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ABSTRACT Anomalous subgraph detection within networks is an important issue in many emerging
applications. Existing algorithms, such as graph structure methods and spectral feature methods, usually
focus on the special stochastic model (such as the Erdős-Rényi random graph) or may not efficiently extract
the anomalous behaviors of the networks, which result in detection performance degradation. To mitigate
the limitations, in this paper, we first present an anomalous subgraph detection framework associated with
deep neural networks (DNN) for detecting anomalous behaviors within the networks. Furthermore, based
on the developed framework, we propose a residual matrix-based convolutional neural network (RM-CNN)
algorithm with respect to the given expected degree models, which are more general networks than the
Erdős-Rényi random graphs. In particular, the trained RM-CNN can efficiently capture the anomalous
changes of the network and then achieve the detection performance improvement. Simulation experiments
display that the proposed RM-CNN algorithm is superior to the compared algorithms in both detection
performance and detection speed.

INDEX TERMS Anomalous subgraph detection, given expected degree models, deep learning, convolu-
tional neural network.

I. INTRODUCTION
Network anomaly detection has become an important issue
in may applications, ranging from detecting malicious
attacks of wireless networks [1], [2], vehicle anomaly detec-
tion [3], to array diagnostics [4]. Generally, we are inter-
ested in network data regarding communication connections
(relationships) between nodes (entities) in anomalous detec-
tion problem, and the data are usually represented as a graph
form [5], where nodes (entities) and their communication
connections are denoted by vertices and edges of the graph,
respectively. According to the stochastic characteristics of
the network data, the stochastic models of the network can
be classified into several categories, including Erdős-Rényi
random graph [6], stochastic block random graph [7], power
law random graph models [8], etc.

Commonly, there are just a small amount of the
data exhibiting anomalous behaviors in anomaly detection
problem. Therefore, the anomalous detection is also named as
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the anomalous subgraph detection. In the past decade, there
are a tremendous amount of works to be done for the anoma-
lous detection, and many detection algorithms are developed
for overcoming the related problems. These algorithms can be
divided into two kinds of methods: graph structure methods
[9]–[15] and spectral feature methods [16]–[19].

Graph structure methods obtain the detection result by
measuring certain network structure features or invariants,
such as the number of triangle subgraphs, scan statistics,
total degree, and so on. For example, [13] fused the vertex
connection probability with the triangle subgraph to improve
the detection performance of the algorithm and obtained the
detection boundary of statistic through the emerging con-
centration measure theory. Reference [14] applied the local
belief propagation algorithm to collect the vertex neighbor-
hood message to implement the subgraph detection in the
Erdős-Rényi random graph models. To make full use of the
structural information between vertices, [15] proposed an
anomaly detection method in a strong noise environment
by mapping the matrix of random graph into a higher-order
tensor. However, these methods have limitations in models
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and other aspects. For instance, [14] required a large amount
of prior information, which makes the algorithm hard to
implement in many real scenarios. In particular, most algo-
rithms are only effective for special random graph model,
i.e., Erdős-Rényi random graphs.

On the other hand, spectral feature methods exploit the
eigenvectors of the adjacency or residual matrix of random
graphs to detect the anomalous patterns of the random
networks. The typical algorithms [17]–[19] include the eigen-
vector L1 norms method, chi-squared statistic method, and
sparse principal component analysis method, etc. These
methods can detect the existence of anomalies in complex
networks, but in the large-scale network, these algorithms
suffer from performance degradation and also have
significant computation complexity.

In order to overcome the model limitation and perfor-
mance degradation mentioned above, we attempt to explore
an efficient anomaly detection method, which can be signifi-
cantly suitable for the general network models, i.e., the given
expected degree models [20]. Recently, deep learning [21]
has been widely used in various engineering fields, such as
rolling bearing fault diagnosis, waveform recognition, wire-
less localization, hypothesis testing and vehicular congestion
detection, [22]–[26], etc. The related literatures show that
through constructing different deep neural network (DNN)
structures, the learning-type algorithms can provide better
performance than their counterparts. For example, [26] pro-
posed a robust deep learning method to realize congestion
detection in vehicular management. Reference [23] explored
the neural network that optimized for the hypothesis testing
problem. Thanks to the powerful feature extraction capability
of deep learning, we extend the new tool into the anomaly
detection problem for the given expected degree networks
in this paper. In view of the powerful capability of the
deep learning, this paper develops an anomalous subgraph
detection framework, named DNN-based subgraph detection
framework.

Based on the developed detection framework, we pro-
pose a residual matrix-based convolutional neural network
(RM-CNN) algorithm for the anomalous subgraph detection
associated with the given expected degree models. The given
expected degree models [20] (Chung-Lu random graphs)
are the general random network model and has complex
structure, which is a main challenge for anomaly detec-
tion. Besides, the dimensions of anomalous subgraph are
much smaller than the background graph in general. Namely,
the so-called signal to noise ratio (SNR) of the anomalous
detection problem is quite low [13]. As a result, the anoma-
lous behavior may not be extracted and directly results in
the low detection performance of the traditional algorithms.
To overcome those problems, our paper develops a convo-
lutional neural network (CNN) based on the residual matrix
of anomalous networks for extracting the anomalous struc-
ture. Specifically, the RM-CNN first captures the anoma-
lous features of the graphs and obtains the optimal network
parameters at the training stage. Then, according to the

Neyman-Pearson theorem, we construct a detection statistic,
which can determine the anomalous behavior of the graph
with the maximum probability of detection for a given prob-
ability of false alarm. Theoretical analysis and simulation
experiments show that the proposed algorithm has significant
advantages in both detection performance and computational
complexity concerned with the on-line phase than the com-
pared algorithms.

The main contributions of this paper are as follows.
• This paper introduces a DNN-based subgraph detection
framework. The DNN collects graph features that can
extract the network structure during the offline phase,
and we design a detection statistic by the extracted fea-
tures. Compared with traditional algorithms, the frame-
work not only has powerful feature extraction capabil-
ities but also can conveniently extend to other network
models. Moreover, to the best of our knowledge, it is
the first attempt to apply deep learning technology to the
subgraph anomaly detection problem.

• Based on the proposed DNN-based subgraph detection
framework, we develop a RM-CNN algorithm associ-
ated with the given expected degree models to detect the
anomalous behaviors of the networks. Theoretical anal-
ysis shows that the presented algorithm has lower com-
putation complexity regarding the on-line phase than
some typical methods. Simulation results also validate
that compared with the typical algorithms, the proposed
algorithm has a significant improvement in terms of both
detection performance and detection speed.

The remainder of this paper is structured as follows.
Section II introduces the random graph models and the prob-
lem statement. In Section III, we design the DNN-based
anomalous subgraph detection framework. Next, Section IV
provides the RM-CNN algorithm. The simulation examples
are shown in Section V. The conclusion of this paper is
summarized in Section VI.
Notation: Throughout this work, we apply the lowercase a,

boldface lowercase a, and boldface uppercase A stand for
scalar, vector, and matrix, respectively. E(·) stands for the
expectation operator. ‖·‖F and ‖·‖2 represent the Frobenius
norm and 2 norm, respectively. ∗ denotes the convolution
operator, and b·c stands for the round down operation. Finally,
we list the acronyms appeared in the this paper in Table 1.

TABLE 1. The list of acronyms.

II. GRAPH MODEL AND PROBLEM STATEMENT
In this section, we introduce some notations used in this
paper, describe the given expected degree random graph
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models, and formulate the anomalous subgraph detection
problem.

A. NOTATION AND RANDOM GRAPH MODEL
Consider a network consisting ofN nodes, and let the random
graph G = (V ,E) represent the random network, where V is
the vertex set withN = |V | andE is the edge set. The notation
GF = (VF ,EF ) stands for the anomalous subgraph in which
VF and EF are the anomalous vertex and edge sets withNF =
|VF |, respectively. In this paper, the random graph G that
contains the anomalous subgraph is obtained via the union
operation [17], i.e, G = GN ∪ GF = (VN ∪ VF ,EN ∪ EF ),
where GN = (VN ,EN ) represents background graph.
We define dn as the expected degree of the vertex n and let
d = (d1, · · ·, dn, · · ·, dN ) be the expected degree sequence of
the random graph G. Correspondingly, the observed degree
sequence of G is denoted by k = (k1, · · ·, kn, · · ·, kN ), where
kn is the number of one-hop neighbors of vertex n [27]. Note
that E(kn) = dn.
In this paper, we discuss the anomalous subgraph detection

problem with respect to the given expected degree models
(Chung-Lu random graphs) and assume that the expected
degree sequence d is known. The expected degree sequence
d regarding the given expected degree models is an arbitrary
degree distribution, which is the generalization form of other
random graph models, e.g., Erdős-Rényi and power law ran-
dom graphs, etc. Let A denote the adjacency matrix of the
random graph G, which stocks the relationship data between
vertices. That is to say, if there is an edge between vertices i
and j, (i, j) element aij = 1 ofA, otherwise, aij = 0. The vari-
able aij belongs to a Bernoulli distribution with probability
pij → [0, 1], which represents the link probability between
vertices i and j. Correspondingly, for the given expected
degree models, the link probability matrix is given by aN×N
matrix P, where P = ddT

/∑N
n=1 dn. The random graph

models considered in this paper are unweighted, undirected
and no self-loops. Hence, A and P are symmetric matrices
and aii = 0 for i = 1, 2, · · ·,N . From the above description,
we have di =

∑N
j=1 pij, ki =

∑N
j=1 aij, and E(A) = P.

Additionally, if vertices i and j belong to the vertex set VF ,
the link probability in regard to edge set EF equals to pf ,
i.e., the anomalous subgraph is an Erdős-Rényi graph with
the link probability pf .

B. ANOMALOUS SUBGRAPH DETECTION PROBLEM
The main purpose of the anomalous subgraph detection
problem is to determine whether there exists an anomalous
subgraph in the observation graph or not. The anomalous
behavior is that the anomalous subgraph has denser con-
nections than the normal pattern. For example, in vehicular
management [28], we usually represent the vehicle as a vertex
of the random graphG and detect if there exists an unexpected
activity in G, such as a traffic jam or accident, which can be
denoted by an anomalous subgraph embedded in background
graph. Statistically speaking, we can formalize the anomalous

subgraph detection problem into a binary hypothesis test.
The null hypothesis H0 denotes the normal observed graph
G = GN , whereas the alternative hypothesis H1 stands for
the background graph GN that is embedded an anomalous
subgraph GF , which can be written as{

H0 : G = GN
H1 : G = GN ∪ GF ,

(1)

where the number of anomalous vertices NF � N in general.

FIGURE 1. Conventional anomalous subgraph detection framework.

As shown in Fig. 1, the traditional subgraph detection
methods usually contain two steps: first, design a test statistic
T according to the features selected by the detector; next,
compare T with the corresponding threshold to make the
decision. Then, the probability of false alarm pfa and the
probability of detection pd of the detector are{

pfa = P(T > γ |H0)
pd = P(T > γ |H1),

(2)

respectively, where γ is the detection threshold. If T > γ ,
the detector declares the alternative hypothesisH1; otherwise,
the null hypothesis H0. Therefore, the main goal of the sub-
graph detection algorithm is to design a test statistic T so that
it can maximize pd for a given pfa [29].

III. ANOMALOUS SUBGRAPH DETECTION FRAMEWORK
BASED ON DEEP LEARNING
Motivated by the powerful information extraction capabili-
ties of DNN, we develop a DNN-based subgraph detection
framework in this section. As shown in Fig. 2, in which
the blue and red dashed lines indicate normal and abnormal
communication links, respectively, and the frameworkmainly
includes two stages: offline training and on-line detection.
The role of DNN is to extract graph features for constructing
detection statistic.

A. OFFLINE TRAINING
1) TRAINING SET
At the offline phase, we first construct a random graph set to
train the designed DNN, given by

(X,Y) = {(x(1), y(1)), · · ·, (x(l), y(l)), · · ·, (x(L), y(L))}, (3)

where (x(l), y(l)) represents the lth, l = 1, 2, · · ·,L, sample
of the training set (X,Y). Take the sample (x(l), y(l)) as an
example, x(l) denotes the input data for DNN, and y(l) is the
label of the lth sample. More specifically, we declare the
alternative hypothesis H1 and the null hypothesis H0 when
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FIGURE 2. Anomaly subgraph detection framework based on deep neural networks.

y(l) = 2 and y(l) = 1, respectively. Please note that the
sample set X consists of the matrix representations of the
observed random graphs. In general, there are several types of
the matrix representations associated with the random graph,
such as the laplacian matrix, adjacency matrix, and residual
matrix, etc. Based on the specific graph models, we can
choose one certain matrix representation to form the sample
set. Moreover, we assume that the vertex set of each sample
in the training set is fixed but the edge is variable according
to the link probability matrix P.

2) TRAINING OF DNN
It can be seen from Fig. 2 that the DNN roughly includes the
input layer, hidden layer, and output layer. Then, the hidden
layer can further divide into the convolutional layer, pooling
layer, etc. In general, the output of the hidden layer can be
simplified into the following form

Y (l)
H = f (K )(f (K−1) · · · f (1)(x(l))), (4)

whereK is the number of convolutional layers, and the output
of the kth convolutional layer, k = 1, 2, · · ·,K , can be
expressed as

f (k)(z(k−1)) = f (W (k)z(k−1) + b(k)), (5)

where W (k) and b(k) denote the weight matrix and the offset
of the kth convolutional layer, respectively. z(k−1) represents
the output of the (k − 1)th convolutional layer.
Let the Y (l)

H denote the graph feature vector extracted from
the sample x(l), such as edge, diagonal and neighborhood
features, etc, which are hard to be extracted by the traditional
detection ways. In order to make the output of the DNN
suitable for the binary hypothesis testing problem, we select
softmax operator to fine-tune Y (l)

H , then the final output is

fθ (x(l)) =

[
f (H0)
θ (x(l))
f (H1)
θ (x(l))

]
, (6)

where θ = [W,b] denotes the network parameter set of the
DNN, W and b stand for the weight matrix and the offset

sets, respectively. f (Hi)θ (x(l)) ∈ [0, 1] represents the score of
x(l) corresponding to Hi, i = 0, 1, can be expressed as

f (H0)
θ (x(l))= eW

0
S Y

(l)
H∑1

i=0 e
Wi
SY

(l)
H
, (7)

f (H1)
θ (x(l))= eW

1
S Y

(l)
H∑1

i=0 e
Wi
SY

(l)
H
, (8)

where W i
S is a weight matrix of the fine-tune operator, and∑1

i=0 f
(Hi)
θ (x(l)) = 1. Moreover, for the sample x(l), the con-

ditional probability associated with the ith hypothesis under
θ [21] can be written as

Hi : P(y(l) = i|x(l); θ ) = f (Hi)θ (x(l)), i = 0, 1. (9)

Then, we define the following log-likelihood [30], [31]

J (θ ) = logP(Y |X; θ )

=

L∑
l=1

y(l) log fθ (x(l))+ (1− y(l)) log(1− fθ (x(l))). (10)

So far, the goal of offline training is to learn an optimal
parameter θ∗ to maximize J (θ ), i.e.,

θ∗ = argmax
θ

J (θ ). (11)

We apply the back-propagation algorithm to solve the
problem (11). Hereto, we can obtain the posterior probability
P(Hi|x) = f (Hi)θ∗ (x) for hypothesis Hi. According to the
Neyman-Pearson theorem, we can construct the following
detection statistic for anomalous subgraph detection problem

TDNN(x) =
P(x|H1)
P(x|H0)

=
P(H1|x)
P(H0|x)

·
P(H0)
P(H1)

=
f (H1)
θ∗ (x)

f (H0)
θ∗ (x)

,

(12)

which can maximize the probability of detection pd for a
given probability of false alarm pfa. Without loss of gener-
ality, we set P(H0) = P(H1) = 0.5 [29].
In order to make the steps of training the DNN offline

clearer, we briefly summarize the training process. Firstly,
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FIGURE 3. On-line detection.

a training set is constructed based on the specific form of
the neural network. Secondly, we send samples to the DNN
hidden layer to obtain feature vectors for capturing the state
of the graph, and then achieve the final output (6). Finally,
based on the back-propagation algorithm, the DNN can learn
the optimal parameter θ∗, and the detection statistic TDNN(x)
can be constructed for anomalous subgraph detection.

B. ON-LINE DETECTION
Fig. 3 shows the on-line detection process of the algorithm.
The trained DNN is first fed with the observed sample x̃ to
output the feature vector ỸH , then combine (6) and (12) to
get the detection statistic TDNN (̃x). By comparing the statistic
TDNN (̃x) with the threshold γ , we can determine whether the
observed graph contains anomalous subgraph

TDNN (̃x)
H1
≷
H0

γ. (13)

The determination of the threshold γ will be described in the
next section.
Remark 1: In order to overcome the limitations of the

typical subgraph detection methods and improve the detec-
tion performance, we propose a DNN-based subgraph detec-
tion framework in this section. In fact, the intention of our
framework is to improve detection performance by coupling
the optimization of DNN with statistical decision-making.
More in detail, we first define the log-likelihood loss function
Jθ , which can obtain the posterior probability of the sam-
ple by learning the optimal parameters of the DNN. Then,
we define a detection statistic TDNN based on the Neyman-
Pearson theorem, which is the optimal detection statistic for
our anomalous subgraph detection problem.

IV. ANOMALOUS SUBGRAPH DETECTION ALGORITHM
Based on the DNN subgraph detection framework mentioned
above, we develop a RM-CNN algorithm for anomalous
detection regarding the given expected degree models in this
section.

A. NETWORK CONSTRUCTION OF RM-CNN
It is shown in some typical algorithms (such as the
Chi-Squared statistic methods [18] and the sparse principal
component analysis [19]) that the residual matrix of a random
graph can sense the deviation of the network. Therefore,
we utilize the residual matrix B as the input of the CNN
to capture the graph features. The residual matrix B of the
observed random graph is given by

B = A− E(A) = A−
ddT∑N
i=1 di

, (14)

whereE(A) denote the expectation of the adjacencymatrixA.
Then, the network structure of RM-CNN is shown in Fig. 4,
and its details is given below.

1) INPUT LAYER
The factors that affect the offline training time of CNN are the
depth of the network hidden layer and the size of the sample.
In general, the size of the anomalous subgraph is considerable
smaller than the background graph, which means that the
sample is full of useless noise for the subgraph informa-
tion. To reduce the training burden of the network, we first
pre-denoise the input samples of the network. Specifically,
we define the deviation degree sequence kdev as

kdev = (b21/D(k1), b
2
2/D(k2), · · · , b

2
N /D(kN )), (15)

where D(ki) =
∑N

j=1 pij(1− pij) represents the variance of
ki, and bi = E(ki) − ki is the bias of ki. Obviously, the
larger kdev(i), the more anomalous the corresponding vertex i.
Therefore, we select M vertices corresponding to the largest
M (M > NF ) elements in kdev to form the vertex set VD =
{v1, v2, · · ·, vM } and use the residual submatrix BM×M asso-
ciated with the vertex set VD as the input of RM-CNN. For
simplicity, we use BM instead of BM×M . It is worth pointing
out that although the value ofM has no significant impact on
the detection performance, we generally choose M > NF to
guarantee the algorithm’s performance. Note that sinceNF �
N , the dimensionM of the BM is also much smaller than that
of the background graph. Consequently, the training time of
the RM-CNN offline training is reduced after pre-denoising.
In addition, due to the elements of matrix BM are all real
numbers, the dimension of the input layer S0 is M ×M × 1.

2) CONVOLUTIONAL LAYERS
In the CNN, each convolutional layer is composed of multiple
distinct convolution kernels, which can effectively extract the
graph features of the random graph by performing convolu-
tion calculation with the input data. Compared with the graph
features selected artificially, the convolution kernel extracts
graph features from the training data can better sense the
structure of the random graph. For a single convolutional
layer, the convolution operation is written as

C(i, j, g) = (I ∗ Kg)(i, j)

=

∑
m

∑
n

I (m, n)K (i− m, j− n, g), (16)

where C(·, ·, g) represents the feature map of the gth convo-
lution kernel, I is the input of the convolutional layer, and Kg
stands for convolution kernel.

To weigh the algorithm performance and offline training
time, we let the RM-CNN perform two convolution opera-
tions. As shown in Fig. 4, the first convolutional layer C1
in RM-CNN applies 32 convolution kernels of size 5 × 5.
Then, the RM-CNN obtains 32 distinct feature maps,
i.e., graph features. Similarly, the second convolutional layer
C2 includes 50 convolution kernels of size 5× 5 and extracts
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FIGURE 4. RM-CNN network architecture.

50 graph features. In the two convolutional layers, the convo-
lution stride and padding are set as 1 and 0, respectively. Note
that the size of the convolution kernel can be adjusted accord-
ing to the size of the input sample. In the RM-CNN, the output
of the convolutional layer is the linear function of the input.
However, due to the complex network structure of the given
expected degree models, the extracted linear features may
not capture the anomalous behaviors of the networks. Hence,
we introduce the activation function to extract the nonlinear
graph features for detection performance improvement and
also overcome the vanishing gradient problem. In this paper,
the rectified linear unit (ReLU) is approved as the activation
function, which can be expressed as f (t) = max(t, 0), where
t is the convolutional layer output.

3) POOLING AND FULLY CONNECTED LAYERS
The pooling operation can reduce the size of the output
of the convolutional layer and increase the offline training
speed. The first (second) pooling layer S1 (S2) performs the
maximum pooling operation on each 2 × 2 region of the
input data, and the pooling stride is set to 2. It can be seen
from Fig. 4 that the size of the sample is effectively reduced
after the pooling layers.

The role of the fully connected layer is to integrate the fea-
tures extracted from each convolutional layer. After two fully
connected operations, the RM-CNN can obtain the graph
feature vector YH . By fine-tuning the output of the second
fully connected layer, we obtain the final output of RM-CNN,
given by

fθ (BM ) =

[
f (H0)
θ (BM )

f (H1)
θ (BM )

]
, (17)

where f (Hi)θ (BM ) denotes the score of the ith hypothesis with
the input of BM .

As a summary, the required parameters for offline training
are listed in Table 2. Note that the network depth only counts
the number of convolutional layers.

TABLE 2. Network training parameters.

Next, we analyze the number of the floating point oper-
ations (FLOPs) and the parameters of the RM-CNN. The
number of the parameters for the ith convolutional layer is
given by

N (i)
c = (K 2

i ci−1 + 1)ci. (18)

Then, the number of the parameters for the ith fully connected
layer is expressed as

N (i)
f = (N (i)

in + 1)N (i)
out , (19)

whereN (i)
in andN (i)

out denote the number of the input and output
elements, respectively. For example, for the fully connected
layer F1, we have N

(1)
in = 5×5×50 and N (1)

out = 1×1×500.
Moreover, for the ith convolutional layer, we have

FLOPs(i)c = N (i)
c m2

i , (20)

wheremi represents the length of the output featuremap. Note
that, for the fully connected layer, FLOPsf is equal to Nf .
Remark 2: The computational complexity at the offline

training stage mainly depends on the computational cost of
the pre-denoising for the dataset and the solution for parame-
ter θ∗. The computational complexity for finding the first M
possible anomalous vertices of the lth sample is O(N 2). The
computational complexity of the solution for parameter θ∗
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is reflected in the total number of samples and the number

of epochs, which is O(LNe
D∑
i=1

m2
i K

2
i ci−1ci). Ne, L, and D

denote the number of epoch, samples, and convolution layers,
respectively. It is worth noting that the size of mi depends
on the size of the input matrix of the ith layer, Ki, stride,
and padding. Thus, the total computational complexity of the

entire offline training is O(LN 2
+ LNe

D∑
i=1

m2
i K

2
i ci−1ci).

B. RM-CNN ALGORITHM
In this subsection, we introduce a RM-CNN algorithm for the
given expected degree models as a specific implementation of
the DNN-based subgraph detection framework.

1) OFFLINE TRAINING
As shown in Fig. 2, the system first collects L labeled
observed graphs to form the labeled dataset

(X,Y) = {(A(1), y(1)), · · ·, (A(l), y(l)), · · ·, (A(L), y(L))},

(21)

where A(l) denotes the adjacency matrix of the lth (l = 1,
2, · · · ,L) sample. For a single sample A(l), we need to
pre-denoise it by formulas (14) and (15), and then we can
obtain the residual matrix B(l)M of lth sample. Therefore,
we can define the training set, given by

(XBM ,Y) = {(B
(1)
M , y

(1)), · · ·, (B(l)M , y
(l)), · · ·, (B(L)M , y(L))}.

(22)

According to (10), the log-likelihood can be written as

J (θ ) =
L∑
l=1

y(l) log fθ (B
(l)
M )+ (1− y(l)) log(1− fθ (B

(l)
M )).

(23)

Through the back-propagation algorithm, we can obtain the
optimal parameters θ∗ of the RM-CNN. Then, the detection
statistic of the proposed algorithm is given by

TRM−CNN(BM ) =
f (H1)
θ∗ (BM )

f (H0)
θ∗ (BM )

, (24)

where f (H0)
θ∗ (BM ) and f (H1)

θ∗ (BM ) denote the score of BM
about H0 and H1 hypothesis, respectively. The procedure
of the offline training process of RM-CNN is summarized
in Algorithm 1.

2) ON-LINE DETECTION
During the on-line detection stage of the proposed RM-CNN
algorithm, we first collect the online sample Ã. Then,
the detector calculates the residual matrix B̃M and feeds it
to the trained RM-CNN to obtain statistic TRM−CNN (̃BM ).
By comparing TRM−CNN (̃BM ) with a given threshold γ ,
we can judge whether the sample G̃ contains the anomalous
subgraph. If TRM−CNN (̃BM ) > γ , we declare that G̃ con-
tains the anomalous subgraph (H1 hypothesis); otherwise,

Algorithm 1 RM-CNN Offline Training

1: Input: L labeled observed graphs {A(1), · · ·,A(l), · ·

·,A(L)
}, expected degree sequence d.

2: Output: RM-CNN network optimal parameter θ∗.
3: Initialize: Network parameters θ = θ1, M , r = 1, and

Epoch;
4: for l = 1 : L do
5: Calculate the lth sample residual matrix B(l)M by for-
6: mulas (14) and (15);
7: end for
8: Build the training set (XBM ,Y) = {(B(1)M , y

(1)), · ·
·, (B(l)M , y

(l)), · · ·, (B(L)M , y(L))} and sent it to the RM-CNN;
9: for r = 1 : Epoch do
10: Use the back-propagation algorithm to update the
11: parameters θ r with a loss function of (23);
12: Update r = r + 1;
13: end for

we declare that G̃ is normal (H0 hypothesis). Note that due
to the considerable number of RM-CNN parameters and the
complex structure of the given expected degree models, it is
difficult to achieve the probability distribution of the statistic
TRM−CNN for obtaining the theoretical detection threshold.
Thus, we apply the Monte Carlo method to set the detection
threshold γ of the statistic TRM−CNN for a given pfa. Specif-
ically, we first collect the dataset under the hypothesis H0,
which can be expressed as

4BM = {B
(H0,1)
M ,B(H0,2)

M , · · ·, (B
(H0,LH0 )
M )}. (25)

Then, we feed them into the well-trained RM-CNN and
obtain the detection statistic TRM−CNN(B

(H0,l)
M ), l =

1, 2, · · · ,LH0 . We build the set 4TRM−CNN|H0 in descending
order based on TRM−CNN(B

(H0,l)
M ), l = 1, 2, · · · ,LH0 . To this

end, we define the detection threshold γ for a given probabil-
ity of false alarm α as

γ = 4TRM−CNN|H0 (bαLH0c). (26)

The details of the above procedure are summarized
in Algorithm 2.
Remark 3: In this subsection, we propose a RM-CNN

algorithm by utilizing the RM-CNN to replace the DNN
in Section II. The proposed pre-denoising process greatly
reduces the network training time while ensuring the detec-
tion performance of the algorithm. Even though the algo-
rithm complexity of the RM-CNN offline training is high,
its on-line detection phase has a relatively lower computa-
tional complexity than some traditional anomaly subgraph
detection algorithms. Therefore, the proposed algorithm can
provide the faster detection speed than the typical algorithm.
For example, the computational complexity of the sparse
principal component analysis method is O(N 4√logN/ε),
where ε controls accuracy. The computational complexity
of the eigenvector L1 norms method is O(|E|kh + Nk2h +
k3h), where k and h denote the number of eigenvector
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Algorithm 2 RM-CNN On-Line Detection

1: Input: observed graph Ã, expected degree sequence d.
2: Output: Decision about absent or present of anomalous

graph GF .
3: Initialize: Parameter M , threshold γ ;
4: Obtain the residual matrix B̃M of Ã by using (14)

and (15);
5: Feed B̃M into the trained RM-CNN to obtain the output;
6: Establish detection statistic TRM−CNN(̃BM ) with (24);
7: If TRM−CNN (̃BM ) > γ , GF is present; otherwise, GF is

absent.

and the number of restarts [16], respectively. In addition,
the computational complexity of the on-line phase is O(N 2

+
D∑
i=1

m2
i K

2
i ci−1ci) for the RM-CNN algorithm. It can be

observed that the computational complexity of these methods
mainly depends on the parameters N and k . Moreover, for
large-scale graphs, N and k are commonly greater than
103 and 102, respectively. As a result, the computational
complexity of the RM-CNN in on-line detection phase is
relatively lower than the compared algorithms.

V. SIMULATION RESULTS
In this section, simulation experiments are provided to val-
idate the detection performance of the RM-CNN algorithm
relative to the Eigenvector L1 norm method, total degree
method, and support vector machine (SVM) method. In addi-
tion, the SVM takes the number of triangles and the maxi-
mum degree as features [9]. We consider the given expected
degree models that are generated by the Kronecker product
method [32], and set the average degree of the expected
degree sequence as 12. Assume that the subgraph embedded
in background graph is a dense Erdős-Rényi random graph.
Moreover, the SNR of the anomalous detection problem [17]
is given by

SNR = ||AF ||2/||A− E(A)||2. (27)

From the above formula, it is observed that the parameters
which affect the SNR mainly include the vertex number N of
the random graph, the anomalous vertex number NF of the
subgraph, and the anomalous probability pf . In what follows,
we will examine the performance of the proposed algorithm
by changing the values of the above parameters. Without
special notes, all results of the simulation experiments are
obtained through Mc = 400 Monte-Carlo (MC) realizations,
and LH0 is set to 100. For a given probability of false alarm pfa,
we determine the corresponding threshold γ based on (26)
and calculate the corresponding probability of detection pd .
Specifically, we introduce an indicator function

1(T (i)
RM−CNN) =

{
1, if True,
0, if False.,

i.e., if the judgment of the ith MC realization is true, then
1(T (i)

RM−CNN) = 1, otherwise, 1(T (i)
RM−CNN) = 0. So, for a

given pfa, we have

pd =

∑Mc
i=1 1(T

(i)
RM−CNN)

Mc
. (28)

A. FEATURE MAPS VISUALIZATION
To better understand the process of extracting graph features
of the RM-CNN, this subsection provides the visualization
of feature maps. Consider a given expected network with
N = 1024, and an Erdős-Rényi subgraph with NF = 15
and pf = 0.7 is embedded into the background graph. Fig. 5
(a) shows that after the first convolutional layer, the RM-CNN
learns some features of the graph, such as the edge and
diagonal features of the random graph. Similarly, as shown
in Fig. 5 (b), more graph features are learned by the second
convolutional layer. The spatial size (length) of the single
feature map by the two-layer convolution operation is 28×28
and 10× 10, respectively.

FIGURE 5. Graph features visualization.

B. ALGORITHM PERFORMANCE EVALUATION
In this subsection, we compare the proposed algorithm with
the traditional methods from different aspects.

In order to evaluate the effect of the pre-denoising parame-
terM on the proposed algorithm performance, we conduct the
following experiment. For the given expected degree models,
we set N = 1024, pf = 0.5, pfa = 0.1, and NF = 15.
From Fig. 6, it is observed that the performance of the algo-
rithm is improved as M increases. For small M scenario,
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FIGURE 6. ROC curves for different pre-denoising coefficient M.

FIGURE 7. ROC curves for the compared methods and the RM-CNN
algorithm under the given expected degree models. The error bars
represent 0.25 × standard deviation.

the RM-CNN algorithm may slightly lose some useful graph
information, which leads to the performance degradation of
the algorithm. To balance the offline training time and the
detection performance, we choose M = 32 in the following
simulations.

In Fig. 7, we consider the given expected degree models
with N = 1024 and the anomalous subgraph with NF = 15.
We provide the ROC curves for pf = 0.4 or pf = 0.5 in Fig. 7.
By varying the value of pfa, we choose different thresholds
based on the formula (26) to obtain the corresponding pd .
Moreover, in order to confirm the stability of the RM-CNN
algorithm, we provide the standard deviation in Fig. 7. The
corresponding numerical results are presented in Table 3.
From Fig. 7 and Table 3, one can observe that, with the same
conditions, the detection performance and the stability of the
RM-CNN algorithm outperforms the compared methods.

Next, we show the results of the probability of detection pd
versus the link probability pf in Fig. 8. Specifically, we set

FIGURE 8. The probability of detection versus the link probability of
anomalous subgraph for the compared methods and the RM-CNN
algorithm under the given expected degree models.

FIGURE 9. ROC curves for the RM-CNN algorithm and the Eigenvector L1
norms method under different random graphs.

pfa = 0.1 and 0.2, and let the anomalous probability pf
vary from 0.3 to 1. The simulation results show that the
proposed algorithm has better probability of detection than
the compared algorithms. Although the link probability of
anomalous subgraph is weak, the RM-CNN algorithm can
also capture the anomalous graph features more efficiently,
and provide a good detection performance.

In Fig. 9, we consider several random graph models,
i.e., the given expected degree, power law random, and
Erdős-Rényi random graph models. The network parameters

TABLE 3. The partial numerical results of different methods from Fig. 7.
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FIGURE 10. ROC curves for the compared methods and the RM-CNN
algorithm with two cases (i.e., NF = 10 and NF = 15, respectively).
The error bars represent 0.25 × standard deviation.

are set as N = 1024, NF = 15, and pf = 0.5. Fig. 9 depicts
the ROC curves of different methods, and we can note that
the proposed algorithm is optimal for all scenarios.

Next, we consider the impact of the number of the anoma-
lous vertex NF and total vertex N on the algorithm perfor-
mance in regard to the given expected degree models.We first
show the robustness of our algorithm in Fig. 10 by fixing
N = 1024, pf = 0.5, pfa = 0.1, and varying the value of NF .
From Fig. 10, it is observed that the detection performance
improves as the value of NF increases for detectors. In addi-
tion, we can note that the RM-CNN algorithm has excellent
detection performance even when the number of anomalous
vertices is small. Then, let us consider the effect of the value
ofN on the algorithm performance. We setNF = 15 and vary
N from 128 to 2048, and then generate a series of random
graphs regarding the given expected degree models with the
same average degree. In addition, the other parameters are the
same as those for Fig. 10. As depicted in Fig. 11, the detection
performance of the algorithm significantly decreases as N
increases. The main reason for the above phenomenon is that
since a higherNF (N ) means a higher (lower) SNR, the detec-
tor can be easier (more tough) to discover the anomaly. The
results provided in Fig. 10 and 11 display that the RM-CNN
algorithm is more sensitive to the anomalous behaviors than
the comparison methods.

Finally, we take the same parameter set in Fig. 7 and eval-
uate the detection time of different algorithms. We perform
the experiments in MATLAB (R2016b) environment and run
on a laptop with Intel Core i5-8250U CPU @ 1.60GHz and
a NVIDIA GeForce MX150 GPU. The average detection
time operated by the Eigenvector L1 norm method and the
Total degree method are 0.774 and 0.616 seconds, respec-
tively. However, the average detection time of the RM-CNN
algorithm is only 0.406 seconds. In spite of the proposed
algorithm requires plentiful offline training time, its detec-
tion speed is significantly faster than the other algorithms.
Moreover, as the dimension of the random graph increases,

FIGURE 11. The probability of detection versus the vertices number N of
the background graph.

the advantage of the algorithm regarding detection speed will
become more obvious.

VI. CONCLUSION
In this paper, we have analyzed the anomalous subgraph
detection problem under complex random graph models
and proposed a DNN-based subgraph detection framework.
As a specific application of the above framework, we have
presented a RM-CNN algorithm regarding given expected
degree models. Due to the complex structure of the given
degree models, the traditional algorithms may not provide
good detection performance. Moreover, the dimension of the
anomalous subgraph embedded in the background graph is
small, which makes the problem more challenging. Based
on the proposed DNN-based subgraph detection framework,
the RM-CNN algorithm can efficiently extract the nonlinear
graph features with respect to the anomalous subgraph. As a
result, the performance of the proposed algorithm is superior
to the compared algorithms in the terms of the detection
performance and the detection speed of on-line phase.
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