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ABSTRACT This paper discusses the problem of fault estimation for two-dimensional (2-D)
Fornasini-Marchesini (FM) dynamical systems. The objective of this paper is to design a fault estimation
filter to reconstruct the characteristics of faults in low-frequency domain and satisfy different performance
levels. Utilizing the generalized Kalman-Yakubovich-Popov (GKYP) lemma, this problem is transformed
into a multi-objective optimization problem, which is non-convex in essence. On this basis, an optimization
algorithm is proposed to solve the non-convex optimization problem. Sufficient conditions are derived for the
proposed fault estimation filter. Finally, simulation results show the effectiveness of the theoretical results.

INDEX TERMS Two-dimensional (2-D) systems, fault estimation, finite frequency, generalized Kalman-
Yakubovich-Popov (GKYP) lemma.

I. INTRODUCTION
Recent years have witnessed extensive attention on
two-dimensional (2-D) systems due to the massive amount
of applications in practice, for instance, multi-dimensional
digital image processing [1], signal processing [2], digital
filtering [3] and repetitive process [4]. Due to its important
engineering background, 2-D systems are still one of the
research hotspots in the field of control. In recent years, many
research results on 2-D systems have been developed. In [5],
the authors have investigated the stability analysis of positive
2-D systems with time delays. The authors in [6] have studied
the stability analysis of the 2-D nonlinear systems. On this
basis, an H∞ state feedback controller has been designed to
solve the stabilization problem. Themodel reduction problem
of 2-D systems over finite-frequency ranges has been studied
in [7], where a novel finite-frequency method has been
proposed to replace the full frequency method. The authors
in [8] have investigated the problem of asynchronous H∞
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control for 2-D Markov jump systems, where the controller
gains have been calculated by solving a convex optimization
problem.

On the other hand, industrial processes have increasingly
higher requirements for the safety and reliability of control
systems. Thus, the fault estimation problem has received
widespread attention [9]–[15]. The authors in [11] have stud-
ied the problem of fault estimation for nonlinear system,
where an intermediate estimator has been designed to esti-
mate states and faults simultaneously. In [14], the authors
have designed an adaptive fault-tolerant control protocol
by utilizing the online fault estimation to reduce the nega-
tive effect of actuator fault. In [15], a novel sliding mode
observer has been developed to estimate full states and faults.
Notice that the minimum phase condition has been relaxed
to detectability. However, the mentioned results have not
taken the finite-frequency characteristics into consideration,
which are potentially more conservative due to over-design.
Motivated by this point, it is necessary to consider the
finite-frequency methods. The authors in [16] have designed
a fault estimation observer in the finite-frequency domain
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for Lipschitz nonlinear multiagent systems subject to sys-
tem components or actuator fault. In [17], the authors have
designed a fault detection filter to detect the occurrence of
faults in finite-frequency domain, and a similar problem of
linear uncertain systems and linear parameter-varying sys-
tems has been addressed in [18], [19]. The authors in [20]
have addressed the problem of H−/H∞ fault detection
observer for 2-D systems, where the effect of fault sensitivity
is mainly in low frequency domain. It should be noted that
few results are available to solve the fault estimation problem
of 2-D FM systems in the literature, to our knowledge. This
fact motivates us to carry out this work.

This paper proposes a finite-frequency fault estimation
method for two-dimensional FM systems. The main contri-
butions of this paper are summarized as follows:

1) A fault estimation filter is designed to estimate faults
in low-frequency domain and satisfies certain performance
specifications.

2) An optimization algorithm is proposed to calculate
the parameters of the fault estimation filter, which is a
non-convex problem in essence.

3) Sufficient conditions for the desired fault estimation fil-
ter are established in terms of linear matrix inequality (LMI)
and could be solved directly.
Notations: Let R and R` represent the set of reals and

`− dimensional Euclidean space, respectively. For any sym-
metric matrixM,MT andM⊥ represent its conjugate trans-
pose and quadrature complement, respectively. λmin(M) and
λmax(M) are the minimum and maximum eigenvalues of
M, respectively. σmax(N ) represents the maximum singular
value of N . The symbol ‘‘∗’’ will be used in some matrix
expressions to represent symmetric structures.

II. PROBLEM FORMULATION
Consider a 2-D discrete-time systems established upon FM
model as follows:

x(i+ 1, j+ 1) = A1x(i, j+ 1)+ A2x(i+ 1, j)

+Bd1d(i, j+ 1)+ Bd2d(i+ 1, j)

+Bf 1f (i, j+ 1)+ Bf 2f (i+ 1, j),

y(i, j) = Cx(i, j)+ Ddd(i, j)+ Df f (i, j), (1)

where x(i, j) ∈ Rnx denotes the state vector, y(i, j) ∈ Rny

denotes the measurement output, d(i, j) ∈ Rnd denotes the
exogenous disturbance input, f (i, j) ∈ Rnf is the fault sig-
nal in low-frequency domain. A1, A2, Bd1, Bd2, Bf 1, Bf 2,
C , Dd and Df are the real system matrices of compatible
dimensions.

The purpose of this paper is to design a fault estimation
filter as follows:

x̂(i+ 1, j+ 1) = AF1x̂(i, j+ 1)+ AF2x̂(i+ 1, j)

+BF1y(i, j+ 1)+ BF2y(i+ 1, j),

γ (i, j) = CF x̂(i, j)+ DFy(i, j), (2)

where x̂(i, j) ∈ Rnx is the state estimation vector and γ (i, j) ∈
Rn` is the residual signal. Matrices AF1, AF2, BF1, BF2, CF

and DF are the parameters of fault estimation filter to be
determined.

Augmenting system (1) to include fault estimation fil-
ter (2), one gets

x̄(i+ 1, j+ 1) = Ā1x̄(i, j+ 1)+ Ā2x̄(i+ 1, j)

+ B̄d1d(i, j+ 1)+ B̄d2d(i+ 1, j)

+ B̄f 1f (i, j+ 1)+ B̄f 2f (i+ 1, j),

e(i, j) = C̄ x̄(i, j)+ D̄dd(i, j)+ D̄f f (i, j), (3)

where e(i, j) = γ (i, j) − f (i, j), x̄(i, j) = [xT (i, j) x̂T (i, j)]T ,
and

Ā1 =
[

A1 0
BF1C AF1

]
, B̄d1 =

[
Bd1

BF1Dd

]
,

Ā2 =
[

A2 0
BF2C AF2

]
, B̄d2 =

[
Bd2

BF2Dd

]
,

C̄ =
[
DFC CF

]
, B̄f 1 =

[
Bf 1

BF1Df

]
,

D̄d = DFDd , D̄f = DFDf − I , B̄f 2 =
[

Bf 2
BF2Df

]
.

Note that the residual signal e(i, j) needs to be sensitive to
faults and robust to disturbances. It is necessary to make the
estimation error as small as possible under certain constraint
conditions. More precisely, system (3) should meet the fol-
lowing performance specifications:

sup
ω1,ω2

σmax(Gfe(ω1, ω2)) < γ1,∀ |ω1| ≤ ω̄11, |ω2| ≤ ω̄12,

(4)

sup
ω1,ω2

σmax(Gde(ω1, ω2)) < γ2,∀ |ω1| ≤ ω̄21, |ω2| ≤ ω̄22,

(5)

where γ1 and γ2 are given positive scalars, ω̄k1, ω̄k2 ∈ [0, π],
k = 1, 2 denote the frequency bounds of f (i, j) and d(i, j),
respectively. Gfe(ω1, ω2) and Gde(ω1, ω2) denote the transfer
functions of the fault and the disturbance with respect to the
estimation error, respectively. Then, these two functions can
be accurately characterized as follows:

Gfe(ω1, ω2) = C̄(z1z2I − z2Ā1 − z1Ā2)−1

× (z2B̄f 1 + z1B̄f 2)+ D̄f , (6)

Gde(ω1, ω2) = C̄(z1z2I − z2Ā1 − z1Ā2)−1

× (z2B̄d1 + z1B̄d2)+ D̄d , (7)

where z1 = ejω1 and z2 = ejω2 represent two z-transform
operators in different directions, respectively.

Then the fault estimation problem in the finite frequency
domain is formulated as: Given two positive constants γ1 and
γ2, design a fault estimation filter (2) such that the augmented
system (3) is asymptotically stable and the finite frequency
performance specifications (4) and (5) are satisfied.
Remark 1: The purpose of introducing finite-frequency

H∞ indices in (4) and (5) is to minimize the inherent effect of
the fault and disturbance on the estimation error. Moreover,
the finite-frequency indices mentioned in this article can be
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regarded as an extensions of the standard indices, where ω̄k1,
ω̄k2 ∈ [0, π], k = 1, 2. In other words, if ω̄k1 = ω̄k2 = π ,
the above indices can be reduced to the standard indices as
shown in [21].

Next, it is necessary to introduce several useful lemmas
used in the subsequent theoretical derivation.
Lemma 1 ( [22]): For a symmetric matrix 8 ∈ Rn×n and

two matrices 0 ∈ Rn×m and3 ∈ Rn×m, there exists a matrix
X ∈ Rm×m satisfying

8+ 0X3T
+3XT0T < 0, (8)

if and only if the following inequalities hold:

0⊥80⊥
T
< 0, 3⊥83⊥

T
< 0, (9)

where 8 and X are required to be full rank matrices, and 0
and 3 are column full rank matrices.
Lemma 2 ( [23]): For the 2-D FMmodel described by (1),

it is assumed that det(z1z2I − z2Ā1 − z1Ā2)−1 6= 0 holds for
∀(z1, z2) ∈ {(z1, z2) ∈ C × C : |z1| ≥ 1, |z2| ≥ 1}. Given an
Hermitian matrix 2 and constants ω̄1, ω̄2 ∈ [0, π], if there
exist matrices Pk andQk ∈ Cn×n, k = 1, 2 satisfyingQk > 0
and [

A Bf
I 0

]T [P Q
∗ 1

] [
A Bf
I 0

]
+2 < 0, (10)

where

P = P1 + P2, Q =
[
Q1 Q2

]
,

A =
[
A1 A2

]
, Bf =

[
Bf 1 Bf 2

]
,

1 = diag{−P1 − 2 cos ω̄1Q1,−P2 − 2 cos ω̄2Q2}.

From this, the following finite-frequency condition is
satisfied: [

G(ω1, ω2)
I (ω1, ω2)

]T
2

[
G(ω1, ω2)
I (ω1, ω2)

]
< 0, (11)

where ∀(ω1, ω2) ∈ � , [−ω̄1, ω̄1]× [−ω̄2, ω̄2] and

G(ω1, ω2) ,
[
ejω2G(ω1, ω2)
ejω1G(ω1, ω2)

]
, I (ω1, ω2) ,

[
ejω2 I
ejω1 I

]
,

G(ω1, ω2) , (ej(ω1+ω2)I − ejω2A1 − ejω1A2)−1

× (ejω2Bf 1 + ejω1Bf 2).

Lemma 3 ( [24]): Given a matrix Ā =
[
Ā1 Ā2

]
, the aug-

mented system (3) is said to be asymptotically stable if there
exists a symmetric matrix Ps > 0 such that[

Ā
I

]T [Ps 0
0 diag{−Ps1,−Ps2}

] [
Ā
I

]
< 0. (12)

Remark 2: By investigating the existing literature [2], [3],
[7], [16], the fault often occurs in low-frequency domain due
to its slow change. In addition, the stuck fault considered in
this paper also belongs to the low-frequency domain. Moti-
vated by these facts, it is necessary to design a fault estimation
filter to characterize the fault properties in finite-frequency
domain.

III. MAIN RESULTS
First, the following results give the sensitive and robust-
ness conditions for the proposed fault estimation filter,
respectively.
Theorem 1: Given constants ω̄11, ω̄12 ∈ [0, π] and

γ1 > 0, the finite-frequency H∞ performance index (4)
holds, if there exist Hermitian matrices Pfk1, Pfk3, Qfk1 and
Qfk3, matrices Pfk2, Qfk2, G1, G2, G3, ĀF1, ĀF2, B̄F1, B̄F2,
C̄F and D̄F , k = 1, 2 such that the following conditions are
satisfied:[

Qfk1 Qfk2
∗ Qfk3

]
> 0, k = 1, 2 (13)

611 612 613 614 615 616
∗ 622 623 624 625 626
∗ ∗ 633 634 0 0
∗ ∗ ∗ 644 0 0
∗ ∗ ∗ ∗ 655 656
∗ ∗ ∗ ∗ ∗ 666
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

617 618 0 0
627 628 0 0
0 0 CT D̄TF 0
0 0 C̄T

F 0
0 0 0 CT D̄TF
0 0 0 C̄T

F
−γ 2

1 I 0 D̃Tf 0
∗ −γ 2

1 I 0 D̃Tf
∗ ∗ −I 0
∗ ∗ ∗ −I


< 0, (14)

where

611 = Pf 11 + Pf 21 − G1 − GT1 , 614 = Qf 12 + ĀF1,
612 = Pf 12 + Pf 22 − G3 − GT2 , 616 = Qf 22 + ĀF2,
613 = Qf 11 + G1A1 + B̄F1C, 617 = G1Bf 1 + B̄F1Df ,
615 = Qf 21 + G1A2 + B̄F2C, 618 = G1Bf 2 + B̄F2Df ,
623 = QTf 12 + G2A1 + B̄F1C, 624 = Qf 13 + ĀF1,

625 = QTf 22 + G2A2 + B̄F2C, 626 = Qf 23 + ĀF2,

622 = Pf 13 + Pf 23 − G3 − GT3 , 627 = G2Bf 1 + B̄F1Df ,
633 = −Pf 11 − 2 cos ω̄11Qf 11, 628 = G2Bf 2 + B̄F2Df ,
634 = −Pf 12 − 2 cos ω̄11Qf 12, 644 = −Pf 13

− 2 cos ω̄11Qf 13,
655 = −Pf 21 − 2 cos ω̄12Qf 21, 656 = −Pf 22

− 2 cos ω̄12Qf 22,
666 = −Pf 23 − 2 cos ω̄12Qf 23, D̃f = D̄FDf − I .

Then, the parameters of the proposed fault estimation fil-
ter (2) are calculated by

AF1 = G−13 ĀF1, AF2 = G−13 ĀF2, CF = C̄F ,

BF1 = G−13 B̄F1, BF2 = G−13 B̄F2, DF = D̄F . (15)
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Proof: By Lemma 2, it follows from (8) that[
C̃ D̃f
0 I

]T [ I 0
∗ −γ 2

1 I

] [
C̃ D̃f
0 I

]
+

[
Ã B̃f
I 0

]T [
Pf Qf
∗ 1f

] [
Ã B̃f
I 0

]
< 0, (16)

where

Ã =
[
Ā1 Ā2

]
, B̃f =

[
B̄f 1 B̄f 2

]
,

C̃ = diag{C̄, C̄}, D̃f = diag{D̄f , D̄f }.

Then, condition (14) can be further rewritten as Ã B̃f
I 0
0 I

T { I 0
0 I
0 0

[Pf Qf
∗ 1f

]

×

[
I 0 0
0 I 0

]
+

 0 0
C̃T 0
D̃Tf I

[ I 0
∗ −γ 2

1 I

]

×

[
0 C̃ D̃f
0 0 I

]} Ã B̃f
I 0
0 I

 < 0. (17)

For convenience, define 0 =
[
−I Ã B̃f

]T
, and then one

has 0⊥ =

[
ÃT I 0
B̃Tf 0 I

]
. By Lemma 1, the following sufficient

condition can be obtained to guarantee that condition (15)
holds:  0 0

C̃T 0
D̃Tf I

[ I 0
∗ −γ 2

1 I

] [
0 C̃ D̃f
0 0 I

]

+

 I 0
0 I
0 0

[Pf Qf
∗ 1f

] [
I 0 0
0 I 0

]
+He(0GT3T ) < 0, (18)

which is further guaranteed by
Pf − G− GT Qf + GÃ GB̃f 0

∗ 1f 0 C̃T

∗ ∗ −γ 2
1 I D̃

T
f

∗ ∗ ∗ −I

 < 0, (19)

where

G =
[
G1 G3
G2 G3

]
, Pf = Pf 1 + Pf 2, Qf =

[
Qf 1 Qf 2

]
,

1f = diag{−Pf 1 − 2 cos ω̄11Qf 1, − Pf 2 − 2 cos ω̄12Qf 2},

Pf 1 =
[
Pf 11 Pf 12
∗ Pf 13

]
, Qf 1 =

[
Qf 11 Qf 12
∗ Qf 13

]
,

Pf 2 =
[
Pf 21 Pf 22
∗ Pf 23

]
, Qf 2 =

[
Qf 21 Qf 22
∗ Qf 23

]
.

Therefore, it is concluded that condition (17) is equivalent
to condition (12) with expression (13). This completes the
proof.

Theorem 2: Given constants ω̄21, ω̄22 ∈ [0, π] and
γ2 > 0, the finite-frequency H∞ performance index (5)
holds, if there exist Hermitian matrices Pdk1, Pdk3, Qdk1 and
Qdk3, matrices Pdk2, Qdk2, F1, F2, G3, ĀF1, ĀF2, B̄F1, B̄F2,
C̄F and D̄F , k = 1, 2 such that the following conditions are
satisfied:[

Qdk1 Qdk2
∗ Qdk3

]
> 0, k = 1, 2 (20)

011 012 013 014 015 016
∗ 022 023 024 025 026
∗ ∗ 033 034 0 0
∗ ∗ ∗ 044 0 0
∗ ∗ ∗ ∗ 055 056
∗ ∗ ∗ ∗ ∗ 066
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

017 018 0 0
027 028 0 0
0 0 CT D̄TF 0
0 0 C̄T

F 0
0 0 0 CT D̄TF
0 0 0 C̄T

F
−γ 2

2 I 0 D̃Td 0
∗ −γ 2

2 I 0 D̃Td
∗ ∗ −I 0
∗ ∗ ∗ −I


< 0, (21)

where

011 = Pd11 + Pd21 − F1 − FT1 , 014 = Qd12 + ĀF1,

012 = Pd12 + Pd22 − G3 − FT2 , 016 = Qd22 + ĀF2,

013 = Qd11 + F1A1 + B̄F1C, 017 = F1Bd1 + B̄F1Dd ,

015 = Qd21 + F1A2 + B̄F2C, 018 = F1Bd2 + B̄F2Dd ,

023 = QTd12 + F2A1 + B̄F1C, 024 = Qd13 + ĀF1,

025 = QTd22 + F2A2 + B̄F2C, 026 = Qd23 + ĀF2,

022 = Pd13 + Pd23 − G3 − GT3 , 027 = F2Bd1 + B̄F1Dd ,

033 = −Pd11 − 2 cos ω̄21Qd11, 028 = F2Bd2 + B̄F2Dd ,

034 = −Pd12 − 2 cos ω̄21Qd12, 044 = −Pd13
− 2 cos ω̄21Qd13,

055 = −Pd21 − 2 cos ω̄22Qd21, 056 = −Pd22
− 2 cos ω̄22Qd22,

066 = −Pd23 − 2 cos ω̄22Qd23, D̃d = D̄FDd .

Then, the parameters of the proposed fault estimation fil-
ter (2) are calculated by (13).

Proof: Similar to the proof of Theorem 1, this derivation
is omitted here.
Based on Lemma 3, the stability analysis of the augmented

system (3) is given in the following theorem.
Theorem 3: Given two positive constants α and β satisfy-

ing α + β = 1, the augmented system (3) is asymptotically
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stable, if there exist Hermitian matrices Ps1, Ps3, matrices
H1, H2, AF1, AF2, BF1, BF2, Ps2 such that the following
conditions are satisfied:[

Ps1 Ps2
∗ Ps3

]
> 0, (22)

811 812 813 814 815 816
∗ 822 823 824 825 826
∗ ∗ 833 834 0 0
∗ ∗ ∗ 844 0 0
∗ ∗ ∗ ∗ 855 856
∗ ∗ ∗ ∗ ∗ 866

 < 0, (23)

where

811 = Ps1 − H1 − HT
1 , 813 = H1A1 + BF1C,

812 = Ps2 − G3 − HT
2 , 815 = H1A2 + BF2C,

833 = −αPs1, 834 = −αPs2, 844 = −αPs3,

855 = −βPs1, 856 = −βPs2, 866 = −βPs3,

823 = H1A1 + BF1C, 814 = 824 = AF1,

825 = H2A2 + BF2C, 816 = 826 = AF2,

822 = Ps3 − G3 − GT3 .

Proof: By Lemma 3, one can yield

0⊥s

[
Ps 0
∗ −diag{αPs, βPs}

]
(0⊥s )

T < 0, (24)

where 0⊥s =
[
ĀT I

]
, α > 0, β > 0 and Ps > 0. On this

basis, it is further obtained that

3⊥s

[
Ps 0
∗ −diag{αPs, βPs}

]
(3⊥s )

T
=−diag{αPs, βPs}<0,

(25)

where 3⊥s =
[
0 I

]
. Based on [7], it is derived from (24)

and (25) that[
Ps 0
∗ −diag{αPs, βPs}

]
+ He(0sHT3T

s ) < 0, (26)

which implies that[
Ps HĀ
∗ −diag{αPs, βPs}

]
< 0, (27)

where H =
[
H1 G3
H2 G3

]
. Substituting the correlation matrix

into (27), it is concluded that (27) makes (23) hold. The proof
is completed.

IV. SOLUTION
A. OPTIMIZATION ALGORITHM
The following optimization algorithm is proposed to calculate
the parameters of the proposed fault estimation filter (2):

minαγ1 + βγ2,

s.t. (14), (15), (18), (20), (21), (22), (23), (28)

where α and β are given constants, and γ1 and γ2 represent
the H∞ disturbance attenuation levels, respectively. Then,

the parameters of the proposed fault estimation filter (2) are
calculated by (15).
Remark 3: Note that the positive real numbers α and β

reflect the weights of H∞ disturbance attenuation levels γ1
and γ2, respectively, where α + β = 1. By investigating the
analytical hierarchy process (AHP) mentioned in [26], it is
assumed that these performances are equally significant, that
is, the ratio is 1 : 1. Therefore, both α and β are given as 0.5
in advance. Obviously, the size of the performance weight
directly affects its role in evaluating solution.

B. RESIDUAL EVALUATION FUNCTION AND THRESHOLD
For the 2-D systems, the residual evaluation function should
reflect the properties of the two-dimensional variables from
the horizontal and vertical directions. Inspired by [24],
the residual evaluation function and the threshold are selected
as follows:

Jr (i, j) =

√√√√√√
s∑

p=0

t∑
q=0

rT (i− p, j− q)

(s+ 1)(t + 1)r(i− p, j− q)
, (29)

Jth = sup
f=0,d 6=0

Jr (i, j). (30)

Then, the occurrence of fault signal f (i, j) can be detected by
the following logical relationships:

Jr (i, j) ≤ Jth ⇒ no fault⇒ no alarm,

Jr (i, j) > Jth ⇒ with fault⇒ alarm . (31)

V. NUMERICAL SIMULATION
In this section, we will give two examples to demonstrate the
effectiveness of the developed method.

A. EXAMPLE 1
Consider the 2-D discrete-time systems (1) with the following
system parameters:

A1 =
[
0.0853 0.0351
0.0622 0.0513

]
, A2 =

[
0.0402 0.0240
0.0076 0.0123

]
,

Bd1 =
[
0.1839
0.2400

]
, Bf 1 =

[
0.9027
0.9448

]
, Dd = 0.1112,

Bd2 =
[
0.4173
0.0497

]
, Bf 2 =

[
0.4909
0.4893

]
, Df = 0.3692,

C =
[
0.3377 0.9001

]
.

Suppose that there exists a stuck fault signal in the above
2-D systems [7], [16]. The objective is to design a fault
estimation filter (2) to estimate the fault properties and sat-
isfy certain control specifications simultaneously. Given the
weighting coefficients α = 0.5, β = 0.5, the frequency
bounds ω̄11 = ω̄12 = π/12 and ω̄21 = ω̄22 = π/10,
the parameters of the proposed fault estimation filter can be
calculated as

AF1 =
[
−0.2883 −0.9788
−0.1235 −0.0064

]
, BF1 =

[
−1.2398
−0.7525

]
,
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AF2 =
[
−0.6576 −0.3862
0.2072 −0.2038

]
, BF2 =

[
−1.0604
0.0531

]
,

CF =
[
0.9424 1.3202

]
, DF = 1.8902

with the performance levels γ1 = 0.3373 and γ2 = 0.3037.
In order to demonstrate the effectiveness of the fault estima-
tion filter (2), some simulation results will be given below.
First of all, two stuck fault signals are assumed to be

f1(i, j) =

{
0.8, 40 ≤ i ≤ 45, j ≥ 50
0, otherwise

f2(i, j) =

{
0.6, 20 ≤ i ≤ 27, 20 ≤ j ≤ 120
0, otherwise

and the unknown disturbance is assumed to be

d(i, j) = 0.05 sin(i)e−0.02i + 0.03 cos(j)e−0.03j.

Fig. 1 and Fig. 2 show the stuck fault signals and the
disturbance signal, respectively. Under the initial conditions
xi(k, 1) = 0, x̂i(k, 1) = 0, xi(1, k) = 0, x̂i(1, k) = 0, i = 1, 2,
by applying the fault estimation filter (2), Fig. 3 presents the
result of fault estimation in three-dimensional space. Fig. 4
and Fig. 5 show two stuck fault signals in two-dimensional
space, respectively. Fig. 6 and Fig. 7 show the estimation
of f1(i, j) and f2(i, j) in two-dimensional space, respectively.
Based on [24], the threshold value can be computed as Jth =
0.3125. On this basis, Fig. 8 shows the residual evaluation
function Jr (i, j) and the threshold Jth in three-dimensional
space. For clarity, Fig. 9 shows the residual evaluation func-
tion and the threshold in two-dimensional space. Simulation
results show that the faults have been estimated precisely.

FIGURE 1. The stuck faults f1(i, j ) and f2(i, j ).

FIGURE 2. The unknown disturbance d (i, j ).

FIGURE 3. Fault estimation in three-dimensional space.

FIGURE 4. f1(i, j ) in two-dimensional space.

FIGURE 5. f2(i, j ) in two-dimensional space.

B. EXAMPLE 2
Consider the static random field model [25], which can be
described by the following two-dimensional system:

η(i+ 1, j+ 1) = a1η(i+ 1, j)+ a2η(i, j+ 1)

−a1a2η(i, j)+ ω(i, j),

where η(i, j) represents the state of the random field in space
coordinates, a1 and a2 denote the coefficients of the horizon-
tal and vertical states, respectively. Denote two stuck fault
signals by f (i + 1, j) and f (i, j + 1), then the system model
can be further rewritten as

η(i+ 1, j+ 1) = a1η(i+ 1, j)+ a2η(i, j+ 1)− a1a2η(i, j)

+A1f (i, j+ 1)+ A2f (i+ 1, j)+ d(i, j),

whereA1 andA2 represent known system parameter matrices.
Letting xT (i, j) =

[
ηT (i+ 1, j)− a2ηT (i, j) ηT (i, j)

]
be the
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FIGURE 6. Estimation of f1(i, j ) in two-dimensional space.

FIGURE 7. Estimation of f2(i, j ) in two-dimensional space.

FIGURE 8. Jr (i, j ) and Jth in three-dimensional space.

augmented vector, the system output is described as follows:

y(i, j) = Cx(i, j)+ Df f (i, j)+ Ddd(i, j).

The system parameter matrices are given as

A1 =
[
0 0
1 0.03

]
, Bd1 =

[
1
0

]
, Bf 1 =

[
0.8314
0.8034

]
,

A2 =
[
0.06 0
0 0

]
, Bd2 =

[
0
0

]
, Bf 2 =

[
0.0605
0.3993

]
,

C =
[
0.03 1

]
, Dd = 0.4168, Df = 0.5269.

By using the optimization algorithm proposed in
Section IV, the parameters of the fault estimation filter can

FIGURE 9. Jr (i, j ) and Jth in two-dimensional space.

FIGURE 10. Fault estimation in three-dimensional space.

FIGURE 11. Estimation of f1(i, j ) in two-dimensional space.

be calculated as

AF1 =
[
0.1738 −2.4781
0.1117 −0.8260

]
, BF1 =

[
−2.1564
−1.2843

]
,

AF2 =
[
0.0897 −0.3006
0.0407 −0.2679

]
, BF2 =

[
−0.3056
−0.2730

]
,

CF =
[
0.0521 1.1190

]
, DF = 1.1368.

Under the same fault and disturbance signals, Fig. 10
presents the result of fault estimation in three-dimensional
space. Fig. 11 and Fig. 12 show the estimation of f1(i, j)
and f2(i, j) in two-dimensional space, respectively. Then,
the threshold value can be computed as Jth = 0.3201. On this
basis, Fig. 13 shows the residual evaluation function Jr (i, j)
and threshold Jth in three-dimensional space. For clarity,
Fig. 14 shows the residual evaluation function and threshold
in two-dimensional space. It is easily seen from Fig. 11 -
Fig. 14 that the faults have been estimated precisely.
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FIGURE 12. Estimation of f2(i, j ) in two-dimensional space.

FIGURE 13. Jr (i, j ) and Jth in three-dimensional space.

FIGURE 14. Jr (i, j ) and Jth in two-dimensional space.

VI. CONCLUSION
In this paper, the problem of fault estimation for
two-dimensional FM model has been investigated. The
design of fault estimation filter can meet certain performance
indices and reconstruct the characteristics of faults. Utilizing
the generalizedKYP lemma, this problem has been recast into
a multi-objective optimization problem, which is non-convex
in essence. An optimization algorithm has been introduced
to solve the difficulties caused by the non-convexity. Finally,
two numerical simulations have been presented to verify the
effectiveness of the theoretical results.
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