while together they pro-
vide the required (or improved) functionality. In the case
of ML solutions, this enables deployment of statistically
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FIGURE 6. PHICAD algorithm run example.

independent anomalies detection engines, while their
outputs can be combined due to standardized data
exchange formats to improve the overall results by fol-
lowing the basic laws of statistics.

• Second, the developed ML algorithm is lightweight, and
well suited for IoT devices. Despite being lightweight,
its performance is aligned with the main ML based
anomalies detection algorithms.
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• Third, the developed solution is such that it also enables
better functional and data transparency. Clearly, for a
wider and better usability of ML based approaches,
the results have to be explainable to the greatest possible
extent.

Future work with PHICAD algorithm will address the
addition of long-term windows to model specific timeframes
that periodically repeat every day. PHICAD currently detects
anomalies inside profiles, but the next stepwill be the analysis
and comparison of multiple profiles to determine similar
anomalies over multiple profiles, their evolution and the
detection of new types of anomalies based on the changes in
profiles groups.

As to the presented approach in general, we expect that it
will enable a step forward in security provisioning for IoT
networks and stimulate further research in this area, which is
of growing importance.

APPENDIX
See Figs. 5 and 6.
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