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ABSTRACT Industrial robots are being widely applied to machining operations, and are gradually becoming
competitive with traditional CNC machining centers. Obtaining accurate stiffness values of robotic joints is
the foundation for deflections compensation in case of large cutting forces. A number of factors influence
the accuracy of joint stiffness identification, especially robotic posture. This paper proposes a robust and
accurate method for selecting suitable postures in the joint stiffness identification. The identification process
of the joint stiffness matrix is presented, an index considering both the dexterity and the condition number
of the observation matrix is then developed, and the procedure for postures selection based on it is provided.
The results of simulations and experiments show that the proposed method is more robust and accurate than
classical method.

INDEX TERMS Joint stiffness identification, postures selection, observation matrix, condition number,
dexterity.

I. INTRODUCTION
Serial robots with six degrees of freedom (6 DoFs) are used
in a variety of machining applications, such as milling [1],
[2], drilling [3], [4], and boring [5]. These machining pro-
cesses feature large forces that can lead to an inaccurate
global pose of the robot. To improve the performance of
robots in machining, one solution involves compensating for
deflections to ensure an accurate position and orientation
of the end-effector based on the Cartesian stiffness matrix
of the robot. Deblaise et al. [6] proposed the Virtual Joint
Method (VJM) to model the stiffness of Parallel Kinematic
Machines (PKMs), and this method is suitable for modeling
robotic stiffness as well. The VJM regards links as rigid, and
uses torsional springs to model the joints. A 6 × 6 stiffness
matrix can be obtained based on the VJM for serial robots
with 6 DoFs. It features a small number of nodes in its calcu-
lation [7]. Using the VJM, Salisbury [8] reported the stiffness
matrix-based relationship between Cartesian space and that
of the joints. Chen and Kao [9] proposed the conservative
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congruence transformation (CCT) to develop Salisbury’s the-
ory. Therefore, we can pay attention to the robot joint stiffness
identification to form the robot joint stiffness matrix, then
calculate the robot Cartesian stiffness matrix based on the
robot stiffness models mentioned above.

To identify stiffness in robotic joints, Abele et al. [10]
used different configurations of joints in the workspace,
applied load on the end-effector, and measured the corre-
sponding displacements. Then some interpolations have been
used in the identification process. The most commonly used
approach to joint stiffness identification is as follows: (1) A
kinematic index– dexterity is used to select the configura-
tions of robotic joints. (2) An external wrench (force and
moment) is applied to the loading point of the end-effector,
and the load is changed within the rated range of the robot.
(3) The displacements (translations and rotations) of the
end-effector are measured. (4) The stiffness values of the
robot’s joints are identified based on the stiffness model and
linear least-squares theory.

Dexterity is a useful index for a robot system as it indicates
the distance to singularities. Dumas et al. [11] noted that
good dexterity is required for the joint stiffness identification
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procedure to converge. Therefore, the zones of the robot’s
workspace and the joint space in which it has good dexterity
need to be selected before tests. This is to say that not all
postures are suitable for joint stiffness identification. Further-
more, with regard to the influence of the additional matrix
KC in Chen’s robot stiffness model, postures of the robot
with negligibly small values of KC with respect to Kθ can be
selected and simplified for the stiffness model of the robot.
Moreover, the robot’s Cartesian stiffness matrix depends
on its posture [12]. Various postures lead to different stiff-
ness characteristics of the end-effector, which can influence
the accuracy of joint stiffness identification. Thus, select-
ing suitable robotic postures is significant for joint stiffness
identification.

The most common method for selecting suitable robotic
postures considers both dexterity and the influence of the
additional matrix KC . Postures with higher dexterity and a
lower effect of KC are usually selected for joint stiffness
identification tests. The second and third joints of the robot
are the most influential for the movements of its end-effector,
Dumas et al. [11], [13] thus examined the relevant zones by
setting the angle of the first joint to null, and that of the fourth,
fifth, and sixth joints to 45◦. They quantified the influence of
the additional matrix KC in those zones based on the relative
deviations in the translational displacement and rotational
displacement. The zones of joint space where the robot had
good dexterity, and small values of relative deviations were
hence selected. By comparing the zones of joint space, they
found that the configurations for which the influence of KC
on K is the maximum also involve poor dexterity, i.e., close
to the singularity [13]. Dumas et al. [11] also noted that the
stiffness of all joints can been accurately identified if they
are stressed substantially at least once in all tests. However,
they did not provide detailed illustrations for the procedure to
ensure this criterion. Yang et al. [14] used the indices of errors
in the relative position and orientation to characterize errors
in the identified joint stiffness and their effect on the predicted
deflections. Suitable robot postures can be selected based on
these indices. Unlike the theoretical basis for this research,
Cen andMelkote [15] used a small static load to minimize the
effect of KC , and selected 15 joint configurations of the robot
to cover all its spaces of motion and identify joint stiffness.
Alici and Shirinzadeh [16] proposed a method to identify
and characterize joint stiffness using Chen’s stiffness model.
They considered the influence of the additional matrix KC
and chose 20 postures in the robot’s workspace. In summary,
the second and third joints of the robot are themajor objects of
research when choosing robotic postures, and an appropriate
zone of joint space can be selected based on the various
indices.

Lehmann et al. [17] introduced an approach that involved
clamping the robot’s end-effector to a rigid environment and
mounting a force/torque sensor between the end-effector and
the fixture. Joint stiffness and other parameters were then
calculated based on the robot controller and sensor data. This
clamping solution was first proposed by Bennett et al. for

kinematic calibration [18]. Jubien et al. [19] have also used it
for identifying joint stiffness. Notably, this method does not
require a force/torque sensor.

This paper proposes a method to improve the accuracy of
identification of stiffness in robotic joints. This work makes
one contribution to the literature: it is the first time to illustrate
the relationship between the condition number of the obser-
vation matrix and the accuracy of the joint stiffness identifi-
cation. On this basis, a new index taking into account both the
dexterity and the condition number of the observation matrix
is presented to search for suitable joint configurations. The
robustness and accuracy of the method were verified by the
theoretical analysis, simulations and experiments.

The remainder of this paper is organized as follows: In
Section II, we detail the identification procedure to obtain
the joint stiffness matrix. A novel index considering both the
dexterity and the condition number of the observation matrix
is presented in Section III, and Section IV is devoted to val-
idating the robustness and accuracy of the proposed method
through numerical simulations and experiments. Section V
summarizes the conclusions of this study.

II. JOINT STIFFNESS MATRIX IDENTIFICATION
In this paper, we consider a non-damping system, assume
that the robot’s links are rigid, and the joints are regarded
as torsion springs. A schematic of the stiffness model of the
robot is provided in Fig. 1, and a diagonal joint stiffness
matrix Kθ can be given by:

Kθ =


kθ1 0 0 0 0 0
0 kθ2 0 0 0 0
0 0 kθ3 0 0 0
0 0 0 kθ4 0 0
0 0 0 0 kθ5 0
0 0 0 0 0 kθ6


Owing to the particular structure of the series connec-

tion, stiffness is not a fixed value in Cartesian space. It is
a posture-dependent matrix, also called the Cartesian stiff-
ness matrix K . The relationship between the external wrench
vectorW applied to the end-effector and the six-dimensional
displacement vector 1 is termed as:

W = [F M] = [fx fy fz mx my mz]T

1 = [δx δy δz δαx δαy δαz]T

W = K1 (1)

where the force vector F is composed of the three elements
[fx fy fz]T , and the moment vector M is composed of the
other three elements [mx my mz]T . Salisbury’s model is
used for joint stiffness identification, and it is expressed as:

K = J−TKθJ−1 (2)

Identifying the joint stiffness that means obtaining the
values of each element in the diagonal joint stiffness matrix
Kθ is the primary subject of this study. The detailed process
of identification of the joint stiffness matrix Kθ is indicated
in Fig. 2.
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FIGURE 1. Schematic of the robotic stiffness model.

FIGURE 2. Detailed identification process of the joint stiffness matrix.

Combining Eq. (1) and Eq. (2), the new equation can be
termed as:

1 = JK−1θ JTW (3)

Owing to the different positions of the loading and measur-
ing points, two types of Jacobian matrices are used. J f is the
Jacobian matrix representing the loading point and Jm is one

representing the measuring point. Hence, the torque vector Γ
acted on each joint can be termed as:

Γ = (J f )TW

Γ = [τ1 τ2 τ3 τ4 τ5 τ6]T (4)

Besides, the torque vector Γ can also be expressed as:

Γ = Kθ1q (5)

where 1q = [1q1 1q2 1q3 1q4 1q5 1q6]T rep-
resents the joint deflection vector.

What’smore, the displacement vector1 of the end-effector
can be expressed as:

1 = Jm1q (6)

Then combining Eqs. (4)-(6), Eq. (3) can be rewritten as:

1 = JmK−1θ (J f )TW (7)

Let the joint compliance vector H , namely:

H = [k−1θ1 k−1θ2 k−1θ3 k−1θ4 k−1θ5 k−1θ6 ]T (8)

where k−1θi (i = 1, 2, . . . , 6) is the inverse of the ith joint
stiffness value. Then Eq. (7) can be rewritten as:

1 =



6∑
j=1

(k−1θj J
m
1j

6∑
i=1

J fijwi)

6∑
j=1

(k−1θj J
m
2j

6∑
i=1

J fijwi)

6∑
j=1

(k−1θj J
m
3j

6∑
i=1

J fijwi)

6∑
j=1

(k−1θj J
m
4j

6∑
i=1

J fijwi)

6∑
j=1

(k−1θj J
m
5j

6∑
i=1

J fijwi)

6∑
j=1

(k−1θj J
m
6j

6∑
i=1

J fijwi)



(9)

where wi (i = 1, 2, . . . , 6) is the ith variable of the wrench
vector W . Besides, through isolating the joint compliance
vector H in Eq. (9), it turns out that:

ΨH = 1 (10)

where Ψ is a 6× 6 matrix as:

Ψ =



Jm11

6∑
i=1

J fi1wi · · · Jm16

6∑
i=1

J fi6wi

Jm21

6∑
i=1

J fi1wi · · · Jm26

6∑
i=1

J fi6wi

...
. . .

...

Jm61

6∑
i=1

J fi1wi · · · Jm66

6∑
i=1

J fi6wi


(11)
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FIGURE 3. Schematic of the measuring/loading points (mm).

A six-dimensional square matrix is thus obtained, and is
called the observationmatrix. Rewriting Eq. (10), and the new
equation can be termed as:

H = Ψ−11 (12)

It is usually unrealistic to find an exact joint compliance
vector H that satisfies all 6n equations (n is the number of
tests, Ψ is a 6n×6 matrix). In this case, joint stiffness can be
calculated by minimizing the error ε based on the Euclidean
norm:

minimize ε =
1
2
‖ΨH −1‖2 (13)

The joint compliance vector H can be used to minimize
this norm of the approximation error of the system:

H = (Ψ TΨ )−1Ψ T1 = Ψ l1 (14)

where Ψ l is the generalized inverse of Ψ . Based on its defi-
nition, the stiffness values of each joint can be identified by
solving the joint compliance vector H and the diagonal joint
stiffness matrix Kθ can be calculated directly.
The traditional rope-mass loading method was used in

the joint stiffness identification tests to impose the external
wrench. As shown in Fig. 3, the corresponding displacements
of the end-effector at the four measuring points were noted
by a laser tracker and the external wrench was applied to the
loading point. The exact joint stiffness values were identified
based on the experimental data and the process mentioned
above.

III. METHOD FOR POSTURES SELECTION
A. CONDITION NUMBER OF OBSERVATION MATRIX
The influence of the condition number of the observation
matrix on the accuracy of the joint stiffness identification

process is examined in this section. Let two matrixΩ andΛ,
namely:

Ω = Ψ TΨ

Λ = Ψ T1

Substitute them into Eq. (14), we have:

ΩH = Λ (15)

It becomes a linear least-squares problem. Finding a way
to identify a more accurate joint compliance vector H is the
core of research. Assuming that δΩ , δH and δΛ are the errors
of Ω , H and Λ, respectively. Therefore, the relative error
coefficients of Ω , H and Λ can be termed as ‖δΩ‖

‖Ω‖
, ‖δH‖
‖H‖

and ‖δΛ‖
‖Λ‖

, respectively. In the joint stiffness identification

process, ‖δΩ‖
‖Ω‖

and ‖δΛ‖
‖Λ‖

are supposed not to change.
For the error of Ω , it satisfies:

‖ −Ω−1δΩ‖ = ‖Ω−1δΩ‖ < 1

and the following equation can be termed as:

‖(I +Ω−1δΩ)−1‖ ≤
1

1− ‖Ω−1δΩ‖

≤
1

1− ‖Ω−1‖‖δΩ‖

For Eq. (15), considering the errors of each term, the new
equation can be termed as:

(Ω + δΩ)(H + δH) = (Λ+ δΛ) (16)

Based on Eq. (16), δH can be termed as:

δH = (Ω + δΩ)−1[(Λ+ δΛ)−H(Ω + δΩ)]

= (I +Ω−1δΩ)−1Ω−1(δΛ− δΩH) (17)

The norm of δH can be termed as:

‖δH‖ = ‖(I +Ω−1δΩ)−1Ω−1(δΛ− δΩH)‖

≤
‖Ω−1‖

1− ‖Ω−1‖‖δΩ‖
(‖δΛ‖ + ‖δΩ‖‖H‖)

=
‖Ω−1‖‖Ω‖‖H‖
1− ‖Ω−1‖‖δΩ‖

(
‖δΛ‖

‖Ω‖‖H‖
+
‖δΩ‖

‖Ω‖
) (18)

We focus on the relative error coefficient ‖δH‖
‖H‖ , and

Eq. (19) can be used to indicate this index:

‖δH‖
‖H‖

=
‖Ω−1‖‖Ω‖

1− ‖Ω−1‖‖δΩ‖
(
‖δΛ‖

‖Ω‖‖H‖
+
‖δΩ‖

‖Ω‖
)

≤
‖Ω−1‖‖Ω‖

1− ‖Ω−1‖‖δΩ‖
(
‖δΛ‖

‖Λ‖
+
‖δΩ‖

‖Ω‖
)

=
cond(Ω)

1− cond(Ω) ‖δΩ‖
‖Ω‖

(
‖δΛ‖

‖Λ‖
+
‖δΩ‖

‖Ω‖
) (19)

Eq. (19) gives the upper bound of the relative error coef-
ficient ‖δH‖

‖H‖ , and its lower bound is close to zero. Due to
the relationship of condition number between the matrix Ω
and observation matrix, and that is cond(Ω) = cond2(Ψ ),
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we can concentrate on the condition number of the observa-
tion matrix. The smaller condition number of the observation
matrix is, the more accurate is the joint compliance vector H
identified.
Remark 1: In previous studies, dexterity has been used

as index to select the robot’s joint configurations for joint
stiffness identification. However, this classical index focuses
on kinematic performance and does not represent other key
factors affecting the accuracy of joint stiffness identification.
In this paper, as far as we know, it is the first time to pro-
pose the relationship between the condition number of the
observation matrix and the accuracy of the joint stiffness
identification.

B. FINDING SUITABLE POSTURES
The normalized Jacobian matrix can be termed as:

JN =

[ 1
L
I3×3 O3×3

O3×3 I3×3

]
J (20)

where I3×3 and O3×3 are a 3× 3 identity matrix and a 3× 3
zero matrix, respectively. L is the characteristic length of the
robot, and the Jacobian matrix can be normalized by using
this characteristic length [20].

The condition number of the normalized Jacobian matrix
JN based on the Frobenius norm can be termed as [21]:

k(JN ) =
1
6

√
tr(JN JTN )tr((JN J

T
N )
−1) (21)

Dumas et al. [13] claimed that the higher the inverse con-
dition number of the normalized Jacobian matrix k(JN )−1 is,
the better the dexterity is. Therefore, the condition number of
the normalized Jacobian matrix k(JN ) based on the Frobenius
norm is used to assess dexterity in this paper. The smaller
k(JN ) is, the better the dexterity is.
A novel index to select suitable robot postures for joint

stiffness identification has been presented in this paper. This
index considers both the dexterity and the condition number
of the observation matrix. The detailed steps of postures
selection based on it are as follows:

1) Based on the experimental situation, select the suitable
bounds of motion of each joint listed in Table 1 to
ensure that there is no interference between the robot
and other experimental equipment.

2) Select six joint configurations of the robot within the
bounds of motion.

3) Assess the dexterity of each posture based on the
condition number of the normalized Jacobian matrix
k(JN ), and select the maximum value: k(JN )max =
max[k(JN )i] (i = 1, 2, · · · , 6).

4) Calculate the condition number of the observation
matrix cond(Ψ ).

5) k(JN )max × cond(Ψ ) is termed as the novel index,
and use the function fmincon in MATLAB to find six
suitable postures with the smallest value of this index.

Accordingly, the index for suitable postures selection in the
joint stiffness identification can be summarized as follows:

TABLE 1. The motion bounds of each joint.

FIGURE 4. Scheme of the numerical simulations.

(1) The classical index considers the dexterity, and that is
k(JN )max . The smaller k(JN )max is, the more suitable postures
can be selected. (2) The novel index considers both the dex-
terity and the condition number of the observationmatrix, and
that is k(JN )max×cond(Ψ ). The smaller k(JN )max×cond(Ψ )
is, the more suitable postures can be selected.

IV. SIMULATIONS AND EXPERIMENTS
A. NUMERICAL SIMULATIONS AND ACCURACY ANALYSIS
To verify the robustness and accuracy of this proposed
method for selecting robotic joint configurations based on
the novel index, numerical simulations were conducted on
MATLAB. In the process, we focus only on the measurement
noise generated by the laser tracker. Fig. 4 shows the scheme
of the simulations. First, as shown in Fig. 5, six joint con-
figurations of the robot were selected from within its bounds
of motion, and this group of postures was called Group 1.
This group was used as the initial group of postures for the
joint stiffness identification process. Second, the robotic pos-
tures were selected based on the classical and novel indices,
respectively. Group 2 was selected fromGroup 1 based on the
classical index, and Group 3 was selected fromGroup 1 based
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FIGURE 5. Original robotic joint configurations.

FIGURE 6. Robotic joint configurations based on the classical index.

on the novel index. These two groups of suitable postures
are shown in Figs. 6 and 7, respectively. Third, as shown
in Table 2, we set the default stiffness values of each joint for
the simulations. The precise displacements were calculated
when the external wrench was applied to the end-effector,
and we focused on the forces and translational displacements.
Finally, assuming that the stiffness values of the joints were
unknown, we identified them based on translational displace-
ments with the measurement noise. The sensitivity of the

FIGURE 7. Robotic joint configurations based on the novel index.

TABLE 2. Default stiffness values of each joint.

results to the measurement noise was analyzed by comparing
the identified and the default joint stiffness values.

In the traditional rope–mass loading process, one end of
the rope is tied to the loading point of the end-effector and
the other to an external loading device. The loading device
is used to apply the external wrench on the loading point
of the end-effector through the rope. In the base coordinate
system of the robot, the position vector of the loading point
was calculated based on the robot’s posture, which can be
termed as:

P1 = [x1 y1 z1]T

The position vector of the other end of the rope tied to the
external loading device can be termed as:

P2 = [x2 y2 z2]T

Set G is the external load, and the external force vector
Fex = [fx fy fz]T can be calculated by:

Fex = G
P2 − P1

norm(P2 − P1)

Accordingly, the accurate translational displacement vec-
tor [δx δy δz]T can be calculated.
The FARO laser tracker was used in a test to analyze the

distribution of themeasurement noise. A spherically mounted
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FIGURE 8. Average deviation rates for each joint: (a) the first joint; (b) the second joint; (c) the third joint; (d) the fourth joint;
(e) the fifth joint; (f) the sixth joint.

TABLE 3. Multiples of variance of each noise level.

retroreflector (SMR) was fixed at a point, and the values of
each axis were recorded over time. The probability density
of the measurement noise was obtained based on the test
data, and the variance was 9.23 × 10−5mm2. Therefore,
the measurement noise was simulated as white Gaussian
noise. With the various multiples of the variance of noise,
six levels of measurement noise are listed in Table 3. Let
[εx εy εz]T denote as the measurement noise vector that
can be generated by the function wgn in MATLAB. Then
the translational displacement vector with the noise can be
termed as [δx + εx δy+ εy δz+ εz]T .

A case is provided to illustrate the simulation process for
different groups of robot postures at the second noise level:

1) The three groups of robot postures, as shown in
Figs. 5-7, were used in the simulation process,
respectively.

2) The six diverse robot postures of Group 1 were used
one by one. The 500N external load was applied to the
loading point of the end-effector. The corresponding
displacements of the end-effector were calculated at
four measuring points.

3) The noise values were added to the displacements.
4) Steps 2) and 3) were repeated for Groups 2 and 3.

TABLE 4. Deviation rates of each group for the illustration case.

5) The joint stiffness values were identified based on the
displacementswith noise. The rates of deviation of each
group are presented in Table 4.

This case shows that the measurement noise influenced
the accuracy of joint stiffness identification for Group 1.
ComparedwithGroup 1, Group 2 yielded better identification
results, except for the second and third joints. The results for
Group 3 were more accurate than those for Group 1.

For each group, 200 simulations were conducted at each
noise level, and their average rates of deviation for each
joint are shown in Fig. 8. Robustness and accuracy were
evaluated based on the average rates of deviation. The lower
the average rate of deviation was, the higher the robustness
and accuracy of the identification process was. The average
rates of deviation of Group 3 were low at different levels
of measurement noise. Thus, measurement noise had little
influence on the results for this group in the joint stiffness
identification process.

B. EXPERIMENTAL WORK
To further verify the robustness and accuracy of the proposed
method, experiments on joint stiffness identification were
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FIGURE 9. The experimental setup for the joint stiffness identification: (a) Schematic of the whole
identification system; (b) Schematic of the robot end-effector.

conducted. The experimental system is shown in Fig. 9. The
setup included the following parts:

1) The 6 DoFs COMAU SMART5 NJ 165-3.0 industrial
robot was used.

2) The six-dimensional ATI force/torque sensor was used
to record the force values when the external wrenchwas
applied to the loading point.

3) A special measurement tool with four measuring points
and a loading point was attached to theATI force/torque
sensor, and the robot’s end-effector consisted of the
sensor and the measurement tool.

4) The FARO laser tracker was used to measure the Carte-
sian coordinates of the four measuring points, along
with the SMR.

5) A loading device with several mass blocks (10kg for
each one) was used to apply the external load.

A calibration process was carried out before the
experiments for the transformation between the robot’s base
coordinate system and the coordinate system of the laser
tracker. The SMR was fixed at measuring point 1, and its
center was called the tool center point (TCP). The TCP with
reference to the coordinate system of the laser tracker was
measured, and its position with reference to the robot’s base
coordinates was displayed on the teach pendant directly.
Five different points were randomly chosen in the robot’s
workspace andmeasured by the laser tracker. After each point
was measured, the position displayed on the teach pendant
was entered into the software; this step was repeated five
times.

The FARO laser tracker automatically calculated the trans-
formation matrix for the robot’s base coordinate system and
its own coordinate system based on the positional information
of the five points. In the experiments, this transformation
matrix was used in the measurement software. The corre-
sponding measurement process was based on the robot’s base
coordinate system.

The experiments were conducted in the following steps:

TABLE 5. Three robotic joint configurations for validation.

1) The three robot posture groups, shown in Figs. 5-7,
were used in the joint stiffness identification experi-
ments.

2) Six joint configurations fromGroup 1were used one by
one. The 500N external load was added to the loading
device when the robot was in a given posture, and
the Cartesian coordinates of the four measuring points
were recorded by the FARO laser tracker. The force of
the end-effector was measured by the ATI sensor.

3) Step 2) was repeated for Groups 2 and 3, and the
corresponding joint stiffness values were identified.

4) The three robot postures listed in Table 5 were used
to verify the accuracy of the results of identification.
For each posture, 500N external load was applied to
the loading point of the end-effector. The accuracy of
joint stiffness values was evaluated by comparing the
deflections at the four measuring points obtained by
calculations and measurements.

The results of joint stiffness identification of the three
posture groups are presented in Table 6. The displacements of
the end-effector with reference to the measuring points were
obtained by both calculations andmeasurements. The relative
translational deflection δb is termed as:

δb =
√
(δxm − δxc)2 + (δym − δyc)2 + (δzm − δzc)2 (22)
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TABLE 6. Results of the joint stiffness identification experiments
(Nm/rad).

TABLE 7. Relative translational deflections of measuring points (mm).

FIGURE 10. The comparison of the relative translational deflections
among different posture groups.

where δxm, δym, δzm and δxc, δyc, δzc represent the measur-
ing and calculating displacements of the X-axis, Y-axis and
Z-axis, respectively.

The relative translational deflections of the robot’s
end-effector with reference to the four measuring points for
each posture group are listed in Table 7, and Fig. 10 shows the
results of a comparison of the relative translational deflection

among the posture groups. The deflection of Group 3 was
lower than those of the other groups, and joint stiffness was
accurately identified based on the new index.
Remark 2: This paper provides a novel index to select the

suitable robot postures in the joint stiffness identification
process. Compared with the classical method, the robustness
and accuracy of the process of robot postures selection based
on this novel index have been verified through the theoretical
analysis, simulations and experiments.

V. CONCLUSION
This paper proposed and verified a method to choose the
joint configurations of a robot to improve the robustness
and accuracy of the process of joint stiffness identification
by using a novel index, and presented detailed information
about the novel index based on both the dexterity and the
condition number of the observation matrix. Simulations and
experiments were carried out to verify the robustness and
accuracy of the proposed method. The results showed that the
joint configurations chosen based on the index developed in
this study is more robust and accurate than other solutions.
To improve the method in future work, we intend to focus on
directly obtaining global optimal joint configurations of the
robot.
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