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ABSTRACT Mood state assessment (MSA) is increasingly important for diagnosis and treatment of
depression. Recent years, many approaches have been proposed for the process of MSA. When using a
single approach for MSA, the user often has to deal with possible noisy data and unacceptable error rates.
Novelty: In order to improve the accuracy of MSA, in this paper, we propose a novel high-level information
fusion method for determining the MS of users by fusing physiological data, such as heart rate and brainwave
information collected through a wearable device, and psychological data collected through a monthly mood
chart. The multifaceted information must be collected and analyzed simultaneously. Contribution: In the
inference process of proposed framework, we adopted a Bayesian Network (BN) to perform high-level
information fusion. We exploited various evaluation approaches to evaluate the performance of the proposed
approach. Result: We have conducted experiments using two datasets and evaluated the performance using
various factors. The results show that the proposed method (7-M Bayesian Fusion) is superior to other
methods averagely 9.48 % improvement in most evaluation factors. It reveals that the proposed approach
is efficient in fusing the MS information required for accurate diagnosis of depression compared with those
approaches without fusion approach or with few information fusing.

INDEX TERMS Mood state inference, high-level information fusion, psychological, physiological,

Bayesian network.

I. INTRODUCTION

Advances in economy and industry have resulted in increas-
ing occurrence of mental disorders and depression-related
diseases in the world. According to the statistics of the World
Health Organization (WHO) [1], millions of people suffer
from depression or mental disorders every year. Depression
is a very common illness, and millions of people suffering
from depression commit suicide every year. Considerable
research has indicated that mood state (MS) is an important
attribute of depression or mental disorders [2]—[5]. Therefore,
MS assessment (MSA) is an essential process in depression
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diagnosis and treatment. Traditionally, questionnaires such
as the Center for Epidemiological Studies Depression Scale
(CES-D) are carefully designed and used for screening
depression. A well-known MSA process [6] adopts the Pro-
file of Mood State questionnaire, which is a psychological
rating scale for assessing transient and distinct MSs. Mood
charts [7] are also used [8]—[10] to assess an individual’s MS.
As for the clinical treatment of depression, the MS diagnos-
tic modality mostly involves consultations or interviews to
figure out how a patient is feeling. However, such consulta-
tions and interviews cannot be performed daily. A monthly
mood chart (MMC)! is used to assess the daily association

1 http://ocpsychiatrymd.com/monthlymoodchart.pdf
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between a patient’s mood status and the drugs taken by
them. The MMC is also used to observe the effectiveness of
medical treatment. Some MMC-related apps, such as Mood
Tracker? and Moodkit,? have been developed to record and
assess individual MSs online. These apps can be used to
record a patient’s mood status daily. Users themselves input
their MS and feelings. Psychiatrists can use this information
to assess patients’ MSs as well as the effectiveness of the
treatment.

Each of the MSA processes mentioned above mainly
uses only one assessment system for its specific purpose.
However, it is common that the performance of a single
assessment system may be affected by the reliability of
the assessment system and the subject’s current circum-
stances. For example, when using the MMC for assessing a
patient’s MS, the user may intentionally or unintentionally
hide or exaggerate certain factors. This reduces the accuracy
of assessment. In addition, according to Ross and Jain’s
claims [11], when using a single biometric indicator, one
often has to deal with noisy sensor data, restricted degrees
of freedom, non-universality of the biometric trait, and unac-
ceptable error rates. Therefore, it is high time to improve the
accuracy of MS estimation and assessment.

Numerous studies have highlighted certain physiological
signals that can reflect a person’s MS, such as the heart
rate variability (HRV) [12]-[14] and brainwave information
(captured with an electroencephalogram (EEG)) [15]-[19].
Therefore, the use of biofeedback physiological signals with
the MMC may result in the improvement of MSA. However,
the various feelings expressed in an MMC represent an MS
at a certain time. These feelings consist of various mood
indicators, such as the MS, irritability, anxiety, energy, drug
taken, weight, daily sleep hours, and activity event. Most of
the MS-associated data are represented in the numerical form
(e.g., 1-5). The HRV signal is represented as the average
value of the heart rate variation during a certain time period.
The HRV is used to assess the autonomic nervous system,
which can be divided into the sympathetic nervous system
and the parasympathetic nervous system [20].

In addition, brainwaves are electrical signals of neural
activity occurring in the brain. EEG is a noninvasive method
to record the brainwaves detected on the scalp in the form
of a physiological-signal-amplification graph. EEG signals
comprise various waves, which represent certain physiologi-
cal states.

In the past decade, the information fusion tech-
nique [21]-[23] has been successfully used to integrate
various data or information. According to the classification
highlighted in [21], the elements of a basic data fusion
system can be divided into low-level and high-level fusion
processing elements. Low-level information fusion involves
numerical data integration, whereas high-level information

2https://www.moodtracker.com
3 https://www.facebook.com/MoodKit/
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fusion involves feature and decision integration [24]. The
MMC, EEG, and HRV are different models and distinct
methods for identifying the MS of individuals. Low-level
fusion cannot be used to fuse the signals from distinct
modalities, such as the MMC, EEG, and HRV, which provide
different types of data or signals. Integrating multimodal and
distinct types of data and directly presenting them as an MS
is difficult. The fusion of high-level multimodal information
has been successfully achieved in the last decade [24]-[34].
Multimodal information fusion techniques have been applied
in biometrics [26], [27], [29], [33]-[38] to systematically
recognize individuals. There are also other methods, such
as weighted fusion, which are used to fuse multi-complex-
valued information [64] to ensure the quality of the multiple
sources data fusion and its fault diagnosis.

To the best of our knowledge, such fusion techniques have
not yet been applied for fusing psychological and physiolog-
ical data in MSA. Therefore, to propose a multimodal high-
level information fusion technique for MSA is an important
issue.

In this paper, we propose a Bayesian Network (BN)-
based [39] high-level information fusion framework
[21]-[23] to integrate and fuse multimodal psychological and
physiological data into unique MS indices for evaluating a
user’s MS. In the proposed framework, we consulted the clin-
ical experience of psychiatrist at Taipei Medical University
Hospital to define the conditional probability of the BN and
conduct experiments on volunteers to evaluate the perfor-
mance of the proposed fusion technique. The results indicate
that multimodal high-level information fusion can be suitably
applied in the fusion of psychological and physiological data.
A more noticeable improvement is achieved in the evaluation
of the MS when using the proposed framework than when
using only a single assessment method.

The contributions of the study are as follows.

1) A novel multimodal high-level information fusion
framework is developed to fuse psychological and
physiological data for MSA.

2) A BN is constructed to infer multimodal data for MS
assessment.

3) The results of the experiments, which is conducted to
evaluate the performance of the proposed framework,
revealed that a more noticeable improvement in MSA
is achieved when using the proposed framework than
when using a single assessment method.

In this paper, there are many acronyms. In order to make
it easier for readers to read, we collect these acronyms into
Table 1.

The remainder of this paper is organized as follows.
Section II includes a description of related studies and the
background of this research. Section III presents the proposed
framework for fusing multimodal information. Section IV
includes the experimental design, results, and discussion.
Finally, Section V presents the concluding remarks and scope
for future research.
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TABLE 1. Meaning of the acronyms used in the paper.

Acronyms Meaning of the acronym

MSA Mood State Assessment

BN Bayesian Network

MMC Monthly Mood Chart

HRV Heart Rate Variability

EEG electroencephalogram

DS Depressive State

HAM-D Hamilton Depression Scale

MDD Major Depressive Disorder

CPT Conditional Probability Tables

SDNN standard deviation of all NN intervals

RMSSD square Root of the Mean of the Sum of the Squares of
Differences between adjacent NN intervals

MSI Mood State Indices

SD Standard Deviation

Il. BACKGROUND AND RELATED WORK

This section describes the background of this research
(including the use of the HRV and EEG for MSA) and well
as related studies.

A. PHYSIOLOGICAL DATA FOR MS EVALUATION

1) EEG FOR MSA

EEG can be used as a significant indicator of the MS [15].
According to previous reports, a person’s relaxation level may
be related to the alpha wave. A strong alpha wave is expressed
as a low brain behavior index. Stable alpha behavior indicates
high brain activity [40]. The beta wave, on the other hand,
is associated with the state of thought, which is prominent in
frontal cortex and the surrounding area. According to [41],
the beta/alpha ratio may reflect the mood and identified
depressive situation. A low beta/alpha ratio indicates a low
rate of negative emotions, whereas a high rate is a reflection
of the active state. In addition, the alpha and beta activities of
depressed patients and those of healthy subjects are compared
in [42], and the results indicated that the depressed patients
are found to have more alpha and beta activities.

In [43], the authors conducted experiments and claimed
that the alpha waves of a person (measured using EEG) may
serve as a biomarker in differentiating healthy and depressed
people in the future. In addition, Hinrikus e al. [44] used the
spectral asymmetry (SA) of the EEG spectrum to distinguish
depressive and healthy subjects. They claimed that the SA
values are positive for depressive subjects and negative for
healthy subjects. The authors of [45] reported that depressed
patients exhibited an increased overall relative beta power.
Furthermore, they observed that depressed patients exhibited
an increased absolute beta power and higher mean of the
total spectrum frequency at the bilateral anterior regions. The
aforementioned studies indicate that EEG can be used to
evaluate the MS of people with depression.

2) HRV FOR MSA

The HRV is used to assess the autonomic nervous system,
which can be divided into two systems: the sympathetic
system and the parasympathetic system. HRV analysis can be

61258

RR Interval

FIGURE 1. R-R interval of an electrocardiogram [20].

divided into two types: time-domain analysis and frequency-
domain analysis. In time-domain analysis, the adjacent R
wave represents the cycle of the heartbeat, and the R-R
interval represents the heartbeat period (Fig. 1). The heart-
beat period can also be calculated based on a normal-
to-normal (NN) interval when the normal heartbeats are
emphasized [46]. In clinical practice, the most commonly
used time-domain analyses are the standard deviation of all
NN intervals (SDNN), standard deviation of average NN
intervals index, and square root of the mean of the sum of
the squares of differences between adjacent NN intervals
(RMSSD).

The factors highly correlated with the HRV include
heart rate, age, circadian rhythm, and acute psychological
stress. As mentioned in [47], high-frequency HRV analy-
sis is usually used to predict major depression in patients.
Pizzi et al. [48] claimed that depression and the HRV have
independent relevance and may increase the possibility of
a patient suffering from heart disease. Agelink et al. [49]
demonstrated that there exists a significantly negative cor-
relation between the Hamilton Depression Scale (HAM-D)
scores and the vagal HRV indices, which suggests a direct
association between the severity of depressive symptoms and
modulation of cardiovagal activity. The authors of [50] have
conducted experiments to assess the feasibility of using HRV
biofeedback to treat moderate and severe depression. They
reported that the HRV biofeedback appears to be a useful
adjunct for the treatment of depression, which is associated
with increases in HRV. The authors of [51] and [52] have
highlighted that physically healthy patients with mood and
anxiety disorders and alcohol dependence display reduced
HRV. Thus, the lower the HRV, the more likely is the occur-
rence of depression. The authors of [53] claimed that patients
with major depressive disorder (MDD) exhibit decreased
HRV. They suggested that the reduction in the HRV is a
psychophysiological marker of MDD. Patients with MDD
and comorbid generalized anxiety disorder exhibit the highest
reductions in the HRV.

There exist various methods for MSA, but the use of a
single assessment method may affect the reliability of assess-
ment. Therefore, a high-level information fusion technique is
used in this study to fuse the signals extracted from tools so as
to obtain a unified MS score. Table 2 summarizes the existing
work and used tool for MSA. Our proposed method exploits
the fusion method expecting to improve the reliability.
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TABLE 2. Existing works and its tool for MSA.

Existing Study MMC HRV EEG
MoodTracker \Y
Moodkit \Y%
Peng et al. [41]

Begi¢ et al. [42]

Kan et al. [43]

Hinrikus et al. [44]

Knott et al. [45]

Rottenberg et al.[47]

Pizzi et al. [48]

Agelink et al. [49]

Siepmann et al. [50]

Kemp et al. [51]

Nahshoni et al. [52]

Chen et al. [53]

Proposed method \Y

<< l<|<|=<

<<=

Since the MMC, EEG, and HRV have different ways to
evaluate MSA, there are also different models of data repre-
sentation. In order to achieve high-level information fusion,
we first translate emotion-related attributes (Mood state,
Irritability, Anxiety, Energy, Sleep) in the MMC into numer-
ical data at different scales. The HRV and EEG attributes are
also calculated as numerical data according to its character-
istic. We then set up different conditional probabilities based
on the advice of the professional physician. Finally, we use
BN to derive possible probability values.

The following subsection demonstrates how the high-level
information fusion is obtained using BN.

B. BAYESIAN NETWORK

A Bayesian Network (BN) is a probabilistic graphical model
(a statistical shape model) that displays the dependencies
of a random variable through a directed acyclic graph [39].
The basic element of a BN is a random variable, which is
considered as an initial event in an unknown environment.

In general, the Bayesian theorem is used to determine
the probability of tracing the causes, that is, the a priori
probability. The Bayesian classifier assumes that all variables
(property) are useful for the classification and that these vari-
ables are independent of each other. A BN allows us to specify
certain properties subject to conditional independence. A BN
has two important elements: the directed acyclic graph that
displays the correlation dependencies between variables and
the probability table records for each node and its immediate
parent nodes [54].

In a BN, each node represents a variable in the Bayesian
sense. The represented variables may be observable quan-
tities, latent variables, unknown parameters, or hypotheses.
Each edge represents a dependency relationship between two
variables, where unconnected nodes represent variables that
are conditionally independent of each other. Each node is
associated with a probability function, the input of which is a
particular set of values for the node’s parent variables and the
output of which is the probability of the variable represented
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by the node. The conditional dependencies in the graph are
often estimated using known statistical and computational
methods. For discrete random variables, the conditional prob-
abilities are often represented by a table, which lists the local
probability that a child node takes each of the feasible values
for each combination of values of its parents. The unique joint
distribution of a collection of variables can be determined
using such local conditional probability tables (CPTs). The
joint probability of several variables can be calculated from
the product of the individual probabilities of the nodes, which
are calculated using Eq. (1). A formal definition of a BN is
given in [42].

P(Xi,....X,) = [ [ P Xilparent (X)) (1)

i=1

Although there are other ways to fuse three multimodali-
ties, such as weighted voting or multimodal neural networks
[61], [62], [63], the reason for using the current method in
this study is that the BN method is similar to weighted voting
because each piece of information has its own probability.
As for the method that does not use Artificial Neural Network
(ANN), it is because data collection is not so easy. At this
stage, it is impossible to collect a large amount of information
to train the neural networks model. Therefore, the method of
ANN is not suitable for training the model before collecting
more data.

Ill. BN-BASED PHYSIOLOGICAL AND PSYCHOLOGICAL
INFORMATION FUSION

A. BN MODELING

The fusion of multimodal information (information from
MMC, HRY, and EEG) into unique indices involves the con-
struction of a BN and the determination of the associated
conditional probability of one factor on another for inferring
the MS score (e.g., conditional probability of anxiety for
depression). In this study, CPTs are created according to
references [55], [56], [S7] and [24] as well as suggestions and
reports from psychiatric physicians at Taipei Medical Uni-
versity Hospital. We consulted professionals about how the
conditional probabilities should be determined. In addition,
to simplify the complexity of DS inference, we assumed the
factors to be independent. The BN is modeled as displayed
in Fig. 2. The following subsections present the BN modeling
for the three types of information considered. Below are the
three types of BN modeling for information fusion.

B. DEPRESSIVE STATE (DS) MODELING FOR

THE MMC DATA

The MMC comprises five major factors: the MS, irritability,
anxiety, energy, and hours of sleep associated with a DS.
The data are represented as numerals ranging from 1 to 5 or
from —3 to 3. The purpose of converting these parameters
of anxiety, irritability, and energy to numbers is mainly to
facilitate the inference of adding these parameters to the BN.
It can help the experiment more easily than without convert.
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Depressive
State
1]
FIGURE 2. Modeling the BN for fusing psychological and physiological

data.

TABLE 3. (A) DS probability for sleep hours. (B) DS probability for anxiety.
(C) DS probability for irritability. (D) DS probability for energy.
(E) DS probability for the MS.

Two observations can be made from the results. First, most
of the HRV values of healthy subjects are larger than those
of the subjects with MDD. Therefore, we assume that the
larger the HRYV, the lower is the probability of the DS. Second,
from the statistics of [59], the HRV values had roughly a
Gaussian distribution. Therefore, we could calculate the prob-
abilities of the DS and healthy state by using Eq. (2).

2 1

fsno?) =
where p is the mean and o is the SD. According to the afore-
mentioned two observations, we can deduce the following:
The lower the HRYV, the higher is the value of P(HRV|DS =
True), and the higher the HRYV, the higher is the value of
P(HRV|DS = False). For example, P(HRV = 33|
DS = True) = 0.17005645143 and P(HRV = 33|DS =
False) = 0.00771947569, whereas P(HRV = 39|DS =

_a=w?

e 272 2)

— 6(1? — True) = 0.01073119717 and P(HRV = 39|DS = False) =
epressive State < ours > ours
T 03 02 0.17636415613.
F 0.2 0.8
D. DS MODELING FOR THE EEG DATA
®) To model the DS for the EEG data, we adopted the SA of the
5 — 3 3 EEG spectrum (from the method of Hinrikus ef al. [44]) to
epress? = 035 RE distinguish between depressive and healthy subjects. The SA
F 0.8 02 is defined as follows:
© SA = Whmn — Wimn
Wimn + Wimn
Depressive State 0-3 4-5 where Wy, refers to the lower EEG frequency band (6 — o)
T 0.67 0.33 and Wj,,, refers to the higher EEG frequency band (y — B).
F 0.9 0.1 Both of the frequency bands are expressed in Hz.
(D) In [30], the authors claimed that the SA value is positive for
subjects with depression and negative for healthy subjects.
Depressive State 0-2 3-5 Therefore, we consulted the professional psychiatrist and
; 8-2 gi defined the probability of the DS for EEG’s SA (Table 4).
(E) TABLE 4. DS probability for The EEG data.
Depressive  +3 +2 +1 0 -1 -2 -3 Depressive State >0 <0
State T 0.67 0.33
T 0.0 0.0 0.0 0.1 0.35 0.35 0.2 F 0.22 0.78
F 0.0 0.01 0.09 0.8 0.04 0.04 0.02

And after consulting the psychiatrist, we defined the proba-
bility of the DS being caused by various factors according to
psychiatrists’ experience (Table 3(A)—(E)) because the MMC
has been used for diagnosis of depression for many years.

C. DS MODELING FOR THE HRV DATA

In this modeling, we adopted the SDNN to analyze the HRV
and conducted experiments to evaluate the SDNN value for
determining the probability of a factor causing a DS. The
authors of [58] presented the estimated mean values (stan-
dard error) in terms of the SDNN for subjects with MDD
and healthy subjects [mean = 33.71 and 38.57, respectively;
standard deviation (SD) = 2.23 and 2.22, respectively].
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TABLE 5. DS probability.

Depressive State
T 0.2
F 0.8

Finally, we consulted a psychiatrist regarding the definition
of the conditional probability of the DS in the BN. According
to the psychiatrist’s experience, the ratio between the number
of subjects in the depressive and healthy states is approx-
imately 1/4. The conditional probability table is presented
in Table 5. We therefore adopted Tables 3—5 to infer the DS
from the given parameters. An illustration will be used to
demonstrate how the inference can be validly performed.
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E. INFERENCE OF MS INDICES (MSI) BY USING A BN
According to the aforementioned modeling, a BN is used
to fuse multimodal psychological and physiological data for
inferring the MSIs. To compute the probability of obtain-
ing the MS, we extended Eq. (1) into Eq. (3), as shown at
the bottom of the page, for MS inference, where Xps (the
probability of the DS in Fig. 2) is the inferred DS, which is
calculated in the BN by using the CPT of all the nodes; X;
is the node associated with the DS, and X; is the associated
probability. X; may be one of following nodes: MS, irritability
(D), anxiety (A), energy (E), sleep (S), EEG (SA), or HRV (H)
(Fig. 2).

The following example illustrates how the probabil-
ity or MSIs can be obtained. Consider the following psycho-
logical and physiological data for a person: MS = —1,1=1,
E=2,A=2,S =8, H=33, and EEG (SA) = 0.275. The
probability of the DS can be calculated as equation, shown at
the bottom of the page.

IV. EXPERIMENTAL DESIGNS, RESULTS AND DISCUSSION
A. EXPERIMENTAL DESIGNS

For the experiments, a mood chart app is built using HTC
Butterfly with Android 4.4.2. a NeuroSky Mindwave* Mobile

4 https://store.neurosky.com

is used as the EEG recorder, and a Fitbit Charge HRS is used
as the HRV recorder.

For the evaluations, initially we tried to adopt a well-known
dataset to evaluate the performance of proposed framework.
But after examining some datasets exhaustedly, we decided
to develop a more efficient fusion process we need, so that
we can get personal MMC (Mood state, Irritability, Anxiety,
Energy, and Sleep), EEG, and HRV from the same individual
at the same time. There is no given dataset that includes
these three kinds of data simultaneously. If these data are not
obtained as we stated, we could not fuse the data together.
Therefore, in the work we could only test the performance
of the proposed framework using two data sets we collected
as follows. 1) Twenty students are invited and categorized
into two groups, namely groups A and B. The 10 students
in group A had been struggling to obtain their MS degree for
a few months. They expressed that they often felt depressed
in the past few months. In group B, the 10 students either had
just started their MS studies or are undergraduate students.
These students expressed that they felt normal in the past few
months. The detailed information of the subjects is presented
in Table 6. 2) In order to strengthen the results, we have
added another new experiment. The data of this experiment
is collected from mentally abnormal patients in the hospital
of Taipei Medical University. We collected 40 data from

5 https://www.fitbit.com/tw/home

P (Xys = TruelX; = xi, each X; symptom that patient has)
<XDS = True, X; = x;, for all symptoms X; 0f>

Depressive State

- P (X; = x;, all x; is all nodes of BN of Depressive State)
PXys|IDS =T)PX;|DS =T)P(Xg|DS =T)P (Xa|DS =T)
PXs|DS =T)P (Xy|DS =T)P (Xsa|DS =T)P(DS =T)

= PXusIDS = T)P(X;IDS = T) P (Xg|DS = T) P (Xa|DS = T)

3

P(Xs|DS = T)P (Xy|DS = T) P (Xsa|DS = T)P (DS = T)
+P (Xys|DS = F) P (X;|DS = F) P(Xg|DS = F) P (X4|DS = F)
P (Xs|DS = F) P (Xy|DS = F) P (Xs4|DS = F) P(DS = F)

P(MS=—1IDS=T)P(I =1|DS=T)P(E =2|DS =T)
PA=2|DS=T)P(S=8|DS=T)P(H =33|DS =T)

P(SA = 0.275|DS = T) P(DS = T)

X100%

P(MS=—1DS=T)P(I =1DS=T)P(E =2|DS =T)
PA=2|DS=T)P(S=8|DS=T)P(H =33IDS =T)
P(SA =0.275|DS = T)P (DS = T) + P (MS = —1|DS = F)
P(I=1/DS=F)P(E =2|DS = F)P(A =2|DS = F)

P (S =8|DS = F)P(H = 33|DS = F) P (SA = 0.275|DS = F)

P(DS = F)

= {[0.35 x 0.67 x 0.8 x 0.25 x 0.2 x 0.62490379 x 0.67 x 0.2]
/1(0.35 x 0.67 x 0.8 x 0.25 x 0.2 x 0.62490379 x 0.67 x 0.2)
4 (0.04 x 0.9 x 0.5 x 0.8 x 0.8 x 0.00605352 x 0.22 x 0.8)]} x 100%

~ 98.47%.
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TABLE 6. Detailed information of the groups of subjects.

Parameter Group A Group B
Subjects 10 students 10 students
Claimed state Depressive Not depressive
Age (average) 23-30 (26.1) 20-24 (22.7)
Gender 8/2 8/2

(male/female)

20 people. The age is distributed during 23-60 years old.
Twenty patients who suffered from (moderate or severe)
MDD and are diagnosed to have improved after treatment
are also invited. Their psychological and physiological infor-
mation before and after the effective treatment are collected
for comparisons in the experiment. In addition, the temporal
information serves as important attribute while adopting BN
to fuse various models of physiological and psychological
data. The temporal information is not dealt with in these
experiments because it could be ignored if the MMC, EEG,
and HRYV are collected at the same time.

There is a total of five types of psychological information
and two types of physiological information that are con-
sidered to be associated factors of the depressive MS. The
psychological information included self-reported MS, degree
of irritability, degree of anxiety, degree of energy, and hours
of sleep; and the physiological information included EEG
signals and HRV signals. In the experiment, all the psycho-
logical information is reported through a mood chart template
provided by the psychiatrist. The MS is rated from —3 to 3,
whereas anxiety, irritability, and energy are rated from O to 5.
EEG signals are collected during a 15-minute period accord-
ing to the SA method [44]. As reported in [44], positive and
negative SA values indicated the presence and absence of the
DS with high probabilities. HRV signals are collected in the
same 15-minute period as the EEG signals. The HRV signals
are collected according to the SDNN method. Clinical studies
have reported that the HRV values of people with depression
are smaller than those without depression [49], [53].

The novel MSI proposed in this experiment is referred to
as 7-M Bayesian fusion. To demonstrate the advantages of
the proposed MSI, it is compared with traditional indices
(such as the subject’s self-reported state, EEG, and HRV)
and other indices that fused only a part of data (called the
3-M voting fusion, 3-M Bayesian fusion, and MC Bayesian
fusion, which will be explained in details later). These newly-
developed indices evaluated the presence or absence of the
DS in subjects according to different measurements.

(1) Self-reported state: This index is based on the reported
MS in the mood chart.

(2) EEG (SA): According to [44], the sign of the SA values
is used to evaluate the presence or absence of the DS.

(3) HRV (SDNN): This index is solely based on the condi-
tional probability distributions of the HRV given the presence
or absence of the DS.

(4) 3-M voting fusion: This index is based on the voting
results of the reported MS, EEG signals, and HRV signals.
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(5) 3-M Bayesian fusion: In this index, the judgments of
the reported MS, EEG signals, and HRV signals are fused
according to the BN theory.

(6) MC Bayesian fusion: In this index, the judgments of the
five types of psychological information reported in the mood
chart are fused according to the BN theory.

Indices (1) — (3) rely on pure measurements, whereas
indices (4) — (6) rely on fusion results.

For quantitative comparisons, all the aforementioned
indices are evaluated according to the following aspects:

1) Positive predictive value (generally known as the

precision)

Positive predictive value
> true positive

"3 test outcome positive’
2) Negative predictive value

> true negative

Negative predictive value = —.
> test outcome negative

3) Sensitivity (also known as the recall)

3" true positive

Sensitivity = .
& > condition positive

4) Specificity

> true negative

Specificity = .
pectficity > condition negative

5) Accuracy
> true positive + ) true negative

Accuracy =

> total population
6) fl score
1 2 X precision x recall
score =
precision + recall
B. RESULTS

First, we show the results regarding the first data set from
different aspects. Table 7 presents the collected psycholog-
ical and physiological information. The information in the
first three columns represents the measurements of the three
single-function models used for the judgment of the presence
or absence of the DS. The information in the remaining
columns is used as a reference. As expected, the distributions
of the measured indices are different for the two groups.
In group A, six subjects explicitly said that they felt depressed
and five subjects had SA values smaller than 0. The SDNN
of all the 10 subjects is significantly deviated from the
normal mean value [58]. On the other hand, in group B,
no subjects reported feelings of depression. Only one subject
had an SA value smaller than 0, and the SDNN of five
subjects is marginally biased away from the normal mean
value.

Fig. 3 illustrates how the four indices: (a) 3-M voting
fusion, (b) 3-M Bayesian fusion, (c) MC Bayesian fusion,
and (d) 7-M Bayesian fusion revealed the possibility of which
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TABLE 7. Psychological and Physiological measurements of two groups of graduate students.

User ID Self-Reported State EEG (SA) HRV (SDNN) : Irritability Anxiety Energy Hour of Sleep
Al -2 1.00E-01 11.19025467 : 3 4 2 5
A2 -1 0.216062 23.00478557 0 4 2 5
A3 -1 -0.01448 13.13810573 ' 4 3 1 6
A4 -2 0.081124 13.47687768 | 1 3 2 5
A5 0 -0.0995 8.822521139 ! 1 1 3 6
A6 1 -0.0856 8.951154776 : 1 1 3 6
A7 0 -0.00012 18.54319975 2 1 1 5
A8 -1 0.01954 14.65132727 ! 0 2 2 5
A9 1 -0.01988 12.25906973 ‘ 0 1 5 7

Al10 -1 0.12551 12.86327976 : 2 2 1 4
Bl 2 -0.342218 33.69981654 : 1 1 4 6
B2 2 -0.01195 53.93400489 0 1 1 7
B3 0 -0.0954 32.81963344 : 0 1 3 5
B4 1 -0.09514 34.24290013 1 1 4 6
B5 0 0.00442 30.38283064 ' 1 0 1 2
B6 1 -0.1477 55.46981763 | 0 1 2 7
B7 0 -0.05014 38.28137837 1 0 3 7
B8 0 -0.0884 55.50628488 : 0 1 2 5
B9 0 -0.344512 33.46209636 1 1 3 6

B10 0 -0.45186 28.5810553 i 0 1 4 8
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FIGURE 3. Psychological and physiological measurements.

subject in the two groups might be in the DS. The indices
depending on pure measurements as well as the index of 3-M
voting fusion (Fig. 3(a)) tended to exhibit a high percentage
of subjects falling in the area indicating high possibility of
the DS. However, the presence or absence of the DS could
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not be clearly determined by the existing models. On the other
hand, the indices fusing multiple measurements according to
using) the BN theory (Fig. 3(b)-3(d)) provided highly reliable
probabilities that clearly indicated the presence or the absence
of the DS.

B3 ==
B4
B6
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B8
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B10
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B1
B2

(d)
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TABLE 8. Quantitative performance comparisons among reported state, EEG signals, HRV signals, 3-M voting fusion, 3-M Bayesian fusion, MC Bayesian

fusion, and 7-M Bayesian fusion on the first data set.

Positive Negative Sensitivity e

Index Predictive Value Predictive Value (Recall) Specificity Accuracy F1 Score
Self-Reported State 1 0.7143 0.6 1 0.8 0.75
EEG (SA) 0.8333 0.6429 0.5 0.9 0.7 0.625

HRV (SDNN) 0.625 1 1 0.4 0.7 0.7692

3-M Voting Fusion 0.8571 0.6923 0.6 0.9 0.75 0.7059
3-M Bayesian Fusion 0.8 0.8 0.8 0.8 0.8 0.8
MC Bayesian Fusion 1 0.7143 0.6 1 0.8 0.75

7-M Bayesian Fusion 0.8889 0.8182 0.8 0.9 0.85 0.8421

The presence of a DS is assumed if the self-reported
mood state had a value smaller than O, the EEG had an SA
value smaller than 0, the HRV had an SDNN value with a
higher probability for the presence of the DS than that for its
absence, 3-M voting fusion (Fig. 3(a)) had at least two votes
for the presence of the DS, and the Bayesian-fusion-based
(Fig. 3(b)-3(d)) indices deduced the presence of the DS with a
probability larger than 0.5. Table 8 compares the quantitative
performances of these indices from the following six aspects:
the positive predictive value (precision), negative predictive
value, sensitivity/recall, specificity, accuracy, and f1 score.
In terms of the positive predictive value, the self-reported
mood state and MC Bayesian fusion exhibited the highest
value, 7-M Bayesian fusion exhibited the second-highest
value, and HRV exhibited the lowest value. In terms of the
negative predictive value, the HRV had the highest value,
7-M Bayesian fusion had the second-highest value, and EEG
exhibited the lowest value. In terms of the sensitivity or recall,
the HRV had the highest value, 3-M Bayesian fusion and
7-M Bayesian fusion exhibited the second-highest value, and
EEG exhibited the lowest value. In terms of the specificity,
the self-reported state and MC Bayesian fusion exhibited the
highest value; EEG, 3-M Bayesian fusion, and 7-M Bayesian
fusion exhibited the second-highest value; and HRV exhibited
the lowest value. In terms of the accuracy, 7-M Bayesian
fusion exhibited the highest value; the self-reported state,
3-M Bayesian fusion, and MC Bayesian fusion exhibited the
second-highest value; and the EEG and HRV exhibited the
lowest values. In terms of the f1 score, 7-M Bayesian fusion
exhibited the highest value, 3-M Bayesian fusion exhibited
the second-highest value, and the EEG exhibited the lowest
value. Overall, 7-M Bayesian fusion exhibited the best or the
second-best performance for all of the six aspects, which
indicated the advantages of using the BN theory to fuse
psychological and physiological information.

Next, Table 9 compares these indices in evaluating the
improvement of depression for the subjects in the second data
set. As these indices reveal the possibility of a subject in
the DS according to the psychological and/or physiological
information, a subject might be said to have improved if
the possibility decreases after the treatment. 7-M Bayesian
fusion has the best performance, and Self-Reported State,
3-M Bayesian Fusion, and MC Bayesian Fusion follow and
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TABLE 9. Comparisons in evaluating the improvement of depression.

Index Precision
Self-Reported State 0.75
EEG (SA) 0.25
HRV 0.55
3-M Voting Fusion 0.5
3-M Bayesian Fusion 0.75
MC Bayesian Fusion 0.75
7-M Bayesian Fusion 0.8

are comparable. EEG (SA) exhibited the lest value, which is
even smaller than 0.5.

C. DISCUSSION

In this study, we proposed a fusion technique for determining
MSIs by using both psychological and physiological infor-
mation. As reported in previous study [60], the presence
of the DS generally tends to affect the psychological and
physiological information of a person to different degrees.
Thus, as presented in Table 7, the MSIs based on differ-
ent types of information may provide inconsistent results
regarding the presence of the DS. For example, the indices
using the mood chart, EEG, and HRV reported inconsistent
judgment for subjects A3, A5-A7, A9, Bl, B3-B5, B9,
and B10. However, to the best of our knowledge, limited
research has been conducted on how to suitably integrate
the judgment of these indices. In reality, the final judgment
highly relies on psychiatrists’ experiences. Consequently, for
the same subjects, psychiatrists with different experiences
may report inconsistent judgments. Many psychiatrists have
used measurements such as the irritability, anxiety, energy,
and hours of sleep (Table 7) as references. Nevertheless,
situations in which inconsistent results are obtained always
cause confusion to subjects and sometimes to psychiatrists as
well. Therefore, the fusion technique for determining MSIs
by using both psychological and physiological information
can solve the problems mentioned above.

In addition, the results displayed in Fig. 3 indicate the
usefulness of MSIs that fuse multiple measurements. For the
inconsistency problem, naive 3-M voting fusion (Fig. 3(a)),
which is based on the votes of three judgments, is an effec-
tive solution. This index provides expected judgments in
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most cases. However, the degree or risk of the presence of
the DS obtained with naive 3-M voting fusion is somewhat
inaccurate. For example, according to the naive 3-M fusion
index, subjects A5S—A7 and A9 had an equal degree or risk
of DS (Fig. 3(a)). However, the self-reported MS and other
measurements (i.e., irritability, anxiety, energy, and hours
of sleep) for A6 and A9 had higher values than those for
AS and A7. Similarly, subjects B1, B3, B4, B9, and B10 are
also reported to have an equal degree or risk of the DS
according to the naive 3-M fusion index; however, the self-
reported MS and other measured values for B1 and B4 are
higher than those for the other subjects. This inaccuracy
is observed because the naive 3-M voting fusion method
(1) treated the judgments of the self-reported state, EEG
signals, and HRV signals equally and (2) did not consider the
referring measurements (i.e., the irritability, anxiety, energy,
and hours of sleep). The comparisons between naive 3-M
voting fusion and 3-M Bayesian fusion (Fig. 3(a) and (b),
respectively) supported the first point. According to the 3-M
Bayesian fusion index, the risk or possibility of DS for sub-
jects A6 and A9 is smaller than that for subjects A5 and A7.
Furthermore, subjects B1 and B4 had a smaller risk or possi-
bility of being in the DS than subjects B3, B9, and B10 did.

The results of this experiment indicated the advantage of
Bayesian fusion over naive voting fusion, which met our
expectation. Moreover, the comparisons between 3-M and
7-M Bayesian fusion (Fig. 3(b) and (d), respectively) sup-
ported the second point explaining the inaccuracy of naive
3-M voting fusion. 3-M and 7-M Bayesian fusion reported
similar judgments for most of the cases except BS and B10.
In Fig. 3(b), B5 and B10 are judged to have a similar risk
of falling in the DS, whereas in Fig. 3(d), BS is judged
to have a higher risk than B10. According to the measure-
ments shown in Table 8, 7-M Bayesian fusion provided more
accurate results than 3-M Bayesian fusion did. These results
indicated that referring to the measurements of the irritability,
anxiety, energy, and hours of sleep for judgments is help-
ful. In addition, the comparisons between the MC Bayesian
fusion and 7-M Bayesian fusion (Fig. 3(c) and 3(d), respec-
tively) indicated the advantages of considering physiological
information, such as EEG and HRYV signals, in the judgment
of the presence of the DS. In particular, 7-M Bayesian fusion
identified the presence of the DS in subjects AS and A7;
however, MC Bayesian fusion (Fig. 3(c)) could not identify
the presence of DS in the same subjects. The self-reported
state of AS and A7 is 0, which indicated that the subjects are
unaware of their depression.

Thus, the physiological information is important for deter-
mining the presence or absence of the DS. Subject BS said
that he/she did feel depressed in the past few months.
As expected, his/her psychological and physiological mea-
surements deviated from normal values and indicated a high
potential for being in the DS. Thus, physiological information
(i.e., the EEG and HRYV signals) can indicate the presence of
the DS, especially when a person does not understand their
MS. In summary, the aforementioned results indicated the
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advantages of our system, including the advantages of using
(1) Bayesian fusion (Fig. 3(b)-3(d)) over the naive voting
fusion and (2) psychological2021-10180 and physiological
information fusion over a single type of information.

The comparisons presented in Table 8 provided profound
insights into the indices using different fusion techniques for
different kinds of information. First, the self-reported state
tended to exhibit an improvement for the positive predictive
value and specificity than for the negative predictive value
and sensitivity/recall. This result is observed because the self-
reported state indicated a person’s awareness of the presence
of the DS. If a person feels depressed, in most cases, they
experience an MS of depression, which results in a high
positive predictive value. On the other hand, if a person is
not truly in a DS, they should not suffer from depression,
which leads to a high specificity. Because the EEG and MC
Bayesian fusion also reflected a person’s consciousness, these
two indices exhibited a good performance for the positive
predictive value and specificity. By contrast, the HRV index
also tended to exhibit improvement for the negative pre-
dictive value and sensitivity/recall because the HRV mea-
sures the physiological state of bodies. This leads to a high
sensitivity/recall.

If tests on the physiological state of bodies report normal
values, it usually indicates that the subject does not have a
DS, which results in a high negative predictive value. 3-M
voting fusion exhibited improvement for positive predictive
value and specificity than for negative predictive value and
sensitivity/recall due to its equal treatment of the self-reported
state, EEG, and HRV. When the psychological and physiolog-
ical information is treated with different weights and fused
according to the Bayesian theory, 3-M Bayesian fusion and
7-M Bayesian fusion exhibit an equivalent performance in
two aspects: positive predictive value and specificity/recall.
These two indices exhibited the best performance in the accu-
racy and f1 score. 7-M Bayesian fusion always outperformed
3-M Bayesian fusion in all aspects of the evaluations because
7-M Bayesian fusion considered and fused more types of
information than 3-M Bayesian fusion did.

Obviously, the accuracy is improved by (0.85-0.8)/
0.8 x 100% = 6.25%, and the F1 Score increased by
(0.8421-0.7692)/0.7692 x 100% = 9.48%, which shows
that this has a good improvement. It can be used for improving
the mood state inference.

In addition, according to the statistics of [59], the HRV
values have roughly a Gaussian distribution. Therefore, if the
HRYV value is between two means (such as between 33.71 and
38.57), the probability of DS state will be approaching 0.5.
This will be difficult to distinguish the DS state if the HRV
is between 33.71 and 38.57. Such case will increase the error
rate and decrease the inference accuracy; and decrease the
inference performance of full system accordingly.

Besides, because the mean of HRV of MDD subject is
33.71 and the SD is 2.23, the mean of HRV of Healthy subject
is 38.57 and the SD is 2.22. If the HRV value is in between the
means of MDD subjects and of healthy subjects, the certainty
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of DS becomes more confusing. In other words, if the HRV
value is between 35.94 (33.71 + 2.23) and 36.35 (38.57 —
2.22), it will cause the confusion error of BN inference, and
decrease the inference performance accordingly.

As mentioned above, exploiting HRV data to model DS
state may have the confusion error of BN inference. There-
fore, the proposed framework makes use of high-level infor-
mation fusion to improve the inference performance. When
HRYV data may cause inference confusion error, there are two
kinds of information in this framework that can improve this
problem.

Furthermore, as these indices can reveal the possibility of
a subject in the DS, Table 9 shows a reliability that these
indices might be used as a reference for the improvement
of depression after treatment by comparing the possibili-
ties before and after the treatment. From the results of this
experiment, it indicates similar observations: 1) the advan-
tage of Bayesian fusion over naive voting fusion, and 2) the
physiological information is important for depression diag-
nosis. However, it also indicates that EEG (SA) can help
the detection of the present of DS, but EEG (SA) alone is
not sufficient for evaluating the depression degree, since the
correlation among DS and EEG is not yet clear under the
researches.

Finally, regarding to the computation complexity of the
proposed method, this method mainly uses BN technology to
fuse various information. The BN model used in the work has
only one layer, so the computational complexity is relatively
simple. The calculation of each test data is O(1).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a high-level information
fusion method for determining the MS of users by fusing
physiological data, such as heart rate and brainwave informa-
tion collected through a wearable device, and psychological
data collected through a monthly mood chart. A hybrid cloud
is used to collect, store, and fuse daily mood data and brain
wave information from a private cloud as well as heart rate
data from a public cloud. The fusion of multimodal data
types ensured practicality and convenience for the user. Most
importantly, the proposed method eliminated the need for
spending considerable time in pre-integration for analyzing
different patterns of different data types. It shows that to fuse
these data and to infer the MS indicator with a probability
value can provide doctors and other users a reliable refer-
ence. In addition, we also conducted experiments to evaluate
the performance. The results revealed that there is a great
improvement in MSA when using the proposed information
fusion framework than when using only one single assess-
ment method.

Since the methodology is a novel approach for assessing
the MS, continuously improving the accuracy of assessments
is an important mission. In the future, we would like to imple-
ment a cloud platform, combined with the Internet of Things,
so that each user can collect psychologically and physiolog-
ically related data on a daily basis. Then, through precise
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analysis, each user can adjust the conditional probability to
achieve better accuracy. We therefore plan to design a new
system that can automatically collect, process, and analyze
the collected user data in order to achieve the goal of precision
medicine. This system requires a cloud platform, an Internet
of Things that collects HRV and EEG information, and a
user’s APP. With these devices, users can collect relevant data
by themselves.
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