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ABSTRACT Renewable energies curtailment induced by grid congestions increase due to grown renewable
energies integration and the resulting mismatch of grid expansion. Short-term predictions for curtailment
can help to increase the efficiency of its management. This paper proposes a novel, holistic approach
of a short-term curtailment prediction for distribution grids. The load flow calculations for congestion
detection are realized by taking different operational security criteria into account, whereas the models
for the node-injections are adjusted to the characteristic of each grid node specifically. The determination
of required curtailment based on the resulting congestions considers uncertainties of component loading
and its corresponding probability. The forecast model is validated using an actual 110 kV distribution
grid located in Germany. In order to meet the requirements of a forecast model designed for operational
business, prediction accuracy, and its greatest source of error are analyzed. Furthermore, a suitable length of
training data is investigated. Results indicate that a six month time period for maintenance gains the highest
accuracy. Curtailment prediction accuracy is better for transmission system operator components than for
distribution system operator components, but the Sørensen Dice factor for the aggregated grid shows a high
match of historic and predicted curtailment with a value of 0.84 and a low error for curtailed energy, which
makes 2.23% of the historic curtailed energy. The model is a promising approach, which can contribute to
improvement of curtailment strategies and enable valuable insight into distribution grids.

INDEX TERMS Power system operation, distribution grid, power flow analysis, congestion management,
renewable power curtailment, short-term prediction, probabilistic uncertainty quantification.

NOMENCLATURE
ACRONYMS
CDF cumulative distribution function
CFE Cornish-Fisher Expansion
DM distribution mapping
DSO distribution system operator
HV/EHV high voltage/extra high voltage
LIFO last in first out
MAE mean absolute error
MV medium voltage
PDF probability density function
RE renewables
RV random variable
TSO transmission system operator
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WP wind power
WTPF wind turbine power curve

SYMBOLS
P real power
1P reduction of real power
I ,L grid nodes
Imax
j maximal current of component j

SUBSCRIPTS
j component

I. INTRODUCTION
A challenge of the energy transition are grid overload-
ings resulting from increasing injections of renewables (RE)
into the grid whereby, among other things, the maximum
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permissible currents are exceeded. In such cases the grid sta-
bility can be maintained by curtailing the RE. But curtailment
means a spillage of energy [1]. Staudt et al. stated the abil-
ity of congestion forecast to reduce the amount of required
curtailment [2]. Furthermore mitigation of congestions can
be enabled, by a more efficient commitment of flexibility
options like energy storage, which can help to decrease the
amount of RE curtailment [3], using congestion forecasts.

In Germany those curtailments are regulated by the so
called feed-in management (‘‘Einspeisemanagement’’) [4]
defined by §14 EEG (Erneuerbare Energien Gesetz). It allows
the system operator to resolve congestions by curtailment in
real time. With a new regulation feed-in management will
be transitioned into a new approach called ‘‘Redispatch 2.0’’
until October 2021 [5]. As forecasts of upcoming conges-
tions are mandatory for redispatch [6], system operators will
need to make short-term predictions about overloadings in
the distribution grid and the transformers connected to the
transmission grid.

In literature, approaches exist describing the prediction
of curtailment for long term scenarios in the context of
expansion planning [7]–[10] and during RE integration plan-
ning [11] or for congestion management in real time grid
operation [12], [13]. Short-term predictions of congestions
are essentially required for participants of energy markets
in the context of redispatch [2] and locational marginal
prices [14]. Staudt et al. apply artificial neural networks to
predict hourly data transmission congestions [2], whereas
Zhou et al. proposed an approach combining complex hull
techniques and system pattern for transmission congestion
and locational marginal prices prediction [14]. To keep the
model computational efficient, system simplifications have
been made [14].

To predict RE curtailment caused by congestions in distri-
bution grids or at connected high voltage/extra high voltage
(HV/EHV) transformers requires detailed information, like
grid topology, or node specific injections, and consumption
for the grid of interest [15], [16]. Furthermore curtailment can
occur for just some minutes wherefore its prediction requires
a high temporal resolution. For German DSOs a short-term
curtailment prediction is highly required for operational busi-
ness. However, to the best of our knowledge, such a holistic
deterministic approach for short-term curtailment prediction
in distribution grids considering uncertainties has not been
presented in any existing literature study at the time of writ-
ing. Therefore, a novel approach of a short-term prediction
model for congestion induced RE curtailment in distribution
grids is proposed. In order to gain a higher temporal resolu-
tion the prediction is based on quarter hourly meteorological
forecast data. The corresponding output of the model is the
forecast of which RE power plants need to be curtailed and
to which extend. This could be a valuable information for
optimizing curtailment by applying flexibility options [16].
The model is designed to be individually adaptable to a spe-
cific grid, by adjusting nodes of the high voltage (HV) level to
their specific in-feed and consumption applying our previous

work proposed in [17]. Therefore historic power flow data of
medium voltage/high voltage (MV/HV) transformers and the
grid topology provided by corresponding system operators
are applied. Using power flow calculations to detect grid con-
gestions contingencies, dynamic line rating, and uncertainties
of component loading are considered. In order to make it
applicable for operational business the model is validated for
an actual distribution grid and the appropriate time period
of available data used for model fitting is analyzed in the
context of model maintenance. Also the impact of certain
input parameters is discussed, as well as its transferability to
different grid regions.

Summing up the main contribution of this paper:

• A novel approach for short-term curtailment prediction
in distribution grids considering uncertainties is pro-
posed, meeting the requirements for predictions with a
high temporal and spatial resolution defined by upcom-
ing changes like ‘‘Redispatch 2.0’’.

• The approach is adaptable to a specific grid and is
designed to be transferable to other grids.

• The prediction model is validated and impacts of certain
parameters like wind speed and the appropriate time
period of data sets used for model configuration are
analyzed.

This paper is organized as follows: The model is described
in Section II and in Section III the results of the validation and
prediction of a real distribution grid are shown. In Section IV
the results are discussed and in V concluded.

II. MODEL DESCRIPTION
A. THEORETICAL BACKGROUND
In order to predict curtailment, the congested components
have to be determined. This requires load flow simulations,
or analytic approaches, derived from load flow, as real-
ized in [18]. Time series of generation and consump-
tion at the nodes are simulated either probabilistic [9], or
deterministic [11].

A vital element here is the definition of a congested line
or transformer. If the thermal threshold of a component is
exceeded this component is congested. This threshold is, con-
sidering lines, effected by dynamic line rating [10]. In addi-
tion contingencies in the context of N-1 security have to
be considered [9], [10] for lines and transformers. So both
aspects have to be implemented in a congestion forecast [9].

In cases of congested components, the generation units,
that need to be curtailed, and the required power reduction
have to be determined. Therefore sensitivity factors, as used
in [9], [18], describing the interrelation between injection
nodes and congested components, are utilized.

Furthermore, several approaches exist for selecting the REs
for curtailment and determining the amount of power reduc-
tion: in the context of planning new RE units the so called
‘‘Last in First Out’’ (LIFO) approach is a commonly used
approach [11]. Another option is to optimize the curtailment
regarding the overall amount of curtailed power by applying

VOLUME 9, 2021 60829



E. Memmel et al.: Forecast of Renewable Curtailment in Distribution Grids Considering Uncertainties

FIGURE 1. Overview of the whole approach consisting of the vertical
power flow (described in subsection B1) the congestion detection
(described in subsection B2) and the curtailment prediction (described in
subsection B3).

mixed integer programming technique to select wind parks
and the corresponding power reduction considering all con-
gested components simultanously [13].

In Germany a congestion is resolved by an iterative reduc-
tion of the RE in-feed, which shows the highest sensitiv-
ity to the current congested component [19]. Due to the
applied communication technology this is realized in four
levels: 100% of the available power, and 60%, 30%, and
0% in-feed of the installed capacity [20]. In such cases the
system has to remain stable, the curtailed energy has to be
sufficiently low and the units to be curtailed are chosen
non-discriminatory [20].

Integrating forecast into an operation system with a
high share of RE requires information about its uncer-
tainty [21], [22]. If historical values are available proba-
bilistic approaches can be used to determine the uncertainty
of an power flow [23]. Such methods are often applied
in probabilistic load flow as in [24]–[26]. The objective is
to determine the probability density function (PDF) of the
uncertain input parameters and its corresponding outputs,
that are treated as random variables (RVs) [23]. The error
of component loading can be described by its marginal RVs:
the error of the node injections. In cases of such multivari-
ate RVs a convolution would become necessary in order to
determine the corresponding PDF using the marginals RVs.
A common alternative is to use cumulants instead, combined
with an arithmetic process [23] like Gram-Charlier [23],
Cornish-Fisher Expansion (CFE), as used in [25], or Edge-
worth series, as applied in [27].

B. CURTAILMENT FORECAST
The proposed short-term forecast model for RE curtailment
in distribution grids consists of two components: the curtail-
ment forecast and the quantification of the uncertainty of the
component loading. Both parts are described in the following.

The model can be separated into three parts illustrated
in Fig. 1: the calculation of the node-injections, the detec-
tion of congestions in the 110 kV distribution grid and the
determination of required curtailment.

The node injections are calculated corresponding to our
previous work [17]. The applied load profiles and functions
describing the RE generation are adjusted individually to each
node. In cases of wind farms directly connected to the HV
grid level no measured power was available, therefore the
wind power is calculated by applying a general wind turbine
power curve and site specific wind speeds. In order to predict

FIGURE 2. Description of the model determining the vertical power flow
on MV/HV transformers (left) and windparks directly connected to the HV
grid (right).

possible congestions, load flow calculations are performed
in DIgSILENT PowerFactory using a HV distribution grid
model, provided by the grid operator in charge. Dynamic
line rating and contingencies are taken into account. The
determination of curtailment is carried out on basis of the
resulting bottlenecks. Starting with the most sensitive node
the curtailment level is increased until the grid congestion is
resolved.

1) MODELING OF THE NODE INJECTIONS
The specific injection of each node connected to MV/HV
transformers are represented by the model for the vertical
power flow on MV/HV transformers according to our pre-
vious paper [17] visualized in Fig. 2. The power flow for one
time step is determined by the aggregated power of available
consumption and generation separately for each node. Two
methods have been applied to represent the node specific
infeed of all connected wind farms: the so called distribu-
tion mapping (DM) approach, introduced in [28] and a five
parameter logistic function [29] applied as a representation
for the wind turbine power curve (WTPC).

In order to keep the included errors as low as
possible, the methods for generating a load profile
and wind power (WP) generation are chosen for each
MV/HV transformer depending on the resulting mean abso-
lute error (MAE) for the aggregated transformer power.
For WP modeling it is chosen between the approaches WP
and DM for each transformer specifically. In order to fit a
transformer specific 24 h load profile different type of days
and seasons are considered, more details can be found in [17].

For the wind farms, which are directly connected to the
HV level, no further information is given except the installed
capacity per node. Therefore, these units are represented
by fitting a five parametric logistic function, described in
equation 30 of [30], as a WTPC to the power curve of a wind
turbine. The resulting WTPC is than scaled to the installed
capacity of eachwind farm. In order to calculate the generated

60830 VOLUME 9, 2021



E. Memmel et al.: Forecast of Renewable Curtailment in Distribution Grids Considering Uncertainties

FIGURE 3. Process flow for congestion detection and curtailment
prediction considering different voltage levels.

WP quarter hourly wind speeds are used, which are the
nearest available wind forecast.

2) CONGESTION DETECTION
In order to detect congestions in the lines of the 110 kV dis-
tribution grid, or the transformers connecting the distribution
with the transmission grid, a load flow calculation is realized
in DIgSILENT PowerFactory. To guarantee the N-1 security,
a contingency analysis is necessary. Furthermore dynamic
line rating is installed for some lines and therefore also taken
into account in the model.

In Germany transmission system operator (TSO) and dis-
tribution system operator (DSO) curtail REs as a preventive
measure to maintain grid stability [19]. In reality, curtailment
is requested when congestion is to be expected without con-
sidering any particular order between the system operators.
In the model the congestion detection is first applied for
components of the TSO and then performed for the DSO,
taking curtailment requested by the TSO into account. The
process flow is shown in Fig. 3.

First all contingency cases of the corresponding system
operator are calculated, whereby in case of the TSOHV/EHV
transformers and for the DSO the 110 kV lines are examined.
In the event of a congested component the contingency case
is selected which shows the highest component overloading.
For the selected contingency case the load flow is calcu-
lated again and all the reductions of real power 1P, that
are required to rectify occurring congestions, are determined.
1Pj denotes the difference between the current real power

FIGURE 4. Process flow for curtailment considering a special contingency
case.

Pj of a component j between two nodes I ,L and its maximal
permitted power Pmax

j [31], i.e.

1Pj = Pmax
j − Pj. (1)

Pmax
j is defined by (12) in [31]. Accordingly changes of volt-

age and reactive power are neglected and it can be described
as

Pmax
j =

√
3 · (UL · Imax

j,therm)
2 − Q2

j (2)

Imax
j,therm denotes the maximal current of the corresponding
component. For some overhead lines in the distribution grid,
dynamic line rating is implemented. In these cases Imax

j,therm is
calculated according to [32]. The wind speed and temperature
of coordinates close to the corresponding component are
applied.

3) CURTAILMENT DETERMINATION ALGORITHM
1Pj is eliminated by defining curtailment in subject to an
iterative increase of curtailment level and the numbers of cur-
tailed wind farms. The first step is the calculation of the sen-
sitivities for the nodes for all components. The corresponding
sensitivity matrix, describing the impact of nodal changes,
is determined by the linearization of the AC load flow equa-
tions around the current operational state and is thoroughly
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described in [31]. Then each congestion is resolved following
the iterative algorithm shown in Fig. 4.

The unit having the highest sensitivity on the correspond-
ing component is chosen for curtailment starting with the
lowest curtailment level: 60% of the nominal power. As long
as the required power reduction 1Pj is not fulfilled the level
of curtailment is increased for the selected wind farm. If the
highest level is reached and 1Pj is still not zero, the next
smaller sensitive unit is chosen to be curtailed.

C. QUANTIFYING UNCERTAINTY OF COMPONENT
LOADING
Forecast are, by their nature, error-prone. In order to make
them applicable for e.g. operating systems these errors should
be considered [21]. In case of curtailment prediction the rel-
evant variables are the loadings of the lines and transformers,
which are determined by injections on n nodes and defined
in the following as P = (P1, . . . ,Pn). As described by (14)
in [25] the power flow on a component j can be determined
by Pj = 3jP, where 3j denotes the sensitivity values for the
component j. Accordingly, the error of the active power flow
on a component εj can be described by

εj = 3jε̃, (3)

where ε̃ = (ε̃1 . . . , ε̃n) denote the errors of the node injec-
tions.

Therefore, the associated error can be interpreted as a
multivariate RV and defined by theweighted sum of the errors
of the node injections ε = 3ε̃.
To estimate uncertainty of the component loadings, i.e

determining the corresponding distributions, several steps are
carried out.

1) DETERMINATION OF THE NODE INJECTION ERROR
DISTRIBUTION
As shown in Fig. 2 there are two kinds of nodes: MV/HV
transformers and buses connecting greater wind farms with
the HV level. For the MV/HV transformers measurement
data exists and the errors of the predicted injection can be
calculated.

In case of the wind power plants connected to transformers
where no measurement of the power injections is available,
the error has to be estimated in dependence of the predicted
wind power. Therefore, a stochastic model is fitted to exem-
plary wind parks of the simulation region. The required mea-
surement error ε was determined by calculating the generated
wind power as described in section II-B1 and subtracting it
from the corresponding measured power. For generalization
the data is normalized to the installed capacity of the cor-
responding wind park. To estimate the error in dependence
of the predicted WP, the data is assigned to certain intervals
of the predicted WP. Distributions are selected using the
Kolmogorov-Smirnov test [33] and fitted to the data of ε for
each interval. In this way the error of predicted wind power
can be sampled for each node, connecting the wind parks

FIGURE 5. Correlation between the errors of the MV/HV transformers.

with the HV grid level considering the forecasted power, and
denoted as i in

εi|WPpredi ∼ fε(WPpredi ) Peaki (4)

Finally the sampled error of a node has to be scaled with the
corresponding peak power. For validation the error is sampled
for exemplary wind parks. The resulting distributions are
shown per bin as boxplots in Fig. (5). The distributions of
the sampled error nearly fits these of the measured error.
For predicted wind powers in the intervals [0, .1), [.8, .9) and
[.9, 1] the fitted error distributions have a wider spread. Since
the occurrence of predicted power with normalized values
around 0.0 or 0.9 is relatively high, a slight error in the
sampled error should be considered. On the other hand less
information exist for these wind farms which are simulated
applying a manufacturer WTPC. So the error of the predicted
wind power is estimated to be greater than that of the exem-
plary wind farms shown here. Therefore the deviations are
exceptable.

2) DETERMINATION OF CUMULANTS
The distribution of a linear combination of various RV can
be determined by applying cumulants in series expansion,
like CFE [23], [25]. A cumulant κ of a RV is, like the cor-
responding central moment µ, a constant describing the RV’s
distribution and it can be expressed in relation to their central
moments. The cumulants of the first orders n ∈ {1, 2, 3, 4}
are equal to the central moments with the same order: κ1 =
µ1, κ2 = µ2, κ3 = µ3, κ4 = µ4− 3µ2

2, whereas higher order
cumulants can be calculated as in [34]:

κn = mn −

n−1∑
k=1

(
n− 1
k − 1

)
mn−kκk (5)

Having independent RVs, the multivariate cumulant of order
n is determined by its sum of marginal cumulants of order
n [35]. Considering the grid topology the cumulant with order
n of the multivariate RV εj is denoted as κεj,n and can be
calculated by applying the sensitivities 3j,1 . . . 3j,m of the
RVs of the node errors and its corresponding cumulants κε1..n :

κεj,n = 3
n
j,1κε1,n +3

n
j,2κε2,n + . . .+3

n
j,nκεn,n (6)
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3) CORNISH-FISHER EXPANSION
The Cornish-Fisher Expansion can be used to express the
quantile function of a random variable Z as a power series
in terms of the quantile function of the standard normal
distribution. For this let Z∗ denote the normalization of Z ,
i.e.

Z∗ =
Z − µZ
σZ

We then have by [23]

QZ∗ (q) ≈ ξ (q)+
ξ2(q)− 1

6
κ∗3 +

ξ3(q)− 3ξ (q)
24

κ∗4

−
2ξ3(q)− 5ξ (q)

36
(κ∗3 )

2
+
ξ4(q)− 6ξ2(q)+ 3

120
κ∗5

−
ξ4(q)− 5ξ2(q)+ 2

24
κ∗3κ
∗

4

+
12ξ4(q)− 53ξ2(q)+ 17

324
(κ∗3 )

3 (7)

where QZ∗ denotes the quantile function of Z∗, κ∗j the
j-th cumulant of Z∗, and ξ the quantile function of the stan-
dard normal distribution. Thus we have an approximation
of Z∗ and ξ the quantile function of the standard normal
distribution.

4) IMPLEMENTATION OF UQ IN CURTAILMENT PREDICTION
To describe the uncertainty of component loading by corre-
sponding cumulative distribution functions (CDFs), the errors
of the node-injections have to be determined first. In the
next step the line loading errors are determined by (3). Then
two approaches determining the CDF of the loading errors
are realized: CFE and determining the quantiles on basis
of the empirical error distribution. The normalized distribu-
tions of the component loading errors are then expressed by
cumulants. The line cumulants are used in the CFE to derive
the quantiles of errors included in the line flow. Finally the
received quantiles are transformed back into their distribu-
tions by x = σx∗ +µ. As the CFE method can lead to errors
in the tails [36], a rearrangement of the quantiles is realized
according to [37] in the end. In the second approach the
quantiles are taken by sorting the values of the empirical dis-
tribution and selecting these to the corresponding percentiles.
In order to consider changes in the grid topology, the quantiles
are calculated for each contingency.

D. USING UNCERTAINTY INFORMATION FOR
CURTAILMENT PREDICTION
The uncertainty of the component loading is considered
during the contingency analysis and curtailment. In Fig. 6
it is visualized how the errors of the predicted com-
ponent loading and the probability of overloading are
implemented.

In order to be adaptable to the behavior of the grid operator
the forecast model has three parameters: the threshold per-
centile, the lower threshold, and the threshold for the max-
imal component loading. The threshold percentile defines

FIGURE 6. Determination of component loading considering errors and
probability of overloading.

the maximal percentile that should be considered for the
implemented error. The sum of the error percentile and the
predicted component loading defines the loading which is
finally considered during congestion detection (i.e. we con-
sider Ppredj + qα(εj), where P

pred
j denotes the predicted power

flow on component j and qα(εj) the respective quantile of
the error distribution for component j). So the higher the
threshold percentile is, the greater becomes the component
loading. Following an approach with a high security level,
the threshold percentile applied in simulation is chosen to
be 0.9. The lower threshold is applied if the contingency
analysis (shown in Fig. 3) detects still congestions in the
grid and leads to another iteration of curtailment. It defines
a stop criterion by defining an acceptable probability for
an overloading, which is chosen to be 30 % in this paper.
The threshold for the maximal component loading defines
congestions and for this paper a values of 100 % is taken.
These thresholds are individually adaptable and allow to tune
the curtailment prediction according the required security
level.

So the process of determining congestions with consider-
ing uncertainties can be described by following steps: First it
is checked whether a component is congested considering the
threshold percentile of the error. Is the component overloaded
(i.e. Ppredj + qα(εj) > Pmaxj ) the probability of its overloading
is determined: starting with the lowest error-percentile and
increasing the percentile as long as a congestion occurs or the
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threshold percentile is reached. Then it is checked, whether
it is the first contingency analysis. If this is not the case,
the congestion probability is compared against the lower
threshold. In case of a probability smaller than the lower
threshold, the component is not considered congested in the
following. The same happens if no congestion is detected for
the component.

In the process of iterative curtailment the uncertainty of
the component loading is considered by processing the over-
loaded components in a descending order of the required
power reduction weighted by the probability of overload.
If the iteration for the time step and voltage level is not
the first, only these congested components are considered,
which have a probability higher than the lower threshold.
Then the first congested component is selected and the gen-
erator with the highest sensitivity for the selected compo-
nent is chosen for curtailment. As long as the congestion
remains and the generator is not at 0% power, the curtailment
level is increased, starting with curtailment level of 60%,
the load flow is calculated again and the congested compo-
nents including the errors and the probabilities are determined
and sorted again for the new grid situation. If the selected
generator is at 0% power a new generator is selected on
basis of its sensitivity. The process is repeated so long until
no component with a weighted congestion greater zero is
left.

III. MODEL VALIDATION
A. DESCRIPTION OF DATA AND GRID
The proposed method is applied to a realistic 110 kV distri-
bution grid provided by the corresponding grid operator with
a high share of installed wind power. A scheme of the grid is
shown in Fig. 7. The HV topology is mainly characterized by
its double ring structure of its lines (described by 5). There
are several nodes, which can be separated into three groups:
one type has connected consumers and generation (described
by 2) and one has only consumers connected (described by
4). Both are simulated according MV/HV transformer model
described in our previous work [17]. 3 represents nodes con-
necting wind farms with the HV grid. There are 61 nodes in
total, of which are 6 nodes of 4, 40 nodes of 2, and 15 are
nodes of 3. Only the HV/EHV transformers (described by
1) and the 220 kV lines (described by 7) connecting the
HV/EHV transformers and the external grid (described by
6), represented by a reference node, are the components of
the TSO which are simulated. Congestions are considered
for the HV/EHV transformers and the lines of the 110 kV
grid.

The simulation was done for February, 2016 with a time
step of 15 minutes. The meteorological data was available
for the coordinates of the MV/HV transformers. The wind
speed was provided hourly by DWD (Deutscher Wetterdi-
enst) [38] for a height of 73 m. To adapt it to the simulation
time step, the wind speed was interpolated and the resulting
error is assumed to be acceptable [17]. The global irradiation
is based on Meteosat-SEVIRI data [39] with a temporal

FIGURE 7. Schematic of the simulated distribution grid.

resolution of 15 minutes. For the MV/HV model the corre-
sponding DSO provided measurements of the power flow for
2 years with a temporal resolution of 15 minutes. Also the
installed capacities of each power plant type are known for the
transformers.

In order to analyze the influence of the period of avail-
able data for model adjustment for the MV/HV transformers
(see chapter II-B1) and to validate the curtailment approach,
different scenarios are considered. The benchmark scenario
is applied to proof the validity of the implemented curtail-
ment approach. For this scenario measured data of a time
period of 2 years is used to fit the load profiles and WP
functions and the same time period is simulated in a second
step. Whereas the scenarios 1yr and 6m use a certain time
slot of the measured data to adjust the MV/HV transformer
model. In case of the 1yr scenario, the measured data of
the first year is used for model fitting and the second year
is simulated. For the 6m scenario it works analog with six
months.

The calculations were deployed on 64-bit windows
machine with an Intel R©Core i5-6500 CPU @ 3.20GHz and
16 GB RAM. The programming language was python and
the power flow simulations were calculated with DIgSILENT
PowerFactory.

B. COMPONENT LOADING ERROR
Two approaches of determining the quantiles of the loading
errors are applied in the prediction of curtailment: CFE and
the determination of quantiles on basis of the empirical distri-
bution. The resulting CDFs determined for one contingency
case are visualized for two components in Fig. 8. The error
is visualized as the error of the real power in percentage
of the maximal permitted real power. As the CFE quan-
tiles are approximated by using only 5 values, these show
larger deviations than the empirical quantiles. Comparing the
CFE-quantiles of both components it becomes apparent, that
the component of the upper plot shows a similar smooth
course like the empirical CDF, whereas those of the lower
plot has a continuous but not differentiable function. This
behavior results from the rearrangement, due to incorrect tails
in the approximated CDF.
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FIGURE 8. CDFs describing the component loading error for different
objects, determined empirically and by CFE.

C. VALIDATION OF THE GRID MODEL AND THE
CURTAILMENT APPROACH
The grid model and the curtailment approach is validated
by comparing to historic curtailment. For this purpose the
time series calculated according to the benchmark scenario
are used for the simulation of one month. The occurrence
of all determined curtailment is compared to the times of
the historical curtailment using the so called Sørensen Dice
coefficient, which was separately developed by Sørensen [40]
and Dice [41]. The Sørensen Dice coefficient is a mea-
sure for similarity and if applied for booleans it can be
expressed as shown in (8), whereas the true negatives are
excluded. In the formula TP denotes the true positive val-
ues, FP the false positives, and FN the false negatives
values.

sDice =
2TP

2TP+ FP+ FN
(8)

The Sørensen Dice coefficient and its parameters TP, FP,
and NP determined for the benchmark scenario are shown
in Table 1. According to the coefficient for the aggregated
curtailment of both voltage levels, a high similarity between
historic and simulated curtailment is reached. This indicates
that a big amount of congestions are correctly timed. When
considering the voltage levels separately, the Sørensen Dice
coefficient shows a better match for congested components of
the TSO than for congested DSO components. Furthermore,
congestions are overestimated in the DSO grid, which is
shown by the parameter FP, that is significant higher than
for the aggregated case or TSO. But the accuracy of the tem-
poral match of curtailment is aggregated higher than for the
single voltage levels. This suggests that the error results from
the differentiation between the grid levels. The difference
between FP and FN is the lowest for TSO and it also shows
the highest number of not detected congestion indicates, that
these missed congestions on the HV/EHV transformers leads
to more congestions in the distribution grid. Taking the high
amount of matches in the aggregated case and a detection
rate of 95% for true negatives, it can be deduced that the
curtailment algorithm has a adequate efficiency for predicting
the right times of congestions.

TABLE 1. Sørensen dice coefficient, TP, FP, FN shown for benchmark
scenario in percentage of the number of calculated times in the
simulation period.

TABLE 2. Sørensen dice coefficients for simulated curtailment visualized
for the different scenarios.

In Table 2 the calculated Sørensen Dice coefficients for the
time series scenarios are shown. The 6m scenario, additional
uncertainties have been considered. As a consequence the
scenario is calculated two more cases: one time considering
the CFE quantiles and the other considering empirical quan-
tiles. The results show, that the scenarios differentiate in their
accuracy. Starting with the coefficients for the aggregated
curtailment, the scenario 6m has nearly as much matches as
the benchmark scenario, whereas the accuracy of 1yr is a
little lower. This indicates that the modeled load profiles and
power curves of the scenario 6m fit the historic time series
better than that of 1yr. This can be confirmed by the MAE
determined for the calculated transformer power, excluding
times of curtailment, for both scenarios: The MAE for 6m
is 3.61 MW and so smaller than that for 1yr, which makes
3.90 MW. One possible explanation could be that the spread
in the data, which is used for fitting, is smaller in the 6m than
in the 1yr scenario. As in the benchmark case, both scenarios
show a higher accuracy for congested TSO components than
for components of the DSO.

For the 6m scenario the consideration of uncertainty is
implemented according to section II-C4. As Fig. 8 suggested
the simulation using CFE based quantiles shows lower values
for the SørensenDice coefficients than those of the simulation
using the empirical quantiles. The lower accuracy for CFE
quantiles compared to the 6m scenario without considering
uncertainty, at DSOgrid level, can be caused by the deviations
included in the quantiles. Having in case of the empirical
quantiles better values than for the 6m scenario without uncer-
tainty considered, indicates that these quantiles are a good
representation of the real errors for the component loading.
Furthermore, it can be assumed that the quantiles for TSO
components are more accurate than those for DSO compo-
nents, as the coefficients are equal or even better for TSO
taken the uncertainty into account, whereas the coefficients
for DSO are worse or equal. One explanation could be that the
HV/EHV transformers are not that sensitive to e.g. topology
changes as the 110 kV lines are.
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TABLE 3. f1-score shown for the 6m scenario and the short term
congestion prediction of transmission grids proposed in [2].

FIGURE 9. Curtailed power over time separated per power level and
visualized for the 6m simulation scenario considering CFE- and empirical
quantiles.

For further validation of the approach the f1-score [42]
is calculated for the 6m scenario. In Table 3 the results are
compared to the f1-score of the congestion forecast model for
transmission grid proposed in [2]. It can be seen that the pro-
posed method of this paper has a sufficient accuracy for the
timing of congestion prediction. But it has to be considered
that in [2] the German transmission grid is simulated, whereas
in the proposed approach the HV level of the distribution
grid and the connected HV/EHV-transformers are modelled.
Furthermore, the 6m scenario is simulated with a 15 minute
time step, whereas the time step in [2] is hourly.

Fig. 9 shows the resulting curtailed power simulated with
the 6m scenario and also considering the CFE quantiles and
the empirical quantiles in load flow calculations. Concerning
the frequency of the aggregated curtailed power the simulated
one often shows peaks at the same time where the historic
one does. But as can be seen in the zoomed area, in contrast
to the historic curtailed power, the simulated one happens to
have more fluctuations. This could be caused by the fact that
in the model the required curtailment is determined for each
time step separately, in contrast to realistic grid operations
in contrast to realistic grid operation where the operations of
feed in management needs to be as less as possible. As a con-
sequence of adjusting curtailment to the requirements of each
time step, the simulated curtailed power is less than those
of the historic ones. Comparing between the voltage levels
shows greater deviations in amplitude. Whereas the amount
of simulated curtailed power is underestimated for TSO it is
overestimated for DSO. This indicates that the transmission
capacity of the TSO-transformer tends to be overestimated.
As the TSO curtails less, more power is available in the
distribution grid and as a consequence more congestions are

FIGURE 10. Curtailed energy for a simulation time period of one month,
separated per power level and visualized for the 6m simulation scenario
considering CFE- and empirical quantiles.

TABLE 4. Pearson correlation for component loading and input
parameters.

calculated for the 110 kV lines. Since most of the DSO
curtailment appears at times of historic TSO curtailment,
the matches between historic and simulated DSO curtailment
are poor, as the Sørensen Dice coefficients also indicated.

In Fig. 10 the simulated curtailed energy of the 6m sce-
nario, considering in two cases uncertainty and in one none,
is compared to the historic one, differentiated between the
aggregated amount and the two voltage levels. As a possi-
ble outcome of the step wise determination of curtailment,
the aggregated simulated curtailed energy for the three sce-
narios is between 0.59 GWh and 2.31 GWh smaller than the
historic one. This makes a small deviation between 2.23 %
and 8.78 % of the historical aggregated curtailed energy.
A high underestimation of curtailed energy around 13 GWh
is determined for TSO, which causes a high overestimation
of curtailed energy of around 11 GWh for DSO. The con-
sideration of loading errors leads for both voltage levels to
lower amounts of curtailed energy than without. Furthermore,
the empirical quantiles seem to consider smaller errors than
the CFE based quantiles, which is indicated by the lower
curtailed energy for CFE- than for empirical-CDFs.

D. INFLUENCE OF INPUT PARAMETERS
In the following the input parameter with the highest impact
on the results is analyzed. Table 4 shows the minimum,
maximum, and mean of the pearson correlations between
component loading and the parameters wind speed, global
irradiance, hour of the day and temperature. According to
the correlation coefficients wind speed has the highest impact
on component loading, wherefore the following analysis will
focus on this parameter.
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FIGURE 11. Distribution of wind speed per loading of a component. The
histogram in the upper figure describes the frequency of component
loading.

FIGURE 12. Frequency per curtailment level and the corresponding wind
speed distributions occurring in the model region at the corresponding
times.

The correlation between loading of one 110 kV line and
wind speed becomes apparent in Fig. 11, considering only
data at times of congestion. The figure shows an increase
of wind speed with increasing loading. So in this area with
a high installed capacity of WP, the parameter wind speed
has a great impact on the accuracy of the curtailment predic-
tions. The loading of a line is influenced by its neighborhood
to connected loads, REs, and simulated contingencies. The
lowest wind speed at times of simulated congestions for all
components is 7.20 m/s.

In Fig. 12 the distribution of wind speeds occurring in the
model region at the corresponding times is shown for each
curtailment level in boxplots. Also the number of curtailments
are visualized per level. The levels are shown from 1.0 to 0.0,
where 1.0 represents times of no curtailment and 0.0 means
an infeed reduction to 0.0.

The bars at the top visualize the percentage of the data set
(simulation period for each RE unit) per curtailment level.
It is shown that the number of curtailments decreases from
benchmark scenario to the historic curtailment to 6m sce-
nario. Overall the number of the simulated curtailments is
for each scenario higher than that of the historic ones. This
indicates that more congestions are simulated than actually
happened. As in the case of historic curtailment the number
of curtailment decreases from level 0.0 to 0.3, but instead

of having hardly any curtailment of level 0.6, the simulated
curtailments shows a higher number than for level 0.3.

In the following, the impact of wind speed on the curtail-
ment level is analyzed. At times of no curtailment the distribu-
tion of wind speed corresponds, whereas the wind speeds tend
to be lower for simulation compared to historic curtailment
at level 0.3 and 0.6. The lower wind speeds suggest, that
congestions are reached earlier than it was in history. This
shift in the distribution of wind speed could be caused by
lower consumption, whereby more power remains in the grid.
Accordingly the wind speed distribution of the 6m scenario is
lower, where the modeled load profiles are used, than that of
the benchmark scenario, where the measured power of each
node subtracted from the generated wind power was applied.

IV. DISCUSSION
Proposing a forecast model for short-term curtailment predic-
tion contributes to an efficient management of curtailment,
that has been increasingly occurred due to the mismatch
between the growth of RE integration and grid expansion.
Furthermore, the transition of feed-in management into redis-
patch at the end of 2021 in Germany, makes such a short-term
curtailment prediction for distribution grids more urgent.
Reaching a goodmatch of predicted congestions and showing
only little deviations of predicted curtailed energy, makes
this model to a valuable tool for system operators in their
operational business.

As the proposed approach is in an early stage of devel-
opment, analysis regarding computational cost was not con-
sidered during this work. In order to give an overview of
the potential computational costs anyway, a rough analy-
sis was performed measuring the computation time for one
time step in simulation. The results show variations between
22 seconds and 2.9 minutes, depending if a congestion was
detected, which has a higher computational effort, or not.
Improving the computational costs should be the topic of
further development.

The results indicate that a time period for maintenance
of every 6 month for the MV/HV-model gets the highest
precision. The historic data of the past six month are applied
for power curves and load profiles fitting in order to keep the
model updated and adjust it to occurring changes in installed
RE capacity or consumption patterns. In case of congestions,
caused by the DSO, greater errors in the match of congestions
as well in the amount of curtailed energy appear. These devi-
ations of curtailment prediction are the consequence of not
determined overloadings on TSO components. Determining
less congestions on TSO transformers can be brought about
by assuming a high transmission capacity of the transformers
or a selection of the wrong contingencies, which lead to a
different power flow in the topology resulting in less power
arriving at the transformers.

However, it has to be considered, that the system operator
tend to have as less operations as possible, which has not been
considered in the proposed model. Furthermore the objective
to reduce any possibility for an event of a contingency, could
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also lead to a higher amount of curtailed energy. Consequen-
tial deviations between simulated and historic curtailment
occur.

One input-parameter, which has a great influence on the
prediction accuracy is wind speed. Having a high installed
capacity of wind energy in the model region, WP is the most
represented RE type and therefore has the greatest impact
and, as the results indicate, also a direct effect on component
loading. Schermeyer et al. proofed via sensitivity analysis
that the simulated WP has even a higher influence on the
uncertainty than the grid parameters [16]. So in order to
increase accuracy of curtailment prediction wind speed fore-
casts with a high precision should be applied. Furthermore,
wind speed data plays also an important role at the identifica-
tion of historical WP or consumption in the measured vertical
power of MV/HV transformers applied in adjustment of the
MV/HV models as described in our previous work [17]. So
having wind speed data with a higher precision, leads to an
increased accuracy of identified consumption and WP, and
therefore to better conditions for load profile and power curve
fitting. It has to be considered that in regions, where a dif-
ferent kind of RE type is prevailing, it’s corresponding input
parameter has the major impact on the component loading.

As a reliable interpretation of predictions require infor-
mation about their uncertainty, the determination of conges-
tions, and the resulting decision to curtail for two scenarios
of the proposed model is based on loading errors and the
consequential probabilities. The analyzed scenarios follow
a conservative strategy by determining the required power
reduction for an error of a 0.9 percentile and a congestion
probability with minimum 30%. Consequently working with
lower probabilities to determine component loading and the
threshold determining the necessity to curtail, would lead
to a smaller amount of curtailed power. That the scenarios
with uncertainty quantification curtail less than those with-
out, shows that the component loading tends to be overes-
timated without considering their probabilities. Integrating
the proposed prediction model in feed in management could
therefore reduce the spillage of energy caused by curtailment.
That the deviation of curtailed energy between the uncertainty
quantification based scenarios and historic curtailment is big-
ger than those for the scenario without considering uncer-
tainty is caused by two things: On the one hand, the CDFs
describing the errors are adjusted on basis of a selection of
data for a certain period, which leads to kind of an average
error and neglects the influence of different input parameters.
Therefore an input parameter dependent description of the
error CDF should be analyzed in future work. On the other
hand the consideration of different contingencies brings a
certain risk. Having variations between the CDFs of different
contingencies for one component, an incorrect contingency
means therefore, besides an imprecise load flow and con-
sequently erroneous congestions, that the wrong errors are
taken into account. The error quantiles are determined with
two different approaches and it is shown that the empirical
CDFs are more accurate than those based on CFE. A good

reason to choose CFE for quantile determination anyway,
is that it only requires five values, the cumulants, to fit the
CDF, instead of the whole data set. So if system operators
try to model the grid of another system operator, which
is connected to their own, the only data that needs to be
exchanged to consider the uncertainty are the cumulants.
Whereas empirical quantiles seem to be the better choice,
if the data is accessible anyway.

The validity of the proposed approach was proven for a real
distribution grid. Nevertheless, this model can be transferred
to any HV distribution grid, if following data is available:
the corresponding grid topology, historic measurement of the
vertical power flow on the connectedMV/HV transformer for
a time period of at least six months and the installed capacity
of each RE type per node. Furthermore, to model the vertical
power flow on MV/HV transformers, the lower grid levels
should be supplied by one transformer at the time. In order to
determine congestions in theHVgrid level all nodes (MV/HV
and HV/EHV) should be modeled to get all in-coming and
out-flowing power flows. A transfer of this approach to EHV
grid level should be possible, if the mentioned requirements
are fulfilled. But it has to be considered, that only those
congested components are detected, which are represented
in the simulated grid. However, other grids or voltage levels
have not been tested within this study.

V. CONCLUSION
RE curtailment due to grid congestions means a spillage of
renewable energy and it requires optimization. Furthermore,
the regulation of RE curtailment occurred in distribution
grids will be transitioned into redispatch in Germany, which
involves congestion prediction. Proposing a novel approach
of a short-term curtailment prediction in distribution grids
considering uncertainties meets the requirement for future
grid operation in Germany. Additionally, it allows, providing
the knowledge of potential amount and location of curtailed
energy, to optimize the deployment of flexibility options. The
integrated possibilities of congestions can help to interpret the
given prediction. To gain a better accuracy in the prediction
of voltage level specific forecasts, some adjustments are still
required. However, the model shows predictions with auspi-
cious accuracy, therefore it can help the grid operator to gain
valuable insights into his grid.
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