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ABSTRACT In this paper we consider the problem of restoring the voltage for stand-alone inverter-based
Microgrids despite the effects of the time-delays arising with the information exchange among the electrical
busses. To guarantee that all Distributed Generators (DGs) reach in a finite-time and maintain the voltage
set-point, as imposed by a virtual DG acting as a leader, we suggest a novel robust networked-based
control protocol that is also able to counteract both the time-varying communication delays and natural
fluctuations caused by the primary controllers. The finite-time stability of the wholeMicrogrid is analytically
proven by exploiting Lyapunov-Krasovskii theory and finite-time stability mathematical tools. In so doing,
delay-dependent stability conditions are derived as a set of LinearMatrix Inequalities (LMIs), whose solution
allows the proper tuning of the control gains such that the control objective is achieved with required transient
and steady-state performances. A thorough numerical analysis is carried out on the IEEE 14-bus test system.
Simulation results corroborate the analytical derivation and reveal both the effectiveness and the robustness of
the suggested controller in ensuring the voltage restoration in finite-time in spite of the effects of time-varying
communication delays.

INDEX TERMS Secondary voltage control, islanded microgrid, multi-agent systems, time-varying commu-
nication delay, robust control strategy, finite-time stability, Lyapunov-Krasovskii theory, IEEE 14-bus test
system.

NOMENCLATURE
δi Phase angle of the i-th DG
ωi Frequency of the i-th DG
vi Voltage of the i-th DG
kPi Frequency droop gain of the i-th DG
kQi Voltage droop gain of the i-th DG
kvi Voltage primary control gain
uωi Frequency secondary control input of the i-th DG
uVi Voltage secondary control input of the i-th DG
ω? Frequency set-point
v? Voltage set-point
Pmi Real measured power via the i-th fist-order low pass

filter
Qmi Reactive measured power via i-th fist-order low pass

filter
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τPi Time constants of the i-th first order low pass
filter associated with real power

τQi Time constants of the i-th first order low pass
filter associated with reactive power

Pi Active power output of the i-th DG
Qi Reactive power output of the i-th DG
P̂ρ Active injected power of the ρ-th electrical bus
Q̂ρ Reactive injected power of the ρ-th electrical bus
Yρk Admittance between the ρ-th and the k-th bus
Gρk Conductance between the ρ-th and the k-th bus
Bρk Susceptance between the ρ-th and the k-th bus
PLρ Active power of the ρ-th ZIP load
QLρ Reactive power of the ρ-th ZIP load
P1ρ,Q1ρ Nominal impedance loads constants
P2ρ,Q2ρ Nominal current loads constants
P3ρ,Q3ρ Nominal power loads constants
5Q Threshold for total reactive power output of the

i-th DG
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5P Threshold for total active power output of the
i-th DG

vρ Measured voltage of the ρ-th bus
δρ Measured phase angle of the ρ-th bus
N Numbers of DGs within the MG
M Numbers of local loads within the MG

I. INTRODUCTION
Over the past few years, Microgrids (MGs) have received
considerable attention due to their potential role in mitigating
consequences of sudden grid interruption, guaranteeing an
uninterrupted energy supply for the electrical loads, and reli-
able grid operation [1]. These medium-voltage/low-voltage
(MV/LV) small-scale power networks are typically employed
for supporting the electrical network in remote sites and
rural areas (e.g. consisting in homes/building networks or
industrial plants) [2], thus providing an innovative, economic
and environmental-friendly solution [3].Moreover,MGsmay
be needed also in areas with critical loads, such as bank-
ing systems, semiconductor industries, hospitals and data
centers [4]. Heterogeneous Distributed Generators (DGs),
Energy Storage Systems (ESSs) and loads are the main enti-
ties involving within a MG, which are collectively man-
aged in order to increase the hosting capacity of renewable
power generators, and to improve the energy security and
reliability, while offering flexibility services to the grid. For
these reasons, it is considered as one of the most promising
enabling technologies for the large scale deployment of the
Smart Grids (SGs) paradigm [5]. Aside from the available
generation facilities, MGs are able to work in a double oper-
ating mode: islanded/stand-alone mode and grid-connected
mode [6]. In grid-connected mode, the voltage and fre-
quency of the MG are dictated by the main grid, while in
islanded/stand-alone mode control units embedded within
each DGs are responsible for frequency and voltage restora-
tion, along with managing active and reactive power [7].
To face this issue, the most common approach is to deploy
a three-layer hierarchical control architecture [8], which is
based on the following interactive modules: i) a Primary
Control (PC) level, commonly called zero-level, involving
the local hardware control of each DG unit and designed to
stabilize the power network, as well as to share active and
reactive power among different distributed energy sources,
without any communication links; ii) a Secondary Control
(SC), properly designed in order to compensate inevitable
voltage and frequency fluctuations caused by the operation of
PC layer; iii) a Tertiary Control (TC) aimed at optimizing the
power flows exchanged by theMG components [9]. Since PC
induces unavoidable frequency and voltage deviation, the SC
becomes essential for MG performances. In power transmis-
sion systems, a centralized secondary controller is typically
adopted to give compensation signals to the PC, where a
central computing unit periodically collects and processes
the grid data, coordinating the operation of the available
MG components, all used with the aim of minimizing the

fluctuations of the load buses voltage magnitudes, improving
the power quality, and reducing the imbalances of the pro-
grammed power profiles exchanged with the main electrical
grid. This is obtained by solving an optimal power flow
problem [10], which aims at minimizing a cost function given
by the combination of different control objectives (voltage
profile flattening, power losses, reactive power cost etc) in
the presence of several constraints (reliability indexes, volt-
age stability limits etc) [11]. Unfortunately, the deployment
of this centralized computing paradigm is not easily appli-
cable in MGs. Unaffordable complexity, hardware redun-
dancy, network bandwidth and data storage resources are the
main barriers imposed by technology and costs. Moreover,
as pointed out in [12], there are other mainly limitations
in this approaches in terms of scalability and sensitivity to
single-point failures, i.e. when a fault occurs in the central
unit the whole system may collapse.

In this context, the MG community has identified the most
promising research directions as: a) conceptualization of new
automation and control paradigms for distribution of the intel-
ligence at field level (e.g. delocalization of functions usually
processed by the remote control centres); b) implementation
of communications from MG components to remote centers
but also among the distributed components at substation level
(pervasive communication networks); c) use of international
standards to improve interoperability.

Along this direction, Multi-Agent System (MAS)
paradigm has been recognized as the most promising
enabling technology for the designing of the SC layer [13].
According to this mathematical framework, each MG com-
ponent is represented by a dynamic system which, sharing
information with the neighboring agents, aims at achiev-
ing a common coordinated behavior at the global level
via distributed control protocols [11], [14]. Leveraging
this paradigm, the voltage/frequency restoration, as well
as the power sharing control problems, for stand-alone
MGs have been solved without considering communica-
tion impairments in [15], [16], which propose a distributed
an event-triggered distributed controller, while [17], [18]
present a nonlinear robust consensus-based strategy. Neglect-
ing again communication delays, [19] proposes a distributed
economic power dispatch and bus voltage control solution for
droop-controlled DC MGs, while a coordination among the
three control layers is discussed in [20] in order to realize a
method for their joint operations.

Modelling communication impairments as a white noise,
both linear and nonlinear consensus-based approach have
been very recently addressed in [21]–[23]. However, in prac-
tise, when dealing with control of connected DG units lever-
aging wireless communication, also communication time
delay into the shared information and sudden packet losses,
originated by communication active links, naturally arise.
Therefore the hypothesis of perfect and ideal communication
among agents is not realistic, as well as the one of modeling
impairments only via additive noises may be restrictive. Nev-
ertheless, few papers address the presence of communication
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time-delays in the MG control [24]. For example, a linear
quadratic regulator have been exploited in [25] under the
hypothesis of a unique constant time-delay. Along this direc-
tion, a robust neighbor-based distributed cooperative control
strategy is proposed in [26] for DC MGs by considering
slow switching topologies and a constant and homogeneous
time delay for the overall communication network. However,
in practice information shared via a wireless communication
networks is affected by time-varying delays depending on
the actual condition of the specific communication channel,
thus making the assumption of unique delays too restric-
tive [27]. Considering communication delays as time-varying
functions, [23], [28] have suggested a droop-based distributed
cooperative control, but no delay-dependent gain-tuning rule
has been provided. This implies that no stability margin w.r.t.
delays, also larger than the typical average value of the end-
to-end communication, can be guaranteed by the proposed
controllers.

Furthermore, for practical MG management application,
the control accuracy is crucial and hence, it is required that the
convergence towards the desired behaviour should be reached
in a finite-time [29]. Specifically, in MGs framework, a faster
convergence rate is required by the presence of variable loads,
that require nominal operating conditions in terms of both
frequency and voltage magnitudes. Therefore, in this context
it is crucial to guarantee voltage synchronization process
occurs in finite-time [30]. To this aim, several finite-time
control protocols are recommended in technical literature,
both continuous and discontinuous (see e.g. [31], [32] and
references therein).

The more challenging problem of designing a distributed
control strategy, ensuring prescribed transient behaviour for
the MG while coping with communication time-varying
delays has sparsely been addressed. Along this line, the very
recent work in [33] suggests a distributed finite-time control
protocol, for frequency and voltage restoration, that also
leverages the Artstein model reduction method for counter-
acting the unique constant delay affecting the communication
network. A first attempt to solve, instead, this issue in the
presence of time-varying communication delays can be found
in [34], where the finite-time voltage control problem is
solved via a distributed input-delayed control strategy.

Moreover, all the aforementioned finite-time or delay-
dependent control strategies are validated in simplified sim-
ulation scenarios, where each bus is equipped with a DG and
its corresponding local load, thus perfectly overlapping the
electrical topology with the communication one. Neverthe-
less, this assumption may not to be realistic [25].

To tackle all these crucial aspects, this work suggests a
novel robust networked-based finite-time controller under
realistic conditions, where the electrical topology does not
match with the communication one. The proposed controller
acts by restoring the DGs voltages to reference set-points,
while counteracting communication latency, arising from the
information sharing, as well as both model mismatches and
load changes occurring in real practical operative scenarios.

Therefore, the main contributions include the following:
• Unlike [22], [26], [35], our control approach ensures the
finite-time stability of the MG, thus allowing both to
speed-up the synchronization process to the reference
behaviour despite the presence of sensitive loads and
communication latencies and to guarantee prescribed
transient performances;

• Differently from [22], [35], by exploiting Lyapunov-
Krasovskii theory and Finite-Time stability tools,
we provide a delay-dependent control gain tuning pro-
cedure, expressed as set of LMI, whose solution allows
finding the voltage controller gain and state trajectories
bound as function of the upper bound for the communi-
cation time-delay; this guarantees a certain stability mar-
gin w.r.t. sudden packet losses, which can be modeled as
hard delays;

• Differently from [22], [28], [32], [35], an extensive sim-
ulation analysis is carried out by considering a practical
case-of-study of the IEEE 14-bus Test system, where
no overlapping between electrical and communication
layers is considered. Moreover, the worst case scenarios
of hard load variations and plug-and-play of DG units
are also discussed in order to confirm the robustness of
the proposed control approach with respect to sudden
changing into the surrounding environment;

• The validation of the proposed networked-based
finite-time delayed control action also in the IEEE
30 bus test system with more distributed energy
resources corroborates its applicability on larger
networks.

Note that some preliminary results have been presented in our
previous work [34], but there neither the analytic derivation
of control gain tuning procedure, nor the formulation of
the problem and its validation in a realistic case have been
addressed.

The paper is organized as follows. In Section II-A,
the mathematical preliminaries are introduced. In Section III
a model for the whole stand-alone MG is derived. The robust
cooperative finite-time voltage SC is presented in Section IV,
while its stability analysis and the related control gain tuning
procedure are presented in Section V. The thorough sim-
ulation analysis, carried out on the IEEE 14-bus test sys-
tems, are disclosed in Section VI. Conclusions are drawn in
Section VII.

II. MATHEMATICAL BACKGROUND
Some useful Definitions and preliminaries are reported in this
section for the sake of clarity.

A. GRAPH THEORY
According to MAS framework, a power network can be
modeled like a directed graph, defined as GN = {VN , EN },
where VN = {1, 2, . . . ,N } is the set of vertices, i.e. the
dynamical nodes, while EN ⊆ VN × VN is the set of edges,
that mimic direct and active communication links. Hence,
given two distinct nodes i and j, an edge from i to j defines
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a pair (i, j) ∈ EN and it represents information flow between
the two nodes. In so doing, the weighted adjacency matrix
A = [aij] ∈ RN×N can be associated to the graph GN , whose
element aij 6= 0 if there is an active communication link
between agents j and i, i.e. (i, j) ⊆ EN , otherwise aij = 0.
With this matrix, it is possible to define the Laplacian matrix
as L such that lii =

∑N
j6=i aij and lij = −aij with i 6= j. Let

Ni = {j ∈ VN : (i, j) ∈ EN } the neighboring set of the
i-th node. If there exists a leader agent, usually labelled with
index zero, i.e. node 0, the resulting network topology can be
modeled via an augmented graph GN+1. Moreover, we can
introduce the pinning matrix P = diag{pi} ∈ RN×N whose
element pi is equal to 1 when the leader sends its information
to agent i via a direct communication link (i.e. the agent
is is pinned to the leader), 0 otherwise [36]. Furthermore,
according to [36] we define a directed path from node i to
node j as a sequence of nodes that starts in i and ends in j,
i.e. (i, p), (p, q), · · · , (r, j). Then, a generic agent i ∈ GN is
globally reachable if it can be reached through a directed path
from any other node.

Through the paper, we model both the physical and com-
munication network topologies via di-graphs.

B. FINITE-TIME STABILITY
Let a delayed system as

ẋ(t) = Ax(t)+ Bx(t − τ (t))+ Fw(t) (1)

being x(t) ∈ RN the state vector, τ (t) the time-varying delay
due to the communication network such that τ (t) ∈ [0, τ ?],
τ̇ (t) ∈ [0, µ] with µ < 1 [37]; w(t) ∈ RN the bounded dis-
turbances vector; and A,B,F known matrices of appropriate
dimensions.
Definition 1 (Robust Finite-Time Stability for Time-Delay

Systems [38], [39]): Given positive scalars T f , τ ?, 5, c1
and c2 with c2 > c1 and a matrix 9 > 0, system (1) is
said to be robust finite-time stable (RFTS) with respect to
(c1, c2, τ ?,T f , 9,5) if

sup
−τ ?≤t0≤0

{x>(t0)9x(t0), ẋ>(t0)9 ẋ(t0)} ≤ c1

H⇒ x>(t)9x(t) < c2 t ∈ [t0, t0 + T f ]

for all the disturbances w(t) satisfying
∫ T f
0 w>(t)w(t) ≤ 5.

III. MICROGRID MODELLING
Let N and M the numbers of DGs and local loads within
stand-alone MG. These entities are physically interconnected
through power lines, while a communication layer is also
included leading to an interaction among them in the cyber-
space, thus guaranteeing the information sharing and the
achieving of the SC aims (see Figure 1).

In what follows, to create a detailed framework, the prob-
lem formulation will be discussed starting from an accurate
mathematical model for DGs and for the overall stand-alone
MG network. Note that, according to the technical liter-
ature [40], Microgrid modeling can be categorized into

FIGURE 1. Exemplar inverter-based Microgrid: a) stand-alone MG
consisting of four DGs and four loads; b) primary control block scheme.

two main classes: inverter-interfaced DG units [41] and the
so-called small signal model [42]. Although in the former the
model derivation is restricted to single DG, while the current
and power flows between different units are non-explicitly
considered, in the sequel we consider the inverter-based mod-
elling since the future electrical networks will be composed
of inverter-based electrical devices [40].

A. DG MODEL
A PC layer is locally implemented in each inverter-based DG
unit, consisting of three-phase dc/ac inverter, a dc source,
RL output connector and an LCL filter [32]. Moreover,
an inner voltage control loop and current control loop along
with the power control are included in order to regulate
the inverter voltage and current and to help power sharing
task [43], thus reacting the instability phenomenon both in
frequency and voltage magnitudes after PCC disconnection
process [44].

Therefore, the dynamics of the i-the DG unit is
expressed by the following approximated droop equations
(∀i = 1, . . . ,N ) as [45]:

δ̇i = ωi = ω
?
− kPiP

m
i + u

ω
i , (2a)

kvi v̇i = −vi + v
?
− kQiQ

m
i + u

V
i , (2b)

being v? and ω? the set-points for the voltage and frequency
respectively, kPi ∈ R+ and kQi ∈ R+ the droop gains,
kvi ∈ R+ the voltage control gain, while the inputs for
the secondary frequency and voltage control are uωi and uVi ,
respectively. Note that uωi = uVi = 0 means that SC is
inactive.
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Moreover, the measured real and reactive power,
i.e. Pmi and Qmi respectively, are given via the following
first-order low-pass filter [32]:

τPi Ṗ
m
i = −P

m
i + Pi, (3a)

τQiQ̇
m
i = −Q

m
i + Qi, (3b)

where τPi and τQi are the filter time constants, Pi and Qi are
the active and reactive power outputs of the i-th DG.

B. MG NETWORK MODEL
The communication layer describing the information
exchange among the smart controllers associated with each
DG i, ∀i = 1, . . . ,N whitin the MG in the cyber-physical
space can be modeled according to graph theory. Specifically,
we consider N DG units together with a leader agent, taken
as an additional node labelled with index zero (i.e. node 0),
which provides the reference behaviours for both voltage and
frequency (v0, ω0) in order to achieve SC objectives. Indeed,
the leader node can broadcast this set-point (v0, ω0) ∈ R
to a subset of DGs smart controllers. To this aim, we use
an augmented directed graph GcN+1 = {V

c
N+1, E

c
N+1,A

c
} to

model the resulting network topology, where VcN+1 is the set
embedding the DGs and the leader node, while EcN+1 is the
set of edges that describes the communication links. In this
way, the communication structure can be described by the
corresponding adjacency matrix Ac

= [aij] ∈ R(N+1)×(N+1),
whose generic element aij = 1 if there is a communication
link from node j to node i, 0 otherwise. By defining the
leader node 0 globally reachable in GcN+1 if there exists a path
from every DGs node i, ∀i = 1, . . . ,N to leader node 0,
throughout this paper we assume the global reachability
property for the leader agent.

Moreover, note that, in real communication network,
time-varying communication delays might arise during the
information sharing process among different agent, whose
value depends on the current availability of the wireless
channel itself. Therefore, in order to avoid and prevent any
instability phenomenon, the presence of this delay τ (t) affect-
ing the set of the edges EcN+1 has to be considered during
control design phase [27]. Finally, N c

i = {j : (i, j) ∈ EcN+1}
denotes the neighboring set of the DG unit i, ∀i = 1, . . . ,N .
Besides the communication network topology, in order to

deal with the problem, it is necessary to introduce an electrical
network topology to characterize the physical interconnection
among the N + M electric entities (i.e. the N DGs and the
M local loads), which is allowed via power lines (see Fig.1
(a)). To this aim, by leveraging graph theory, we introduce a
directed graph GeN+M = {V

e
N+M , E

e
N+M ,Ae

}, being VeN+M
the electrical entities set and EeN+M the set of the electric
edges, i.e. the impedences of the power lines. Indeed, Ae

represent the adjacency matrix associated to the electrical
topology, whose complex weight are the admittance between
different buses. For example, the generic aρk = Yρk =
Gρk + jBρk , being Yρk ∈ C,Gρk ∈ R and Bρk ∈ R the
admittance, the conductance and susceptance, respectively.

Yρk = 0 means that does not exists a power line between the
ρ-th and the k-th bus. Similarly, we can introduceN e

ρ = {k :
k ∈ VeN+M , k 6= ρ,Yρk 6= 0}, i.e. the set of neighbors of the
ρ-th electrical unit. In addition, we have Gρρ =

∑
k∈N e

ρ
Gρk

and Bρρ =
∑

k∈N e
ρ
Bρk .

Note that, this kind of representation for the commu-
nication and the electrical layers is possible according to
the appraised inverter-based MG modelling [40]. Hereinafter
some useful and common assumption are given [7].
Assumption 1: The power transmission lines within the

MG, describing the electrical network topology GeN+M , are
lossless. This implies that the conductance is always zero,
i.e. Gρk = 0, and Yρk = jBρk ,∀ρ ∈ VM+M , k ∈ N e

ρ .
Note that, the above assumption is common and reasonable

in power system analysis (see e.g. [46], [47] and references
therein). Indeed, the lossless line admittance may be justified
as follows: in MV and LV networks the line impedance is
usually not purely inductive, but has a non-negligible resis-
tive part. On the other hand,the inverter output impedance
is typically inductive(due to the output inductance and/or
the possible presence of an output transformer). Under these
circumstances, the inductive parts dominate the resistive
parts [46]. Moreover, Assumption 1 is also crucial for con-
trol design phase. Indeed, by considering dominant inductive
networks, the influence of the dynamics of the phase angles
on the reactive power flows can be neglected [48].

Taking into account the above Assumption 1 together with
the power balance equations [49], the following relations
hold:

P̂ρ =
∑
k∈N e

ρ

vρvkBρk sin(δρ − δk ), (4a)

Q̂ρ = v2ρBρρ −
∑
k∈N e

ρ

vρvkBρk cos(δρ − δk ), (4b)

being P̂ρ, Q̂ρ, vρ and δρ the active injected power, the reactive
injected power, the measured voltage and phase angle of the
bus ρ, ∀ρ ∈ VeN+M , respectively.

Moreover, to integrate the presence of a local load within
a specific bus ρ, we refer to the so-called ZIP load model
expressed as [50]

PLρ = P1ρ v
2
ρ + P2ρ vρ + P3ρ , (5a)

QLρ = Q1ρ v
2
ρ + Q2ρ vρ + Q3ρ , (5b)

where the pair (P1ρ ,Q1ρ ) represents the nominal constant
impedence loads, (P2ρ ,Q2ρ ) indicates the pair for the nominal
constant current loads, while (P3ρ ,Q3ρ ) the ones related to
nominal constant power loads.

Putting together (4)-(5), we can have:

Pi =
∑
ρ∈N e

i

PLρ +
∑
ρ∈N e

i

P̂ρ, (6a)

Qi =
∑
ρ∈N e

i

QLε +
∑
ρ∈N e

i

Q̂ρ, (6b)
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where Pi andQi are the total active and reactive power output
of the DG i,∀i = 1, . . . ,N .
Assumption 2: There exist prescribed known constants

5Q,5P
∈ R+ such that

|Qi| ≤ 5Q, |Pi| ≤ 5P
∀i.

This ensures that reactive and active power (6b) and (6a),
as well as (3b) and (3a), are bounded.
Remark 1: Assumption 2 is reasonable in power system

since, by considering a fixed operating point of the inverter,
the magnitudes of these powers do not exceed their tresholds,
thus preventing any instability conditions [32].
Remark 2: Since frequency and voltage control design

phases are commonly decoupled, we discuss frequency and
voltage controllers separately (see [30] and references
therein).

Therefore, the focus of the work is to suggest a novel robust
delayed finite-time cooperative networked-based control pro-
tocol able to ensure accurate voltage trajectory tracking of the
leader node by the DGs within the MG despite the presence
of time-varying communication latency. To increse the clarity
of the work, in the next section we present a well-known
frequency controller proposed in [7], used to implement a real
case-of-study ans to test our voltage control protocol.

C. FREQUENCY CONTROLLER
The frequency SC objective is to achieve real power shar-
ing condition and to synchronize the DGs frequency to the
reference value ω0, i.e. limt→∞ ωi(t) = ω0, taking into
account the control input frequency constraints expressed as
(uωi )s/(u

ω
j )s = 1, i 6= j ∈ VcN+1 − {0}, where (uωi )s and

(uωj )s are the frequency control input of the i-th and j-th DG
within the MG in steady state conditions. The achievement of
this control goal is guaranteed under the following distributed
control strategy [7]:

uωi = αi(ω̂i − ωi)
˙̂ωi = βi

∑
j∈N c

i

(ωi − ωj)+ gi(ωi − ω0)+ ϕi
∑
j∈N c

i

(uωj − u
ω
i )

(7)

being αi, βi, ϕi ∈ R+ the proper tuned control gains, while
gi models the communication links between the DGs and the
leader node (see Section III-B).

IV. DISTRIBUTED COOPERATIVE FINITE-TIME VOLTAGE
CONTROL PROTOCOL IN THE PRESENCE OF
COMMUNICATION DELAYS
The aim of this section is to handle with the problem of
voltage restoration arising at secondary control level in
inverter-based stand-alone MG, i.e. to guarantee that all the
DGs within the MG track the reference behaviour as imposed
by the leader node, indexed with 0. Specifically, we design a
finite-time control strategy meant to be distributed, i.e. it has
to induce a common required behaviour for the overall net-
work of DGs, that is also able to counteract time-varying

communication latency arising from the information
exchange. To deal with the above problem, the control
objective is to design a distributed networked-based delayed
strategy uVi (t, τ (t)) such that:
• ‖vi(t) − v0(t)‖ → 0 as t → T f , being vi, v0,T f the
voltage of i-th DG within the MG, the voltage set-point
and desired settling time respectively;

• there exists constant c2 ∈ R+ acting as a threshold for
all voltage error trajectories w.r.t. the reference voltage
set-point within each transient time interval [t, t + T f ].

The voltage leader dynamic is given by the following differ-
ential equation:

ẋ0(t) = Ax0(t) (8)

where x0(t) =
[
v0(t) v̇0(t)

]
∈ R2 is the state vector of the

leader.
To put the DG voltage dynamic into state-space form,

we differentiate (2b) as:

kvi v̈i(t)+ v̇i(t)− kQiQ̇
m
i (t)+ u

V
i (t, τ (t)) = 0, (9)

being uVi the cooperative SC input for voltage regu-
lation computed by leveraging the outdated information
shared via communication links, described by GcN+1, due
to communication latency [51]. Indeed, in order to avoid
instability phenomenon, it is necessary to consider communi-
cation time-delays τ (t) from the control design phase. Finally,
Eq. (9) can be rewritten as

ẋi(t) = Axi(t)+ BiuVi (t, τ (t))+ Giwi(t). (10)

Note that, Eq. (10) is a delayed-input system, where xi(t) =
[vi(t) v̇i(t)]> is the state vector; wi(t) = [0, (−v̇i(t) −
kQiQ̇

m
i (t))]

T is the time-varying disturbance vector that take
into account the voltage deviation induced by droop-PC,
while A,Bi, and Gi are

A =
[
0 1
0 0

]
, Bi = Gi =

 0
1
kvi

 ,
respectively. In addition, Assumption 2 and Remark 2 guar-
antee that

∃ 5 ∈ R+ : |wi(t)| ≤ 5, (11)

which means that the disturbances are bounded. The achieve-
ment of the aforementioned control objectives is guaranteed
under the following distributed delayed finite-time control
strategy:

uVi (t, τ (t)) = K
∑
j∈N c

i

aij
(
xi(t − τ (t))− xj(t − τ (t))

)
, (12)

where K ∈ R1×2 is the control gains vector to be proper
tuned; coefficient aij, as defined in Section II-A), model the
communication network topology emerging from the pres-
ence/absence of a communication link between the DG i and
DG j in the SC level; τ (t) is the communication time-varying
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latency which is detectable by timestamp. Note that, the pres-
ence of τ (t) over the network leads to the need of running the
controller on the basis of outdated information as in (12).

We highlight that the proposed control protocol in (12)
is homogeneous and continuous, thus allowing to prevent
chattering phenomenon arising from discontinuous control
law [52].

V. FINITE-TIME STABILITY ANALYSIS
In this section, we provide the stability conditions guarantee-
ing the robust finite-time voltage regulation problem in a MG
despite the presence of communication delay. This conditions
are expressed as a set of LMIs, whose solution also allows
finding the suitable control gains vector K ∈ R1×2 in (12).

To this aim, we first derive the mathematical representa-
tion of the MG closed-loop system under the action of the
distributed control (12). Hence, given the dynamics of DG i
in (10) and the ones of the leading agent as in (8), we define
the error vector for each DG i w.r.t. to the leader as

ei(t) = xi(t)− x0(t) ∀i ∈ VcN+1 − {0}.

According to the above definition and considering the control
input uVi as in (12), it is possible to derive the closed-loop
error dynamics for the i-th DG as

ėi(t) = Aei(t)+ BiK
∑
j∈N c

i

aij(ei(t − τ (t))− ej(t − τ (t)))

+Giwi(t). (13)

Now, in order to describe the closed-loop network for
the overall MG in a more compact form, by taking into
account the communication topology, we define the aug-
mented state vector x̃(t) = [e>1 (t), e

>

2 (t), · · · , e
>
N (t)]

>
∈

R2N×1 and the augmented disturbance vector w̄(t) =
[w>1 (t),w

>

2 (t), · · · ,w
>
N (t)] ∈ R2N×1, thus obtaining the fol-

lowing delayed closed-loop system:

˙̃x(t) = Āx̃(t)+ Aτ x̃(t − τ (t))+ Gw̄(t), (14)

where Ā = (IN ⊗A); Aτ =
∑

i(H⊗BiK ); G =
∑

i(IN ⊗Gi)
where ⊗ is the Kronecker product and H = L+ P , being L
andP the Laplacian and Pinning matrices of the graph GcN+1.
The following common assumption related to communica-

tion time delay holds [53].
Assumption 3: [37] The homogeneous time-varying com-

munication delay τ (t) is bounded, i.e. τ (t) ∈ [0, τ ?] and
τ̇ (t) ∈ [0, µ[ with τ ? and µ < 1 ∈ R+.

Now, we derive the sufficient conditions that guarantee
the robust finite-time stability of the closed-loop dynamical
system (14) according to the theorem stated as follows.
Theorem 1: Consider the closed-loop MG network as in

(14) and let Assumption 3 holds. Given positive scalars α,
Tf , 5, c1, c2 > c1 and positive matrix 9 ∈ R2N , let free
matrices M , T ∈ R2N and free-invertible matrix F ∈ R2N ,
being F−1 = X. Assume there exist a positive constant γ
and positive matrices P,Q,Z ∈ R2N , Q̄ = 9

−1
2 Q9

−1
2 and

Z̄ = 9
−1
2 Z9

−1
2 such that:

611 −M> + T −Aτ −M>

? −Q(1− µ)eατ
?
− T> − T −T

? ? −Z
? ? ?

? ? ?

Ā> G
−A>τ 0
0 0

τ ?2P+ X> + X −G
? γ I

 < 0, (15)

eαT
f
(
1+ λmax(Q̄)τ ? + λmax(Z̄ )

τ ?
2

2

)
c1 + γ5eαT

f
< c2,

(16)

being 611 = (Ā + Aτ ) + (Ā + Aτ )> + Q +M +M> − αI ,
λmax(·) and λmin(·) the maximum and minimum eigenvalues
of matrices Q̄ and Z̄ , respectively. Then system (14) is robust
finite-time stable with respect to (c1, c2, τ ?,T f , 9,5) for all
the disturbances satisfying (11).

Proof: Consider the following Lyapunov-Krasovskii
functional:

V (x̃(t)) = V1(x̃(t))+ V2(x̃(t))+ V3(x̃(t)) (17)

where

V1(x̃(t)) = x̃>(t)x̃(t); (18)

V2(x̃(t)) =
∫ t

t−τ (t)
x̃>(s)eα(t−s)Qx̃(s) ds; (19)

V3(x̃(t)) = τ ?
∫ 0

−τ ?

∫ t

t+θ

˙̃x>(s)eα(t−s)Z ˙̃x(s) ds dθ (20)

beingQ and Z some symmetric and positive definitematrices.
Differentiating V1(x̃(t)) in (18) along the trajectories of the

closed-loop system (14), we have:

V̇1(x̃(t)) = ˙̃x>(t)x̃(t)+ x̃(t)> ˙̃x(t) = 2x̃>(t) ˙̃x(t)

= 2x̃>(t)Āx̃(t)+ 2x̃>(t)Aτ x̃(t − τ (t))

+ 2x̃>(t)Gw̄(t). (21)

By leveraging the Newton-Leibnitz formula [37]

x̃(t − τ (t)) = x̃(t)−
∫ t

t−τ (t)

˙̃x(s) ds,

the equality (21) can be rewritten as:

V̇1(x̃(t)) = x̃>(t)(8+8>)x̃(t)− 2x̃>Aτ

∫ t

t−τ (t)

˙̃x(t) ds

+ 2x̃>(t)Gw̄(t) (22)

being 8 = Ā+ Aτ .
Moreover, given Assumption 3, by differentiating V2(x̃(t))

in (19) and V3(x̃(t)) in (20) along the trajectories of (14),
it yields:

V̇2(x̃(t)) ≤ x̃>(t)Qx̃(t)−x̃>(t−τ (t))eατ
?

Q(1−µ)x̃(t−τ (t))

+αV2(x̃(t)), (23)
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V̇3(x̃(t)) ≤ τ ?2 ˙̃x>(t)Z ˙̃x(t)−
∫ t

t−τ (t)

˙̃x>(s)eα(t−s)Z ˙̃x(s) ds

+αV3(x̃(t))

≤ τ ?2 ˙̃x>(t)Z ˙̃x(t)−
∫ t

t−τ (t)

˙̃x>(s)Z ˙̃x(s) ds

+αV3(x̃(t)). (24)

By applying Jensen inequality [37] on the integral term of
inequality (24), it follows:

V̇3(x̃(t)) ≤ αV3(x̃(t))+ τ 2? ˙̃x(t)Z ˙̃x(t)

−

(∫ t

t−τ (t)

˙̃x(s) ds
)>

Z
(∫ t

t−τ (t)

˙̃x(s) ds
)
. (25)

Finally, summing up (22), (23) and (25), we obtain:

V̇ (x̃(t)) ≤ x̃>(t)(8+8>)x̃(t)− 2x̃>Aτ

∫ t

t−τ (t)

˙̃x(t) ds

+ 2x̃>(t)Gw̄(t)+ x̃>(t)Qx̃(t)

− x̃>(t − τ (t))eατ
?

Q(1− µ)x̃(t − τ (t))

+αV2(x̃(t))+ αV3(x̃(t))+ τ 2? ˙̃x>(t)Z ˙̃x(t)

−

(∫ t

t−τ (t)

˙̃x>(s) ds
)>

Z
(∫ t

t−τ (t)

˙̃x(s) ds
)
. (26)

Now, we leverage the Free Matrices method [54], i.e.

2
(
x̃>(t)M> + x̃>(t − τ (t))T>

)
×

[
x̃(t)− x̃(t − τ (t))−

∫ t

t−τ (t)

˙̃x(s) ds
]
= 0 (27)

and

2 ˙̃x>(t)F>
(
˙̃x(t)− Āx̃(t)− Aτ x̃(t − τ (t))− Gw̄(t)

)
= 0,

(28)

being M , T and F ∈ R2N×2N free matrices.
Summing the null terms (27) and (28) to the right-side of

inequality (26), we obtain:

V̇ (x̃(t)) ≤ x̃>(t)
(
8+8> + Q+M +M>

)
x̃(t)

+ 2x̃>(t)
(
M> + T

)
x̃(t − τ (t))+ 2x̃>(t)Gw̄(t)

− 2x̃>(t)
(
Aτ +M>

) ∫ t

t−τ (t)

˙̃x(s) ds

+ x̃>(t − τ (t))
(
−Q(1− µ)eατ

?

+ T>

+T
)
x̃(t−τ (t))−2x̃>(t−τ (t))T>

∫ t

t−τ (t)

˙̃x(s) ds

+ ˙̃x>(t)
(
τ 2?Z + F> + F

)
˙̃x(t)− 2 ˙̃x>(t)F>Āx̃(t)

− 2 ˙̃x>(t)F>Aτ x̃(t − τ (t))− 2 ˙̃x>(t)F>Gw̄(t)

−

(∫ t

t−τ (t)

˙̃x>(s) ds
)>

Z
(∫ t

t−τ (t)

˙̃x(s) ds
)

+αV2(x̃(t))+ αV3(x̃(t)). (29)

Now, by defining the following enlarged state vector:

η(t) =
[
x̃>(t) x̃>(t − τ (t))

∫ t
t−τ (t)

˙̃x(s) ds ˙̃x>(t) w̄(t)
]>
,

(30)

being η(t) ∈ Rν×ν with ν = 5 · 2N , the inequality (29) can
be recast into a more compact form as

V̇ (x̃(t)) ≤ η>(t)4η(t)+ αV2(x̃(t))+ αV3(x̃(t)) (31)

where

4 =


411 412 413 414 415
? 422 423 424 425
? ? 433 434 435
? ? ? 444 445
? ? ? ? 455

 ∈ Rν×ν, (32)

being

411 = 8+8
>
+ Q+M> +M , 412 = −M> + T ,

413 = −Aτ −M>, 414 = Ā>F, 415 = G,

422 = −Q(1− µ)eατ
?

− T> − T , 423 = −T>,

424 = −A>τ F, 433 = −Z , 444 = τ
2?Z + F> + F,

445 = −F>G, 425 = 434 = 435 = 455 = 02N×2N .

Summing and subtracting the terms αV (x̃(t)) and γ w̄>(t)w̄(t)
to (31), after some algebraic manipulations we obtain:

V̇ (x̃(t))− αV (x̃(t)) ≤ η>(t)4′η(t)+ γ w̄>(t)w̄(t), (33)

being 4′ as in (34), as shown at the bottom of the page.
Choosing positive definitive matrices Q and Z ∈ R2N , free
matrices M , T , F ∈ R2N×2N and L2 gain γ such that the
inequality in (34) is fulfilled, from (33) it follows:

V̇ (x̃(t))− αV (x̃(t)) ≤ γ w̄>(t)w̄(t). (35)

4′ =


8+8> + Q+M> +M − αI2N −M> + T −Aτ −M> Ā>F G

? −Q(1− µ)eατ
?

− T> − T −T> −A>τ F 02N×2N
? ? −Z 02N×2N 02N×2N
? ? ? τ 2?Z + F> + F −F>G
? ? ? ? −γ I2N

 < 0

(34)
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Then, for all t ∈ [t0, t0 + T f ], being T f the pre-fixed settling
time, it holds:

V (x̃(t)) ≤ eαtV (x̃(0))+ γ
∫ t

0
w̄>(s)w̄(s) ds

≤ eαT
f
V (x̃(0))+ γ

∫ T f

0
w̄>(s)w̄(s) ds. (36)

Now, in order to evaluate V (x̃(0)), we introduce the following
relations:

Q̄ = 9
−1
2 Q9

−1
2 , Z̄ = 9

−1
2 Z9

−1
2 ,

being 9 ∈ R2N any positive matrix, i.e. 9 > 0.
Given the above definitions, according to the choice of the

Lyapunov-Krasovskii functional (17), after some algebraic
manipulations we obtain:

V (x̃(0)) = x̃>(0)x̃(0)+
∫ 0

−τ (0)
x̃>(s)e−αsQx̃(s) ds

+ τ ?
∫ 0

−τ ?

∫ 0

θ

˙̃x>(s)e−αsZ ˙̃x(s) ds dθ

≤ {1+ λmax(Q̄)τ ? +
τ ?3

2
λmax(Z̄ )} ×

sup
−τ ?≤t0≤0

{x̃>(t0)9 x̃(t0); ˙̃x>(t0)9 ˙̃x(t0)}. (37)

Given (37) and the boundedness of the disturbance vector as
in (11), inequality (36) finally becomes:

V (x̃(t)) ≤ eαT
f
(
1+ λmax(Q̄)τ ? + λmax(Z̄ )

τ ?3

2

)
c1

+ γ5eαT
f
, (38)

being 5 the maximum value of w̄(t) for all the domains that
include the MG operation point.

Furthermore, from (17) we also have

V (x̃(t)) ≥ x̃>(t)x̃(t) ≥ λmin(I )x̃>(t)9 x̃(t). (39)

Finally, from (38) and (39) it follows:

x̃>(t)9 x̃(t) ≤ eαT
f
(
1+ λmax(Q̄)τ ? + λmax(Z̄ )

τ ?3

2

)
c1

+ γ5eαT
f
≤ c2. (40)

Therefore, if the inequality (34) and the LMI (16) hold,
we have that the delayed closed-loop system (14) is robust
finite-time stable according to Definition 1.

However, inequality (34) is not easy to solve since it is
non-linear due to the presence of products between the matrix
variable Aτ , depending on the control gains as in (12), and the
other matrices variables. Hence, for effectively dealing with
it, we exploit congruence transformation LMI property [55],
thus transforming (34) into an equivalent LMI by pre- and
post-multiply it with the matrix ϒ = diag{I , I , I ,X , I }
and its transpose. In so doing, by defining X = F−1 and
P = X>ZX , after some algebraic manipulation, (34) is
transformed into the LMI (15) depending on the linear combi-
nation of the controller gains. This completes the proof.

Remark 3: The feasibility of the LMIs problem in (15)-
(16) can be numerically verified by using, for example,
the interior-point method [55] implemented in the Yalmip
Toolbox with SeDuMi solver [56].
Remark 4: Since Finite-time control strategies can guar-

antee both a faster convergence than asymptotically ones and
a best features in the presence of disturbances and uncertain-
ties [29], it is particularly suitable adopt them in practical
application like MGs control. Indeed, by reaching the voltage
synchronization of all the DG units to the reference values in
finite-time, the variable loads, which require nominal oper-
ating conditions, can be properly managed, thus allowing a
proper disturbances rejection [30].
Remark 5: Feasible delay-dependent Matrix Inequalities

in (15) and (16) are obtained through Theorem 1, which
guarantee the robust finite-time voltage synchronization of
the overall MG in (14). By fixing the maximum value τ ? for
the time delays, the value of c1,5 (usually prescribed in
technical literature [57]) and the couple (T f , α), which force
the overall performances of the entire MG in terms of set-
tling time, thus conditioning state trajectories evolution and
their threshold c2, Eqs. (15) and (16) can be seen as Linear
Matrix Inequalities. In so doing, the feasibility of the LMIs
allows tuning the robust controller gains which guarantee
the control objectives achievement despite the presence of
communication latency, i.e. i) the voltage synchronization to
the set-point in a finite-time T f and ii) the boundedness of
the state trajectories during each transient phase, being c2
the threshold obtained via LMIs resolution.
Remark 6: When solving the LMIs in (15) and (16),

we set an upper bound for communication delay τ ?, which
is considered greater than the conventional threshold of the
wireless communication network in normal operating con-
ditions, e.g. based on the IEEE 802.11 protocol. Note that,
hard delays, larger than the typical upper bound allowed by
the wireless network, correspond to sudden packet losses.
In doing so, the proposed procedure provides a meaning-
ful robust stability margin with respect to the unavoidable
latencies that can affect the networked cyber-physical system
during some operative conditions. [27].

VI. PERFORMANCE ANALYSIS
In this section the effectiveness of the control approach
is verified for the voltage regulation problem in the IEEE
14-bus test system depicted in Fig. 2. The aim is to show how
the proposed distributed finite-time control (12), despite the
presence of communication time-varying delays, can ensure a
desired voltage restoration by eliminating unavoidable devi-
ations due to primary droop-control. The system operates
in islanded mode and consist of N = 5 droop control DG
units setting on buses 1, 2, 3, 6 and 8, M = 9 ZIP-modeled
local loads and twenty transmission lines (see the electrical
power line topology in 2). Information about lines impedance
and active and reactive power limits are provided according
to [58], while the parameter of both droop-controlled DG
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TABLE 1. DGs Locations, static droop coefficient and time constants of
the LCL filters.

TABLE 2. ZIP load model parameters.

FIGURE 2. The IEEE 14-bus Test System.

units and ZIP local loads are chosen as in Table 1 and 2,
respectively.

The DGs share information via the communication net-
work topologyGcN+1with E

c
N+1 = {(0, 1), (1, 2), (2, 3), (3, 2),

(3, 4), (4, 5)}, where only DG1 has a direct access to virtual
leader information. We remark that this connected commu-
nication topology is just one among all the possible configu-
ration that can be dealt with the proposed approach (similar
results have been omitted here for the sake of brevity).

In the simulation scenario, the communication delay τ (t)
has been simulated as a time-varying function with a max-
imum value of τ ? = 0.1[s]. Note that, by considering τ ? =
0.1[s], we have an upper bound for the communication delays
that is greater than the typical maximum value allowed for
wireless channel in normal operating conditions (which is

about 10−2[s] [11]). In so doing, we provide a meaningful
margin of robust stability w.r.t. hard delays which correspond
to sudden information packet losses. [27].

The control gains for the frequency control law in (7) are
selected as αi = 10.5, βi = −0.3, and γ = 0.001 [7].
Voltage regulation performances are evaluated leveraging

the Matlab/Simulink simulation platform, while the LMIs
defined in Theorem 1 are numerically verified by using
the interior-point method implemented in Yalmip Toolbox
through the SeDuMi solver. The resulting control gains in
(12), obtained by verifying the feasibility problem of LMIs
(15)-(16) through Yalmip Toolbox via SeDuMi solver, are
K = [−0.930 − 0.726]; instead, the weighted L2 gain
and the threshold for state trajectories are γ = 0.94237 and
c2 = 0.0459, respectively.

Note that, as already stated, for solving the LMIs, we have
considered a fixed value for τ ? according to technological
constraints [11]. However, this parameter plays an important
role for the stability of thewholeMG aswell as for solving the
LMI problem (15)-(16). Therefore, before describing the sim-
ulation results, we have carried out a sensitivity analysis of
this parameter with respect to L2 gain γ and state trajectories
threshold c2 in order to disclose the maximum upper bound of
communication delays which guarantees that Theorem 1 still
holds as well as the feasibility of LMI problem is confirmed.
Specifically, this latter has been verified for different value
of τ ?, raging from 0.1[s] to 0.9[s] with an iterative step of
0.1[s]. By solving the LMIs problem for each of the selected
value for τ ?, we obtain different values for the L2 gain γ and
state trajectories bound c2 as shown in Fig. 3. This sensitivity
analysis allows finding a stability margin w.r.t. the upper
bound of the communication delay that can be useful if hard
delays occur.

In order to disclose the strength and the robustness of the
suggested finite-time control law in ensuring the achievement
of voltage restoration to the set point despite the presence
of both communication delays and frequency/voltage devi-
ations, we consider a time-interval of 60[s] for simulation
purpose. Specifically, we consider three representative sim-
ulation scenarios, namely: i) nominal scenario, where only
voltages reference variations occur; ii) loads changing sce-
nario, where both voltages reference and loads variations
occur; iii) plug-and-play scenario, where we consider the
more troublesome simulation scenario where plug-and-play
phenomena and load variations occur. Furthermore, the vali-
dation on the IEEE 30 bus test system is carried out to disclose
the applicability of the proposed approach to larger power
network, while a comparison analysis is also provide to show
the benefit of the approach w.r.t. the very recent technical
literature.

A. NOMINAL SCENARIO
In this nominal scenario, no loads variations are considered.
Particularly, the use-case under test performs only voltage
reference changes, i.e.: i) at t = 0 [s] the frequency and
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FIGURE 3. Feasibility of LMI (15) and (16) for different value of τ? ∈ [0.1;0.9][s]: a) Relation among
τ? and L2 gain γ ; b) Relation among τ? and c2.

voltage control are enabled with ω0(t) = 1 [p.u.] and
v0(t) = 1.02 [p.u.]; ii) at t = 10 [s] the set-point
for the voltage secondary controller is set to v0(t) =
1.03 [p.u.]; iii) at t = 40 [s] the set-point restores to
v0(t) = 1.02 [p.u.].

The effectiveness of the proposed finite-time control strat-
egy is confirmed by the results in Fig. 4, where it is possible
to appreciate the voltage synchronization process in spite
of the effects of time-varying latency, the unavoidable fluc-
tuation due to PC and the reference changes. Specifically,
by activating our controller at t = 0 [s], all the DGs
voltages achieve the set-point in T f = 6 [s] as shown
in Fig. 4(a), thus allowing the voltage errors fast approaching
to zero value (see Fig. 4(b)). For completeness, Fig. 4(c)
reports the frequency evolution of all the DGs under the
action of (7). Finally, state trajectories evolution are disclosed
in Fig. 4(d), thus confirming the boundedness of the whole
Microgrid with respect to the threshold c2, properly com-
puted by solving LMI (16), i.e. x̃>(t)9 x̃(t) < c2 ∀t ∈
[t0, t0 + T f ], being t0 the time instant when the set-points
change.

B. LOAD CHANGING SCENARIO
Since load demand is subjected to frequent changes accord-
ing to specific and practical requirement, the evaluation of
the robustness w.r.t. load variations is a crucial aspect to
be investigated for assessing the performance of the con-
trolled grid, besides the previous one. In particular, we con-
sider a variable load profile L(t) as depicted in Fig. 5,
where a maximum load variation of ± 50% can be
observed. Specifically, the following scenario is taken into
account:
• At t = 0 [s], the frequency and voltage controller are
switched on, with ω0 = 1 [p.u.] and v0 = 1.02 [p.u.];

• At t = 10 [s], the set-point for voltage control varies to
v0(t) = 1.03 [p.u.];

• At t = 20 [s], there is a 30% of increasing for the
nominal values of the loads;

• At t = 30 [s], loads increase of an additional 20%;

• At t = 40 [s] the voltages reference value is restored to
v0(t) = 1.02 [p.u.];

• At t = 50 [s], loads are restored to their nominal
value.

Results in Fig. 6 show that the proposed approach is able to
counteract the sudden variation in the load request, recovering
the desired voltage intensity. Moreover, the robustness and
the effectiveness of the suggested finite-time distributed con-
troller are confirmed in Fig. 6 even in this troubled scenario
characterized of sudden load changes. Specifically, as the SC
is switched on at t = 0 [s], the voltages of all DG units restore
to the set-point in T f = 6 [s] as shown Fig. 6(a) and the
voltage errors w.r.t. the references go to zero (see Fig. 6(b)).
Load variation and voltage references changes are performed
at the next step of the simulation and the same good per-
formance are achieved in this scenario as well. Indeed, also
in this case, the proposed controller allows adjusting the
voltages of all the DGs to the desired reference value with
the same settling time T f = 6 [s]. Obviously, tolerable errors
can be seen in the voltage time evolution in Fig. 6(a)-(b)
in concurrence of load fluctuations. Fig. 6(c) points out
the time evolution of the DGs frequency with controller
in (7) switched on. Furthermore, according to Definition 1,
Fig. 6(d) proves the boundedness of the overall state trajec-
tories, i.e. x̃>(t)9 x̃(t) < c2 ∀t ∈ [t0, t0 + T f ], where t0 is
the time instant when sudden changes in loads and references
appear.

C. PLUG-AND-PLAY SCENARIO
Here we discuss the robustness of the proposed control
approach in the more troublesome simulation scenario where
plug-and-play phenomena and load variations, as in in Fig. 5,
occur. More specifically, we consider that DG2 at bus 2
and DG4 at bus 6 are unplugged at t = 25[s] and
t = 50[s] respectively, and then plugged-in at t = 32[s]
and t = 52[s] respectively. Note that these sources fail-
ure also implies communication losses for the links con-
nected to the unplugged DGS [59]. Simulation results,
depicted in Fig. 7, confirm the effectiveness of the proposed
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FIGURE 4. Distributed Finite-Time Voltage Restoration Control in the nominal scenario. Time history of: a) voltage vi (t), i = 1, . . . ,5;
b) voltage error vi (t)− v0(t), i = 1, . . . ,5; c) frequency ωi (t), i = 1, . . . ,5; d) Voltage state trajectories x̃>(t)9x̃(t).

FIGURE 5. Distributed Finite-Time Voltage Restoration Control in the load
changing scenario. Time history of the loads percentage variation with
respect to the nominal values.

control approach in ensuring finite-time voltage control also
in this troublesome electrical scenario. Specifically, Fig. 7(a)
shows that voltage controllers successfully face to DGs
losses by sharing the excess power among the remaining
DG units (see Fig 7(b)). Finally as highlighted in Fig. 7(c),
the boundedness of the overall state-trajectories is still
guaranteed.

D. VALIDATION ON A LARGER SYSTEM: THE CASE OF IEEE
30 BUS TEST SYSTEM
In section we aim at corroborating the applicability of the pro-
posed control approach also in larger system with more inter-
connected DG units sharing information via a communica-
tion network affected by time-varying communication delays.
More specifically, we consider the IEEE 30-bus system oper-
ating in stand-alone mode and consisting of N = 7 droop
control DG units, set on buses 1, 2, 3, 6, 8, 10 and 13, M =
23 ZIP local loads and 41 transmission lines, whose param-
eters are given in [58]. As exemplar simulation scenario we
consider the nominal scenario as described in Section VI.A.
Results in Fig. 8 disclose that, also for larger power net-
works, the proposed control protocol (12) is able to ensure
the robust finite-time voltage regulation problem despite the
presence of communication time-varying delays. Indeed, all
the DG units track the reference behaviour (see Fig. 8(a)-(b))
while counteracting the effects of communication latency as
well as the natural deviation due to underlying control layer.
Finally, the boundedness of the state trajectories evolution is
still guaranteed as shown in Fig. 8(c), thus confirming that
x̃>9 x̃ < c2∀t ∈ [t0, t0 + T f ], being t0 the time instant
when reference variations occur. The obtained results con-
firm how our approach successes in guaranteeing the control

VOLUME 9, 2021 59559



A. Andreotti et al.: Distributed Robust Finite-Time SC for Stand-Alone MGs

FIGURE 6. Distributed Finite-Time Voltage Restoration Control in the load changing scenario. Time history of: a) voltage
vi (t), i = 1, . . . ,5; b) voltage error vi (t)− v0(t), i = 1, . . . ,5; c) frequency ωi (t), i = 1, . . . ,5; d) Voltage state trajectories
x̃>(t)9x̃(t) .

FIGURE 7. Plug-and-Play scenario for DG2 and DG4 in load changing scenario. Time history of: a) voltage vi (t), i = 1, . . . ,5; b) supplied reactive power
Qi (t), i = 1, . . . ,5; c) Voltage state trajectories x̃>(t)9x̃(t).

objectives, as stated in Section IV, for larger test-bus power
network.

E. COMPARISON ANALYSIS
To further disclose the benefit of our finite-time networked-
based delayed control input in guaranteeing voltage
regulation in MG, herein we compare the obtained per-
formances with the ones achievable via the nonlinear dis-
tributed voltage controller, very recently proposed in [18],
which neglects the unavoidable presence of communication

impairments. For the comparison analysis, we consider the
nominal scenario as detailed in Section VI-A. The perfor-
mances achievable with the nonlinear controller [18] are
disclosed in Fig. 9 which highlights how time-varying delays
dramatically affect the Microgrids stability. By observing
both Fig. 4 and Fig. 9, we can appreciate how the proposed
control approach allows achieving improved performances
in terms voltage regulation while counteracting time-varying
communication delays as well as voltage deviations due to
primary control layer and references variations. We remark
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FIGURE 8. Distributed Finite-Time Voltage Restoration Control in the nominal scenario for IEEE 30 bus Test System. Time history of: a) voltage
vi (t), i = 1, . . . ,7; b) voltage errors vi (t)− v0(t), i = 1, . . . ,7; c) Voltage state trajectories x̃>(t)9x̃(t).

FIGURE 9. Comparison with nonlinear controller proposed in [18] for the nominal scenario. Time history of: a) voltage vi (t), i = 1, . . . ,5;
b) voltage errors vi (t)− v0(t), i = 1, . . . ,5.

that this benefit is due to the fact that the communication
delays are taken into account from the beginning of the
control design phase.

VII. CONCLUSION
In this paper, the problem of secondary voltage restoration in
stand-alone inverter-based Microgrid has been investigated
and solved via a fully distributed finite-time control proto-
col. Exploiting Lypunov-Krasosovskii theory combined with
Finite-Time Stability tools, we have analytically demon-
strated the effectiveness and the robustness of the pro-
posed control law in ensuring that each DG unit within
the Microgrid tracks the leader behaviour despite the pres-
ence of time-varying communication delays. The derived
delay-dependent stability criteria, expressed as a set of LMIs,
allows tuning the robust control gains vector. An extensive
numerical simulation, carried out on a realistic case study
using the popular benchmark of the IEEE 14 bus test sys-
tem, has been performed. Numerical results have revealed
the robustness and the effectiveness of the proposed con-
trol architecture in guaranteeing that all the DGs involved
in the MG track the reference leader behaviour with spec-
ified transient and steady-state performances, in spite of the

presence of communication time-varying latencies, as well as
natural voltage fluctuations induced by the primary control
layer.

Future work could include: i) the extension of the pro-
posed networked-based approach to solve resilience problem
w.r.t. communication links losses and agent faults; ii) the
practical implementation of the proposed control scheme in
real time MG.
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