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ABSTRACT A multi-unit resource allocation system usually contains several processes and a number of
resources with multiple units. Due to the competition for shared resources in these systems, deadlocks may
occur. Recently, researchers have shown an increased awareness in deadlock control strategies for such a
kind of systems without considering the dynamic changes such as processing failures and rework by using
the Petri net paradigm. This article reports a new strategy for deadlock analysis and control in reconfigurable
multi-unit resource systems (MRSs). We discuss a generalized class of Petri nets in which each stage of a
process may require a number of units of different types of resources to perform a task. In this way, we can
model more complex real systems. Thanks to a generalized class of Petri nets, i.e., the system of sequential
systemswith shared resources (S4R), this article proposes an effective integrated strategy for designing robust
supervisors for reconfigurable MRSs, and improves an S4R model to achieve a new model, namely a system
of sequential systems with shared resources and part-re-entry (S4RP), which represents the procedure that a
flawed product re-enters a system and is re-processed. We use a siphon-based max-controllability deadlock
prevention policy (DPP) to supervise the evolution of the S4RP, and present a comprehensive analysis to
demonstrate that the controlled S4RP is free of deadlocks. A net analysis tool (INA) is used to test and
validate the resulting S4RP.

INDEX TERMS Multi-unit resource system (MRS), Petri net, reconfiguration, robust deadlock control,
max-controllability of siphon.

I. INTRODUCTION
From the viewpoint of resource capacity, there are two
distinct types of resource allocation systems: single-unit
resource systems (SRSs) and multi-unit resource systems
(MRSs). The two kinds of systems usually consist of sev-
eral processes and a limited number of resources, where the
difference between them is the capacity of resources. In a
single-unit resource system, each resource has only one unit
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of that kind to be allocated to distinctive processes; on the
other hand, in anMRS, a resourcemay equipwith any number
of units. The possibility of a system being in a deadlock state
significantly depends on the competition for shared resources
among different processes [1].

A deadlock is actually a status in a system where two
or more processes wait for resources occupied by others to
finish, and neither ever does. In an SRS, if a cycle is formed
in its resource allocation graph that represents relationships
among the processes and resources, a deadlock necessarily
occurs. The issue of deadlock is increasingly challenging in
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an MRS since, for instance, the existence of a cycle in the
resource allocation graph of an MRS does not necessarily
imply the occurrence of a deadlock.

Many researchers and practitioners use Petri nets (PNs) for
modelling and managing deadlocks in single or multi-unit
resource systems [2]–[6]. PNs serve as a common for-
malism due to their inherent characteristics [7]–[17].
Deadlock control methods can be classified into three types:
Deadlock detection and recovery [18], [19], deadlock avoid-
ance [20], [21], and deadlock prevention [22], [23]. Dead-
lock prevention acts in an off-line way such that a group of
constraints among the resources and processes in a system
is imposed by an external agent, called a supervisor, thus
making the resource requests that cause deadlocks be impos-
sible. Deadlock avoidance offers an on-line computational
mechanism. Whenever a deadlock state is recognized, a pre-
defined mechanism helps the system return to a correct state.
Deadlock prevention is usually thought of as being safer than
other strategies [24]–[30]. For more details of Petri nets and
their applications, readers are referred to [31]–[34].

The resources in manufacturing systems (a common exam-
ple of MRSs) can have a multitude of forms, including a
variety of equipment such as numerically controlled machine
tools. The competitiveness of manufacturing companies
depends not only by the high productivity of the manufactur-
ing systems, but also by many factors from the market and
customers. Reconfigurable manufacturing systems (RMSs)
[35]–[37] offer the capability of an automatic and rapid
response to the variation of the globalmarket. Due to the com-
plexity in its structure and configuration, the deadlock prob-
lem in an RMS remains a challenging issue for researchers
and practitioners.

The existence of unreliable resources in an RMS
is a significant factor contributing to deadlock occur-
rences. It is well-known that unreliable resources in RMSs
may result in partial system collapse or even deadlocks
due to the unavailability of some processing units in a
resource [38]–[41]. Based on Petri nets, multiple strategies
are introduced to make complex improvements in reconfig-
urable manufacturing systems [42]–[45]. However, most of
them do not have a reconfiguration algorithm and cannot
guarantee the behavioural properties of Petri nets (boundness,
liveliness, and conservativeness).

To manage deadlocks within a reconfigurable MRS,
we proposed in [46] a new net subclass, namely a simple
sequential process with resources and part re-entry (S2PRP),
which captures the dynamics of machine processing and part
re-entry to a system by deciding whether a final product
satisfies the desired quality. If not, a flawed part has to be sent
to the system again for further processing. However, in [46]
the process can acquire only one unit of resource at a time,
implying that the developed technique in [46] has a limited
application scope.

This paper aims to mitigate the technical issue in [46] by
expanding the reported strategy in it. We first create a new net
subclass called a system of sequential systems with shared

resources and part-re-entry (S4RP). The major difference
between the work in this paper and in [46] is that, this paper
addresses a generalized class of Petri nets (S4R) [47] in which
each stage of a process may require multiple units of multiple
types of resources for executing a task. The well-known Petri
nets (PNs) S3PR [48], [49] and WS3PR [50] are both proper
subclasses of S4Rs.

In the literature, there are many net classes. Primarily,
PNs can be either ordinary or generalized, depending on
the weight of arcs. A PN is said to be ordinary when all
arc-weights are one; a PN is said to be generalized if it has at
least an arc with the weight being two or more. The structural
approaches via siphon-control [11], [27], [51]–[53] are typi-
cal vehicles to derive deadlock prevention policies (DPPs) for
generalized PNs. The occurrences of deadlocks in a general-
ized PN stem from the existence of siphons with insufficient
tokens. It has been shown that deadlocks in a generalized PN
could be managed or eliminated by the use of monitors (con-
trol places). However, the supervisors due to siphon control
have several technical flaws such as structural complexity
if the size of a plant is large. The notion of elementary
siphons is introduced in [54], [55] and used for the design
of liveness-enforcing-supervisors (LESs) with a simple
structure.

For the modeling and analysis of manufacturing systems,
a few PN subclasses have been reported, which are ana-
lyzed by means of siphons [56]–[62]. These findings could
be traced to the seminal research in [48]. The proposed
PN model (S4RP) in our research is a failure-safe model.
A methodology for fault recovery and re-entry of a faulty
part is presented, where a single working process is not in
deadlock, which guarantees that the S4RP remains active even
if an unreliable processing unit fails. Thus, the S4RP is always
live.

This study introduces a new control technique in order to
derive an LES for RMSs. It reports an improved class of
generalized PNs, called an S4RP, which exposes how a failed
part re-enters a system and is re-processed. We also employ
a siphon-based max-controllability DPP to control the S4RP.
A complete analysis is conducted, showing that the controlled
S4RP is deadlock-free. Note that either inhibitor arcs or enu-
merating a reachability graph is necessary, which leads to
less computational overheads and ensures that all predefined
processing steps can be done continuously. We consider all
unreliable resources in an MRS and the proposed method is
applicable to a complex Petri net model for multiple unreli-
able resources.

This article is structured as follows. The deadlock prob-
lem in an MRS and deadlock control for an S4R by
max-controllability of siphons are reviewed in Section II.
A novel generalized net subclass S4RP is presented in
Section III. The proposed model can well represent a part’s
failure and re-entry to a system when its quality test fails.
Section IV introduces robust deadlock control for this net
subclass via max-controllability of siphons, where an algo-
rithm and a complete analysis for an illustrative example are
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given. Finally, conclusions are drawn in Section V. The basic
definitions and properties of S4R used throughout the paper
can be found in [65], [66].

II. PRELIMINARIES
A. DEADLOCK IN AN MRS
A resource allocation graph (RAG) [63] is an effective tool to
represent resource allocation relationships between processes
and resources in an underlying system. An RAG is a digraph
(V ,E) with V and E being the sets of nodes and directed
edges, respectively. Let V = P ∪ Q with P ∩ Q = ∅, where
P is a set of processes and Q is the set of resources. In this
sense, an RAG is a bipartite graph. An edge dij = (xi, yj)
is a request edge if xi ∈ P and yj ∈ Q. An edge dji =
(yj, xi) is a grant edge if yj ∈ Q and xi ∈ P. In a path
(xi1, yj1), (yj1, xi2), . . . , (xik , yjk ), . . . , (yjs, xis+1), each edge
is distinct.

The reachable set of a node collects the nodes such that
there exists a path from the node to every element in the
reachable set. A knot is a non-empty setK of nodes satisfying
the fact that the reachable set of each node in K is exactly
K [64].

In an MRS, a process may request multiple units of a
type of resource, which can be represented in the underlying
RAG by multiple edges, each of which is labeled with an
integer denoting the number of units assigned. This alterna-
tive representation is said to be a weighted RAG (WRAG).
Fig. 1 depicts System-on-a-Chip (SoC) as an example of
an MRS with five processors and four multi-unit resources.
In this example, a process runs on a processor. Fig. 1(b)
visualizes a current resource allocation status in a form of
WRAG.

Fig. 2 depicts an RAG with knot K = {p1, p2, p3, q1, q2}
that represents a circular wait. A resource in an MRS can be
requested and occupied as long as there are enough available
units to be allocated. On the other hand, once a single-unit
resource is occupied by a process, all the others that request
it have to wait until it is released. We accordingly assume
that (1) the capacity of a resource is fixed, i.e., it has a fixed
number of processing units, and (2) a resource unit is granted
without any time delay if it is available.

B. DEADLOCK CONTROL FOR S4R
Here we first recall a DPP for an S4R [47], derived
from the notion of siphon’s max-controllability. Details
regarding generalized PNs are taken from [65]. Given a
place p, the maximal weight of its output arcs is denoted
by maxp•.
Definition 1 ( [65]): Given a marked S4R net (N ,M0) and

a siphon S in N , S is said to be max-marked at a marking
M ∈ R(N ,M0) if there exists a place p ∈ S such that
M (p) > maxp• holds. S is said to be max-controlled if
it is max-marked at any marking M ∈ R(N ,M0). If all
strict minimal siphons (SMSs) are max-controlled, a marked
S4R is said to satisfy the max cs-property (controlled-siphon
property).

FIGURE 1. SoC example with its corresponding (WRAG).

FIGURE 2. Resource allocation Graph (RAG) with a knot.

Theorem 1 ( [65]): A marked S4R net (N ,M0) is live if it
satisfies the max cs-property.
Theorem 2 ( [65]): Let (N ,M0) be a marked S4R and S be

a siphon. S is max-controlled if
∃ P-invariant I , ∀p ∈‖ I ‖− ∩S, maxp• = 1, ‖ I ‖+⊆ S,∑
p∈P I (p)M0(p) >

∑
p∈S I (p)(maxp• − 1).

In what follows, we write PI for a P-invariant. Let S be a
siphon in an S4R that is composed of n state machines. ∀i ∈
Nn = {1, 2, . . . , n}, ∀S ∈ 5,℘s =

⋃n
i=1 ℘

i
s, let ℘

i
s = [S i] ∪

{p ∈ PiA | p < Nl[S i]}. For this S, a non-negative P-vector
ks for S is constructed, and it is assumed that ∀i ∈ Nl, [S]i 6=
∅; ∀j ∈ Nn \ Nl, [S]j = ∅, where Nl ⊆ Nn. We define Bis =
{p | p ∈ [S]i,@p′ ∈ [S]i, p <Nl p

′
} [66].

Note that 5 denotes the set of all SMSs in N , and we use
Nl to represent the S2P of the i-th S2PR Ni.
Definition 2 ( [66]): A P-vector ks for a siphon S in an S4R

is constructed as follows:
∀p /∈ ℘s, ks(p) := 0
∀p ∈ [S], ks(p) := hs(p)
i: =1
repeat
∀p ∈ Bis, αp := max{hs(p), hs(p′) | p′ < Nlp, p′ ∈ [S]i}
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∀px ∈ {p | p ∈ Bis} ∪ {p
′
| p′ < Nlp, p′ ∈ [S]i}, ks(px) :=

αp
∀py ∈ {p′′ | p′′ < Nlp, p ∈ Bis, p

′′
∈ ℘s \ [S]i}, ks(py) :=

αp
∀pz ∈

⋂
pw∈Bis{p | p ∈ ℘

s
\ [S]i, p < Nlpw}, ks(pz) :=

max{ks(p) | p ∈ Bis}
i := i+ 1
until i > l + 1
To demonstrate Definition 2, ks for the SMS in the net

model in Fig. 3 is computed, where p01 = p7, p02 = p11,P1A =
{p1 − p6},P2A = {p8 − p10},P1R = {p12 − p15}, and P2R =
{p12 − p14}. It has three SMSs:
S1 = {p3, p6, p9, p13, p14},
S2 = {p2, p5, p10, p12, p13}, and
S3 = {p3, p6, p10, p12, p13, p14}.
We have
℘1
s = {p1, p2, p5, p8}, ℘

2
s = {p1, p8, p9}, and ℘

3
s =

{p1, p2, p5, p8, p9}.
For S1, [S1] = p2 + p5 + p8, ∀p /∈ ℘1

s , k
1
s (p) = 0, B1s =

{p2, p5, p8}.
For p2 ∈ B1s , we have
αp2 := 1,
k1s (p2) := 1,
k1s (p1) = k1s (p2) = k1s (p5) = 1.
For p8 ∈ B1s , we have
αp8 := 1,
k1s (p8) := 1,
In summary, we have k1s (p1) = k1s (p2) = k1s (p5) =

k1s (p8) = 1.
For S2, [S2] = 2p1 + p9,∀p /∈ ℘2

s , k
2
s (p) = 0,B2s =

{p1, p9}.
For p1 ∈ B2s , we have
αp1 := 2,
k2s (p1) := 2.
For p9 ∈ B2s , we have
αp9 := 1,
k2s (p9) := 1,
In summary, we have k2s (p8) = k2s (p9) = 1, and k2s (p1) =

2.
For S3, [S3] = 2p1+ p2+ p5+ p8+ p9,∀p /∈ ℘3

s , k
3
s (p) =

0,B3s = {p2, p5, p9}.
For p2 ∈ B3s , we have
αp2 := max(1, 2) = 2,
k3s (p2) := 2,
k3s (p1) = k3s (p2) = 2.
For p5 ∈ B3s , we have
αp5 := max(1, 2) = 2,
k3s (p5) := 2.
For p9 ∈ B3s , we have
αp9 := 1,
k3s (p9) := 1,
k3s (p8) = k3s (p9) = 1. In summary, we have k3s (p8) =

k3s (p9) = 1, and k3s (p1) = k3s (p2) = k3s (p5) = 2.
Theorem 3 ( [65]): Let S be an SMS in an S4R (N ,M0)

with N = (PA ∪ P0 ∪ PR,T ,F,W ). A monitor VS is added
to (N ,M0) such that gS = kS + VS is a PI of the resulting

FIGURE 3. An S4R (N, M0).

net (NV ,MV
0 ), where NV = (PA ∪ P0 ∪ PR ∪ {VS},T ,F ∪

FV ,W ∪ WV ); ∀p ∈ PA ∪ P0 ∪ PR,MV
0 (p) = M0(p). Let

fS =
∑

r
∈
R
S

Ir − gS and MV
0 (VS ) = M0(S) − ξS (ξS ∈ N+).

Then, S is max-controlled if ξS >
∑

p∈S fS (p)(max
•
p− 1) and

MV
0 (VS ) > max•vS .
Based on Theorem 3, for S1 = {p3, p6, p9, p13, p14} in the

S4R net shown in Fig. 3, by Definition 2, we have k1S = p1+
p2+p5+p8. As a result, g1S = k1S+V

1
S = p1+p2+p5+p8+V 1

S .
Notice that

∑
r∈
SR1

Ir = Ip13 + Ip14 = p2 + p3 + p5 + p6 +

p8 + p9 + p13 + p14, fS1 =
∑

r∈
SR1

Ir − g1S = p3 + p6 + p9 +

p13 + p14 − p1 − V 1
S .

fS1 is a PI of NV . Let ξ1S = 2. As a result, it holds
ξS1 >

∑
p∈S1 fS1 (p)(maxp• − 1) = 0. We conclude that S1 is

max-controlled by adding V 1
S with MV

0 (VS1 ) = 3. Similarly,
S2 and S3 are max-controlled by adding monitors V 2

S and
V 3
S , respectively, with ξ

2
S = 2, ξ3S = 2, MV

0 (VS2 ) = 2, and
MV

0 (VS3 ) = 5. The resulting controlled net is shown in Fig. 4,
which makes the net live.
Theorem 4 ( [67]): (NV ,MV

0 ) is obtained by adding mon-
itors for all SMSs in an S4R model (N ,M0) according to
Theorem 3. Then, it is live.

III. S4RP AS AN IMPROVED S4R
A. S4RP
Previous studies [68]–[77] have not treated some changes in
an RMS caused by a variety of reasons, such as process-
ing failures and equipment breakdowns. In an MRS, these
changes may consist of newly added machines as well as
the newly released product orders, or shifts in processing
routes triggered by market competition in much detail. To
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FIGURE 4. The live S4R (NV , MV
0 ) with three siphons being

max-controlled by monitors.

this end, an improved net model to S2PR, namely a simple
sequential process with resources and part-re-entry (S2PRP),
is proposed, which can deal with the dynamic changes in an
RMS.

Since an S4R is a generalized class of Petri net consisting of
two or more WS2PRs composed together through the shared
resources, in this study, we extend our previous work [46] to
an S4R.
Definition 3 ( [46]): Termination place (transition) pt (tt ) is

defined as the last place in a simple sequential process (S2P)
(the last transition) in an S2P if PA ∩ •tt = {pt }.
Definition 4: A system of sequential systems with shared

resources and part-re-entry (S4RP), denoted as (N ,M0) =
(P,T ,F,W ,M0,C, 9(pa, pr ,Te,Fe)), is defined as follows:

1) P = PA ∪ {pa} ∪P0 ∪PR ∪ {pr }, where PA =
⋃n

j=1 P
j
A

is called the set of operation places such that PiA∩P
j
A =

∅,∀i 6= j, and pa is an additional operation place for the
re-entry of failed parts and pr is an additional resource
for the failed operation. P0 =

⋃n
i=1{p

0
i } is called the set

of idle places with P0 ∩ (PA ∪ {pa}) = ∅, pr is an addi-
tional resource place that represents a test machine TM,
and PR = {r1, r2, . . . , rm} is called the set of resource
places such that ((P0 ∪ {PA ∪ {pa}) ∩ (PR ∪ {pr }) = ∅;

2) T =
⋃n

j=1 Tj, and ∀i 6= j, Ti ∩ Tj = ∅;
3) W = WA ∪WR, where WA : (PA ∪ {pa} ∪ P0) × T ) ∪

(T×(PA∪{pa}∪P0)) −→ {0, 1} such that ∀j 6= i, ((PjA∪

{pja, p0j }) × Ti) ∪ (Ti × (PjA ∪ {p
j
a, p0j })) −→ {0}, and

WR : (PR ∪ {pr } × T ) ∪ (T × PR ∪ {pr }) −→ N;
4) ∀j ∈ Nn = {1, 2, . . . , n}, the subnet Nj derived from

PjA ∪ {p
0
j } ∪ Tj is a strongly connected state machine

such that every circuit contains p0j ;
5) ∀r ∈ PR, there exists a unique PI Ir such that ‖ Ir ‖
∩PR = {r}, ‖ Ir ‖ ∩P0 = ∅, ‖ Ir ‖ ∩PA 6= ∅, and
Ir (r) = 1. Furthermore, PA = (∪r∈PR ‖ Ir ‖) \ PR;

6) N is pure and strongly connected;
7) M0 : P −→ N is the initial marking of N . C : P −→ N

is a capacity function, where C(p) indicates the bound
of the place p.

8) Te = {ti, tf } | (Te ∩• pa = {ti}) ∧ (Te ∩ p•a = {tf });
9) (•pr = {ti, tt }) ∧ (p•r = {t ∈ T | t

•
= pt }); and

10) Fe ⊆ (P∪ {pa, pr }×T ∪Te)∪ (T ∪Te×P∪ {pa, pr }).
11) ∀p ∈ PA, M0(p) = 0; ∀r ∈ PR, M0(r) ≥

maxp∈‖Ir‖Ir (p); M0(pa) = 0; M0(pr ) = 1; ∀p0j ∈ P0,
M0(p0j ) ≥ 1.

Definition 5: Let (N ,M0) = (P,T ,F,W ,M0,C, 9(pa,
pr , Te, Fe)) be an S4RP. N is self-loop-free if for all x, y ∈
PA ∪ {pa} ∪ P0 ∪ PR ∪ {pr } ∪ T ;W (x, y) > 0 means
W (y, x) = 0.
Definition 6: Let (N ,M0) = (P,T ,F,W ,M0,C, 9(pa,

pr , Te, Fe)) be an S4RP. The marking M ′ reachable by firing
an enabled transition t ∈ T (M [t〉M ′) satisfies

M ′(p) =


M (p)−W (p, t)+W (t, p), ∀p ∈ (•t ∩ t•);
M (p)−W (p, t), ∀p ∈ (•t \ t•);
M (p)+W (t, p), ∀p ∈ (t• \• t);
M (p), otherwise

Definition 7: Let (N ,M0) = (P,T ,F,W ,M0,C, 9(pa,
pr , Te, Fe)) be an S4RP. N is said to be ordinary if for all
(p, t) ∈ F , W (p, t) = 1; otherwise it is generalized.
Definition 8: Let (N ,M0) = (P,T ,F,W ,M0,C, 9(pa,

pr , Te, Fe)) be an S4RP. The reachability set of (N ,M0) is
denoted by R(N ,M0). A transition t ∈ T is live if for allM ∈
R(N ,M ), there exists a reachable marking M ′ ∈ R(N ,M )
such thatM ′[t〉 holds. (N ,M0) is said to be dead atM0 if there
is no t ∈ T such that M ′[t〉.
Definition 9: Let (N ,M0) = (P,T ,F,W ,M0,C, 9(pa,

pr , Te, Fe)) be an S4RP. A markingM0 is said to be reversible
if for each marking M ′ ∈ R(N ,M0), M0 is reachable
from M ′.
Definition 10: Let (N ,M0) = (P,T ,F,W ,M0,C, 9(pa,

pr , Te, Fe)) be an S4RP. A markingM ′ is said to be coverable
if for each p ∈ P, there exists a markingM ′′ ∈ R(N ,M0) such
that M ′′(p) > M ′(p).

B. BUILDING AN S4RP
To explain the construction of an S4RP, let us model an RMS
(with four robots R1–R4 and three machine tools M1–M3)
whose layout is shown in Fig. 5 and production routines are
in Fig. 6. Each robot (except for R4) can hold one product at a
time, while the capacity of R4 is 3. The capacities ofM1,M2,
andM3 are two, three, and three, respectively. There are three
loading buffers I1–I3 and three unloading buffersO1–O3. The
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FIGURE 5. An RMS layout.

FIGURE 6. The production routings of an RMS.

system can produce three part types, namely A, B, and C.
In Fig. 6, r/r ′ implies an alternative resource requirement for
r and r ′ for a processing step. Fig. 7 represents the PN model
(N ,M0) for working process of part A.

Now, we consider the case that the working process fails
to produce a part A. According to the policy in [46], to take
into account the processing failure and rework, a test machine
TM is needed. Fig. 8 represents the Petri net model (N ,M0)
that models the normal (as colored black) and re-entry
operations (as colored red). Table 1 presents the physical
meaning of the new improved part of the net model shown
in Fig. 8.

The net model in Fig. 8 is a weighted simple
sequential processes with resources and part-re-entry
(WS2PRP), where p0 = p8, PA = {pi | i =
2, 3, . . . , 7}, PR = {p18, p19, p21, p22, p23, p24, p25},

FIGURE 7. The petri net model (N, M0) for working process 1.

T = {ti | i = 1, 2, . . ., 9}. Places p18, p19, p21, p22, p23, p24
and p25 represent R1,R2,M1,M3,R3,R4 and M2, respec-
tively. Before a system starts, no parts are in it. M0(p8) = 10
represents the number of instances that should be processed
for part type P1 −→ A, pa = p28, pr = p27, pt = p26, tt =
t20, Te = {ti, tf } with ti = t21 and tf = t22, respectively; F =
{(p8, t1), (t1, p1), (p1, t2), (t2, p2), (p2, t3), (t3, p3), (p3, t4),
(t4, p4), (p1, t7), (t7, p6), (p6, t8), (t8, p7), (p7, t9), (t9, p4),
(p4, t5), (t5, p5), (p5, t6), (t6, p8), (p18, t1), (p19, t1), (t2, p18),
(t2, p19), (t7, p18), (t7, p19), (p21, t7), (p21, t2), (t3, p21),
(t8, p21), (t4, p24), (t9, p24), (p24, t3), (p24, t8), (p22, t4),
(p22, t9), (t5, p22), (p23, t5), (t6, p23), (p25, t5), (t6, p25)}, Fe =
{(t6, p26), (p26, t20), (p26, t21), (t21, p28), (p28, t22), (t22, p5),
(t22, p23), (p23, t21), (p25, t22), (t20, p27), (t21, p27), (p27, t6)},
the weights of all arcs are equal to one, except that the
weights of arcs in {(p22, t4), (p22, t9), (t5, p22)} are equal to
two. Finally, the capacities of the resources are C(R1) =
C(R2) = C(R3) = 1, C(R4) = 3, C(M1) = 2, and
C(M2) = C(M3) = 3.

According to Fig. 6, the Petri net model (N ,M0) for the
working process 2 can be established as shown in Fig. 9(a)
and Fig. 9(b) represents the PN model (N ,M0) which
explains the reconfiguration of the working process when it
fails to produce a qualified product B. The part with black
arcs of the PN models the normal process, while the part
with red arcs models the re-entry case. Table 2 demonstrates
the implications of the new improved part of the net model
in Fig. 9(b).

The net model shown in Fig. 9(b) is a weighted sim-
ple sequential processes with resources and part-re-entry
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FIGURE 8. The Petri net model (N, M0) explaining the re-entry part for
working process 1.

FIGURE 9. (a) The Petri net model (N, M0) for working process 2, and
(b) The petri net model (N, M0) explaining the re-entry behaviour for
working process 2.

(WS2PRP), where p0 = p12, PA = {p9, p10, p11}, PR =
{p24, p25}, and T = {t10, t11, t12, t13}. Places p24 and p25
represent R4 andM2, respectively. At an initial stage, no parts

TABLE 1. Physical meaning of the re-entry part in the net model shown
in Figure 8.

TABLE 2. Physical meaning of the re-entry part in the net model shown
in Figure 9(b).

are present in a system.M0(p12) = 10 represents the number
of instances to be processed for part type P2 −→ B, pa =
p31, pr = p30, pt = p29, tt = t24, Te = {ti, tf } with
ti = t23 and tf = t25, respectively; F = {(p12, t10), (t10, p9),
(p9, t11), (t11, p10), (p10, t12), (t12, p11), (p11, t13), (t13, p12),
(p24, t10), (p24, t12), (p25, t10), (t11, p24), (t12, p25), (t13, p24)},
Fe = {(t13, p29), (p29, t24), (p29, t23), (t23, p30), (p31, t25),
(t25, p11), (t25, p24), (p24, t23), (p25, t25), (t24, p30), (t23, p31),
(p30, t13)}, the weights of all arcs are equal to one, except that
the weights of arcs {(p25, t10), (t12, p25)} are equal to two.
Finally, the capacity of the resources is C(R4) = C(M2) = 3.
According to the production cycles shown in Fig. 6,

the Petri net model (N ,M0) for the working process 3 can
be constructed, as visualized in Fig. 10 and Fig. 11 repre-
sents the Petri net model (N ,M0) that explains the recon-
figuration of the working process when it fails to produce
a qualified product C. The part with black arcs of the PN
models the normal process, while the part with red arcs
models the re-entry case. Table 3 presents the physical
meaning of the new improved part of the net model shown
in Fig. 11.

The netmodel shown in Fig. 11 is aweighted S2PRP,where
p0 = p20, PA = {pi | i = 13, 14, . . . , 17}, PR = {p18,
p19, p21, p22, p23, p24}, and T = {ti | i = 14, 15, . . . , 19}.
Places p18, p19, p21, p22, p23 and p24 represent R1, R2, M1,
M3, R3, and R4, respectively. Suppose that no parts are pro-
cessed at the initial state. Thus, M0(p20) = 10 means the
maximal number of instances to be processed for part type
P3 −→ C , pa = p34, pr = p33, pt = p32, tt = t26,
Te = {ti, tf } with ti = t27 and tf = t28, respectively;
F = {(p20, t14), (t14, p13), (p13, t15), (t15, p14), (p14, t16),
(t16, p15), (p15, t17), (t17, p16), (p16, t18), (t18, p17), (p17, t19),
(t19, p19), (p19, t18), (t18, p18), (p18, t17), (t17, p21), (p21, t16),
(t16, p24), (t16, p22), (p24, t15), (p22, t14), (t15, p23), (p23, t14)},
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FIGURE 10. A PN (N, M0) for working process 3.

TABLE 3. Physical meaning of the re-entry part in the net model shown
in Figure 11.

Fe = {(t19, p32), (p32, t26), (t26, p33), (p33, t19), (p32, t27),
(t27, p33), (t27, p34), (p34, t28), (t28, p15), (t28, p19), (p19, t27),
(p21, t28)}, the weights of all arcs are equal to one, except that
the weights of arcs {(p22, t14), (t16, p22)} are equal to two.
Finally, the capacities of resources are C(R1) = C(R2) =
C(R3) = 1,C(R4) = 3,C(M1) = 2, and C(M3) = 3.
According to the concept of composition [66], [67], we can

composeN1,N2, andN3 shown in Figs. 7, 9(a), and 10 respec-
tively to obtain an S4R that represents an RMS layout shown
in Fig. 5. In the same way, we can compose N1, N2, and N3
as shown in Figs. 8, 9(b), and 11 respectively to obtain an
S4RP that includes the case of processing failures and rework.
Fig. 12 shows the S4R and Fig. 13 illustrates its corresponding
S4RP.

IV. ROBUST DEADLOCK CONTROL FOR S4RP
Based on the classical deadlock prevention policy in [66], this
section proposes a supervisor for an S4RP and a procedure to

FIGURE 11. A PN (N, M0) that explains the re-entry part for working
process 3.

FIGURE 12. The S4R that represents an RMS layout shown in Fig. 5.

compute a robust LES and the controlled system (NV ,MV
0 )

for S4RPs is developed. Here we make use of the notion
of elementary siphons proposed in [65], [66] to simplify
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FIGURE 13. The S4RP that presents the case of processing failures and
rework.

the structural complexity of the supervisor. For economy of
space, the related definitions regarding elementary siphons
are not presented.
Theorem 5: Let (N ,M0) = (PA ∪ P0 ∪ PR, T , F , W , M0,

C , 9(pa, pr , Te, Fe)) be an S4RP and NES the number of its
elementary siphons. Then, NES 6 |PA|.

Proof: A similar proof can be found in [65]. �
In an S4RP, the control of a dependent siphon could be

achieved through that of its elementary siphons. By Defini-
tion 4 and Theorem 3, we can formulate a DPP (as shown in
Algorithm 1) for S4RP.
Assumption: Transitions in Te = {ti, tf } in an S4RP

(N ,M0) = (P,T ,F,W ,M0,C, 9(pa, pr ,Te,Fe)) are reli-
able (i.e., transitions that do not fail to fire whenever
enabled).
Theorem 6:AnS4RP (N ,M0) = (P, T ,F ,W ,M0,C ,9(pa,

pr , Te, Fe)) with an unreliable element that causes failed parts
can be recovered by re-entering the failed parts and becomes
live by applying Algorithm 1.

Proof: When a working process fails to produce a pre-
defined product, the processing step modelled by PiA cannot
be successfully finished such that the token in PiA is removed.
Meanwhile, no token is in PiR, indicating the availability of
the considered product. Thus, the transitions pertaining to
the process that makes the considered product are disabled.
At this state when this considered product fails to pass the
test, the terminal place pt receives a token, implying that
the product is under testing by the test machine pr . Then,
transition ti ∈ Te is enabled. Enabling ti ∈ Te implies that
the flawed product re-enters the system and is moved into
the operation place pa. Thus, tf ∈ Te is enabled and the
flawed product re-enters the system and is re-produced by

Algorithm 1 Computation of a robust LES for S4RP

Input: S4RP (N ,M0) = (P, T , F ,W ,M0, C ,9(pa, pr , Te,
Fe)).
Output: Robust controlled system (NV ,MV

0 ) with its live-
ness ensured or ‘‘Undecided’’.
1. for i← 1 to n do
1.1 Find the possible routes ROi
1.2 Find the termination place pt by Definition 3
1.3 Find the termination transition tt such that PA ∩ •tt =
{pt }
1.4 Introduce a resource place pr representing the test
machine TM
1.5 Build the operation place pa that receives a failed part
1.6 Build a set of extended transitions Te and its corre-
sponding extended arcs Fe such that
1.6.1 Te = {ti, tf } | (Te ∩• pa = {ti}) ∧ (Te ∩ p•a = {tf })
1.6.2 (•pr = {ti, tt }) ∧ (p•r = {t ∈ T | t

•
= pt })

1.6.3 Fe ⊆ (P∪{pa, pr }×T ∪Te)∪ (T ∪Te×P∪{pa, pr }).
1.7 Establish a WS2PRP that models RO
1.8 end for
2. Construct an S4RP that models all possible routes ROi
that produce different part types by Definition 4
3. Compute

∏
for the obtained S4RP

4. Compute
∏

E
5. flag: = 0
6. for (i = 1; i <|

∏
E | +1; i++) do

6.1 Compute k iS for Si according to Definition 2
6.2 Add V i

S to (N ,M0) to make Si max-controlled based
on Theorem 3 with MV

0 (V i
S ) = M0(Si) − ξ iS , where ξ

i
S >∑

p∈Si fSi (p)(maxp• − 1)
6.3 if MV

0 (VS ) < maxvs•i
then

6.4 flag: = 1
6.5 end if
6.6 end for
7. if flag = 1 then
7.1 Output ‘‘Undecided’’
7.2 else
7.3 Output a robust controlled system (NV ,MV

0 )
7.4 end if

the machine. We infer that the PN S4RP always stays active
when the unreliable element fails. Thus, the PN S4RP is live
under the controlled fault recovery and re-entry process stated
in Algorithm 1. �
Now we explain, by Algorithm 1, how to design a

robust LES by using the S4RP (N ,M0) = (P, T , F ,
W , M0, C , 9(pa, pr ,Te,Fe)) represented in Fig. 13 as an
example.

Thanks to INA [78], 22 strict minimal siphons shown
in Table 4 can be computed. It is clear that the set of ele-
mentary siphons 5E = {Si | i = 1, 2, . . . , 6}, and we
compute V i

S for each siphon according to Definition 4 and
Theorem 3.
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1. For elementary siphon S1.
S1 = {p5, p9, p11, p14, p22, p24, p25},
Ip22 = 2p4 + 2p13 + 2p14 + p22,
Ip24 = p3 + p7 + p9 + p11 + p14 + p31 + p24,
Ip25 = p5 + 2p9 + 2p10 + p11 + p25,∑

r∈SR1
Ir = p3 + 2p4 + p5 + p7 + 3p9 + 2p10 + 2p11 +

2p13 + 3p14 + p31 + p22 + p24 + p25.
[S1] = p3 + 2p4 + p7 + 2p10 + 2p13 + p31,
℘s = ℘1

s ∪ ℘2
s ∪ ℘3

s = {p1, p2, p3, p4, p6, p7} ∪
{p9, p10, p11, p29, p31} ∪ {p13},
BiS = {p4, p31, p13},
hs(p3) := 1, hs(p4) := 2, hs(p7) := 1, hs(p10) :=

2, hs(p13) := 2, hs(p31) := 1.
For p4 ∈ BiS , we have
αp4 := max{2, 1} = 2,
ks(p1) = ks(p2) = ks(p3) = ks(p4) = ks(p6) = ks(p7) = 2.
For p31 ∈ BiS , we have
αp31 := max{1, 2} = 2,
ks(p9) = ks(p10) = ks(p11) = ks(p29) = ks(p31) = 2.
For p13 ∈ BiS , we have
αp13 := 2,
ks(p13) := 2,
ks1 = 2p1+ 2p2+ 2p3+ 2p4+ 2p6+ 2p7+ 2p9+ 2p10+

2p11 + 2p29 + 2p31 + 2p13,
gs1 = 2p1+ 2p2+ 2p3+ 2p4+ 2p6+ 2p7+ 2p9+ 2p10+

2p11 + 2p29 + 2p31 + 2p13 + Vs1,
fs1 =

∑
r∈SR1

Ir −gs1 = p5+p9+p11+3p14+p22+p24+
p25 − Vs1 − 2p1 − 2p2 − p3 − 2p6 − p7,
Vs1 = p5 + p9 + p11 + 3p14,
M v

0 (Vs1 ) = 9− ξs1 ,
2 < ξs1 ≤ 8.
2. For elementary siphon S2.
S2 = {p5, p9, p11, p14, p22, p23, p24, p28, p31},
Ip22 = 2p4 + 2p13 + 2p14 + p22,
Ip23 = p5 + p13 + p23 + p28,
Ip24 = p3 + p7 + p9 + p11 + p14 + p31 + p24,∑

r∈SR2
Ir = p3+2p4+p5+p7+p9+p11+3p13+3p14+

p31 + p22 + p23 + p24.
[S2] = p3 + 2p4 + p7 + 3p13,
℘s = ℘

1
s ∪ ℘

2
s = {p1, p2, p3, p4, p6, p7} ∪ {p13},

BiS = {p4, p13},
hs(p3) := 1, hs(p4) := 2, hs(p7) := 1, hs(p13) := 3.
For p4 ∈ BiS , we have
αp4 := max{2, 1} = 2,
ks(p1) = ks(p2) = ks(p3) = ks(p4) = ks(p6) = ks(p7) =

2.
For p13 ∈ BiS , we have
αp13 := 3,
ks(p13) := 3,
ks2 = 2p1 + 2p2 + 2p3 + 2p4 + 2p6 + 2p7 + 3p13,
gs2 = 2p1 + 2p2 + 2p3 + 2p4 + 2p6 + 2p7 + 3p13 + Vs2 ,
fs2 =

∑
r∈SR2

Ir −gs2 = p5+p9+p11+3p14+p31+p22+
p23 + p24 − Vs2 − 2p1 − 2p2 − p3 − 2p6 − p7,
Vs2 = p5 + p9 + p11 + 3p14 + p31,
M v

0 (Vs2) = 7− ξs2 ,

1 < ξs2 ≤ 6.
3. For elementary siphon S3.
S3 = {p4, p9, p11, p14, p22, p24, p31}, Ip22 = 2p4 + 2p13 +

2p14 + p22, Ip24 = p3 + p7 + p9 + p11 + p14 + p31 + p24,∑
r∈SR3

Ir = p3 + 2p4 + p7 + p9 + p11 + 2p13 + 3p14 +
p31 + p22 + p24.
[S3] = p3 + p7 + 2p13,
℘s = ℘

1
s ∪ ℘

2
s = {p1, p2, p3, p6, p7} ∪ {p13},

BiS = {p3, p7, p13},
hs(p3) := 1, hs(p7) := 1, hs(p13) := 2.
For p3 ∈ BiS , we have
αp3 := max{1, 1} = 1,
ks(p1) = ks(p2) = ks(p3) = ks(p6) = ks(p7) = 1.
For p13 ∈ BiS , we have
αp13 := 2,
ks(p13) := 2,
ks3 = p1 + p2 + p3 + p6 + p7 + 2p13,
gs3 = p1 + p2 + p3 + p6 + p7 + 2p13 + Vs3 ,
fs3 =

∑
r∈SR3

Ir − gs3 = 2p4 + p9 + p11 + 3p14 + p31 +
p22 + p24 − Vs3 − p1 − p2 − p6,
Vs3 = 2p4 + p9 + p11 + 3p14 + p31,
M v

0 (Vs3) = 6− ξs3,
1 < ξs3 ≤ 5.
4. For elementary siphon S4.
S4 = {p3, p7, p9, p11, p15, p21, p24, p31},
Ip21 = p2 + p6 + p15 + p21,
Ip24 = p3 + p7 + p9 + p11 + p14 + p31 + p24,∑

r∈SR4
Ir = p2 + p3 + p6 + p7 + p9 + p11 + p14 + p15 +

p31 + p21 + p24.
[S4] = p2 + p6 + p14,
℘s = ℘

1
s ∪ ℘

2
s = {p1, p2, p6} ∪ {p13, p14},

BiS = {p2, p6, p14},
hs(p2) := 1, hs(p6) := 1, hs(p14) := 1.
For p2 ∈ BiS , we have
αp2 := max{1, 1} = 1,
ks(p1) = ks(p2) = ks(p6) = 1.
For p14 ∈ BiS , we have
αp14 := 1,
ks(p13) = ks(p14) = 1,
ks4 = p1 + p2 + p6 + p13 + p14,
gs4 = p1 + p2 + p6 + p13 + p14 + Vs4,
fs4 =

∑
r∈SR4

Ir − gs4 = p3 + p7 + p9 + p11 + p15 + p31 +
p21 + p24 − Vs4 − p1 − p13,
Vs4 = p3 + p7 + p9 + p11 + p15 + p31,
M v

0 (Vs4) = 5− ξs4 ,
0 < ξs4 ≤ 4.
5. For elementary siphon S5.
S5 = {p2, p6, p16, p18, p21},
Ip18 = p1 + p16 + p18,
Ip21 = p2 + p6 + p15 + p21,∑

r∈SR5
Ir = p1 + p2 + p6 + p15 + p16 + p18 + p21.

[S5] = p1 + p15,
℘s = ℘

1
s ∪ ℘

2
s = {p1} ∪ {p13, p14, p15},

BiS = {p1, p15},
hs(p1) := 1, hs(p15) := 1.
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FIGURE 14. The controlled and live S4RP with processing failures and rework.

For p1 ∈ BiS , we have
αp1 := max{1, 1} = 1,
ks(p1) := 1.
For p15 ∈ BiS , we have

αp15 := 1,
ks(p13) = ks(p14) = ks(p15) = 1,
ks5 = p1 + p13 + p14 + p15,
gs5 = p1 + p13 + p14 + p15 + Vs5,
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TABLE 4. SMSs in Figure 13.

TABLE 5. Elementary siphons and monitors in Figure 13. Note that we
use di to denote MV 0(VS i ).

fs5 =
∑

r∈SR5
Ir −gs5 = p2+p6+p16+p18+p21−Vs5−

p13 − p14,
Vs5 = p2 + p6 + p16,
M v

0 (Vs5) = 3− ξs5 ,
0 < ξs5 ≤ 2.
6. For elementary siphon S6.
S6 = {p2, p6, p17, p18, p19, p21},
Ip18 = p1 + p16 + p18,
Ip19 = p1 + p17 + p19,
Ip21 = p2 + p6 + p15 + p21,∑

r∈SR6
Ir = 2p1+p2+p6+p15+p16+p17+p18+p19+p21.

[S6] = 2p1 + p15 + p16,
℘s = ℘

1
s ∪ ℘

2
s = {p1} ∪ {p13, p14, p15, p16},

BiS = {p1, p16},
hs(p1) := 2, hs(p16) := 1.
For p1 ∈ BiS , we have
αp1 := 2,
ks(p1) := 2.
For p16 ∈ BiS , we have
αp16 := 1,
ks(p13) = ks(p14) = ks(p15) = ks(p16) = 1,
ks6 = 2p1 + p13 + p14 + p15 + p16,
gs6 = 2p1 + p13 + p14 + p15 + p16 + Vs6 ,
fs6 =

∑
r∈SR6

Ir − gs6 = p2+ p6+ p17+ p18+ p19+ p21−
Vs6 − p13 − p14,
Vs6 = p2 + p6 + p17,

M v
0 (Vs6) = 4− ξs6 ,

0 < ξs6 ≤ 3.
Table 5 shows the elementary siphons in the S4RP

in Fig. 13. Fig. 14 represents the live and controlled S4RP
(N ,M0) = (P,T ,F,W ,M0,C, 9(pa, pr ,Te,Fe)) for the
Net shown in Fig. 13.

V. CONCLUSION
The main goal of the current study was to design a new
DPP for preventing the occurrences of deadlocks in a recon-
figurable MRS by excogitating a novel PN subclass, S4RP
for short, which addresses the case of processing fail-
ures and rework, and represents the process that a flawed
part re-enters the underlying system to be re-processed.
We apply a siphon-based max-controllability DPP to make
the proposed S4RP live through adding external control
elements. We also use INA–a PN analyzer to validate the
results.

The main results of the proposed strategy consist of the fol-
lowing contributions: (1) it can be extended to a generalized
PN subclasses, such as ES3PR, S∗PR, S2LSPR, S3PGR2 and
S3PMR; (2) the proposed structural analysis techniques for
S4RP do not need to generate reachability graphs; (3) it can
manage failures efficiently in an MRS; (4) the developed
S4RP can dynamically modify the arrangement of the PN
without breaking its liveness property; (5) we include a repre-
sentation of the configuration of reconfigurable manufactur-
ing systems and provide an S4RP model for the architecture
of the supervisor; and (6) an S4RP is applicable to a system
with complicated resource requirements.
This research develops a generalized class of Petri nets,

namely S4R that can simulate reconfigurable MRS. This
means that the process can request and release more than
one unit of single or multiple resources at a time. Moreover,
elementary siphons are used for the case of re-entry parts in
an MRS, which leads to expensive computing overheads.
In the future study, the behavioural permissiveness and

structural complexity of a supervisor will be optimized and
reduced. We will also focus on expanding and improving
the proposed method to a system with uncontrollable and
unobservable events.
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