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ABSTRACT The SARS-CoV-2 virus which originated in Wuhan, China has since spread throughout
the world and is affecting millions of people. When there is a novel virus outbreak, it is crucial to
quickly determine if the epidemic is a result of the novel virus or a well-known virus. We propose
a deep learning algorithm that uses a convolutional neural network (CNN) as well as a bi-directional
long short-term memory (Bi-LSTM) neural network, for the classification of the severe acute respiratory
syndrome coronavirus 2 (SARS CoV-2) amongst Coronaviruses. Besides, we classify whether a genome
sequence contains candidate regulatory motifs or otherwise. Regulatory motifs bind to transcription factors.
Transcription factors are responsible for the expression of genes. The experimental results show that
at peak performance, the proposed convolutional neural network bi-directional long short-term memory
(CNN-Bi-LSTM) model achieves a classification accuracy of 99.95%, area under curve receiver operating
characteristic (AUC ROC) of 100.00%, a specificity of 99.97%, the sensitivity of 99.97%, Cohen’s Kappa
equal to 0.9978, Mathews Correlation Coefficient (MCC) equal to 0.9978 for the classification of SARS
CoV-2 amongst Coronaviruses. Also, the CNN-Bi-LSTM correctly detects whether a sequence has candidate
regulatory motifs or binding-sites with a classification accuracy of 99.76%, AUC ROC of 100.00%,
a specificity of 99.76%, a sensitivity of 99.76%, MCC equal to 0.9980, and Cohen’s Kappa of 0.9970 at
peak performance. These results are encouraging enough to recognise deep learning algorithms as alternative
avenues for detecting SARS CoV-2 as well as detecting regulatory motifs in the SARS CoV-2 genes.

INDEX TERMS Bi-directional long-short memory, convolutional neural network, coronavirus deep learn-
ing, deoxyribonucleic acid, SARS-CoV-2.
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I. INTRODUCTION
The SARS-CoV-2 virus which originated in Wuhan, China
has since spread throughout all the provinces in China and
the world and is affecting millions of people [1]. When
there is a novel virus outbreak, it is crucial to quickly deter-
mine if the epidemic is a result of the novel virus or a
well-known virus. This means that the proper classification of
novel viruses such as SARS-CoV-2 and detecting regulatory
or transcription motifs in these viruses can assist scientists
in deciding on the methods and measures that are suitable
to identify the viruses, control their transmission rates and
limit potential consequences that may be caused by these
viruses.

The identification of SARS-CoV-2 can give misleading
results because the virus is hard to differentiate from other
viruses in the Coronaviridae family, due to the genetic sim-
ilarities among the viruses in this family [2]. This presents a
challenge in that the detection of SARS CoV-2 viruses can
yield false positives because of the presence of other viruses
that are very similar to SARSCoV-2 [3]. Also, [3] states those
patients who are suspected to have SARS-CoV-2 may present
symptoms that are sometimes similar to a different respiratory
viral infection. Therefore, it is of paramount importance to
accurately characterise the SARS CoV-2 virus from similar
viruses to enhance patient diagnostics and also manage the
outbreak of SARS CoV-2 virus.

SARS-CoV-2 is spreading fast due to the lack of accuracy
in the detection tools that are currently used in practice [2].
Besides, SARS-CoV-2 is a typical RNA virus that produces
new mutations in a replication cycle of Coronavirus, with an
average evolutionary rate of about 10−4 nucleotide substitu-
tions per site each year [4]. This has brought into question
the current techniques that are used to detect SARS-CoV-2.
The reverse transcription-quantitative real-time polymerase
chain reaction (RT-qPCR) is a molecular tool that is widely
used in detecting SARS CoV-2 in patients. The RT-qPCR
technique combines RT-PCR with qPCR to enable the mea-
surement of RNA levels through the use of cDNA in a qPCR
reaction [5]. According to [2], RT-qPCR has used ORF1ab
and N genes to identify SARS CoV 2. Also, RT-qPCR has
been questioned by [6] who report that the technique has
achieved a negative rate of 17.8%when sputum samples were
used in mild cases and 11.1% negative rate for severe cases.
The techniques achieved negative rates of 26.7% and 27.0%
in severe and mild cases respectively when applied on nasal
swabs. In addition, the technique achieved negative rates
of 40.0% and 38.7% in severe and mild cases respectively
when applied on throat swabs. These variations may be a
result of the variations that are present in the RNA sequences
of the viral species [2]. Apart from giving false-negatives,
the RT-qPCR technique can detect a small percentage of other
similar Coronaviruses that may be present in a simple which
may hinder the positive identification of SARS CoV-2 [2].
Furthermore, [7] indicates that about 35.2% of 173 sam-
ples did not test positive when the technique was used.

Also, [8] report that real-time RT-PCR may initially produce
false-negative results, and they suggested that patients with
typical computed tomography (CT) findings, but negative
real-time RT-PCR should repeat the real-time RT-PCR to
avoid misdiagnosis.

As mentioned earlier, SARS CoV-2 is like other viruses in
the Coronaviridae family, and its identification can be diffi-
cult. Therefore, we will explore how deep learning methods
can be used to accurately identify SARS CoV-2 from other
Coronaviruses. These methods can then be used to comple-
ment the existing molecular testing techniques to improve the
detection rates of SARS CoV 2.

According to [9], motifs are approximate short nucleotide
sequences that occur repetitively in similar groups of
sequences. The regulatory motifs are used to control the
expression of genes, i.e., they are responsible for turning a
gene on or off. Also, transcription factors (TFs) are proteins
that attach to DNA. The main function of TFs is to con-
vert or transcribe DNA into Ribonucleic acid (RNA). TFs
attach themselves to DNA sequences and become responsible
for turning on or off genes through a process called ‘‘gene
expression’’. A particular TF binds to a specific site called a
transcription factor binding site (TFBS), thus, regulates cell
machinery [10].

It can be challenging in bioinformatics to identify reg-
ulatory motifs in DNA sequences [11]. This is because
motifs are short sequences and their prediction usually
results in several unacceptable false positives. In this paper,
we will focus on regulatory motifs that are shared by the
SARS CoV-2 genes in classifying whether a given sequence
contains regulatory motifs for the SARS CoV-2 or not.
Using deep learning, we focus on detecting nucleotides
that are important in predicting whether a given sequence
contains regulatory motifs for the SARS CoV-2 virus.
The analysis of regulatory motifs is important for making
improvements in medical treatment and gaining valuable
knowledge about cell processes. For example, analysis
of regulatory motifs may help better understand muta-
tions that may affect the regulatory mechanism of gene
expression.

We propose a hybrid deep learning algorithm that inte-
grates a state-of-the-art CNN-Bi-LSTM to classify the SARS
CoV 2 virus from other Coronaviruses as well as classify
whether a given sequence contains regulatory motifs for the
SARS CoV-2 or not. This paper makes the following specific
contributions:

1) Develop an alignment-free method for classifying
SARS-CoV-2 gene sequences amongst Coronaviruses’
genes,

2) Develop a deep learning algorithm that can efficiently
classify whether a SARSCoV-2 genome sequence con-
tains candidate regulatory motifs and

3) Compare the classification performances of our
proposed CNN-Bi-LSTM versus the CNN and
CNN-LSTM.
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A. PROBLEM STATEMENT
Detecting whether a given sequence contains regulatory
motifs for the SARS-CoV-2 gene, as well as identification of
SARS CoV-2 genes amongst Coronaviruses, can be viewed
as binary classification problems in that we have a dataset
D with N examples of input data together with their corre-
sponding target classes: D = {x(i), y(i)}Ni=1, and X ⊂ R
represents a feature space, which can be described as a matrix
with dimensions, 4 × N . The length of the DNA sequence
is, thus, represented by N. We consider a value N = 100
base pairs (bp) in this paper. Additionally, Y is a dichotomous
variable in the standard space {0, 1} [12]. As discussed earlier,
there are four bases in DNA sequences namely: Adenine (A),
Thymine (T), Guanine (G), and cytosine (C). These four base
pairs form the sequence of base pairs {A, T, C, G} [12].
These base pairs can be characterised by one of the following
one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0,
0, 1]. The SARS CoV-2 genes are like the other genes in the
Coronavirus family [2], therefore, their classification can give
rise to false results. Therefore, the major goal of this paper
is to predict accurately SARS-CoV-2 gene sequences from
amongst the Coronaviruses’ genes. Additionally, we clas-
sify whether a genome sequence contains candidate regula-
tory/promoter motifs for SARS CoV-2 genes.

II. RELATED WORK
Traditionally, the classification of genome sequences has
used alignment-based techniques which include the Basic
Local Alignment Search Tool (BLAST) [13] and the
Burrows-Wheeler Aligner (BWA) [14]. Such techniques rely
on annotating viral genes [15]. Alignment-based methods
such as BLAST have been successful in finding sequence
similarities [16]. However, in practice, these methods require
heavy computational time when they are used to analyse
thousands of complete genomes [17]. References [16], [18]
mention that the alignments assume that the genes are homol-
ogous, i.e., they have the same continuous structure. How-
ever, in practice, this is not always the case.

Several alignment-free computational approaches [19],
[20] have been used to predict deoxyribonucleic acid (DNA)
protein binding. DeepFam which does not require the
alignment of genes for predicting and modeling proteins was
proposed by [21]. DeepFam uses a feedforward convolu-
tion neural network. It achieved better accuracy and faster
run-time for predicting binding proteins when compared to
methods that required the alignment of sequences as well as
those that did not require the alignment of sequences [21].
Reference [18] proposed a Machine Learning with Digital
Signal Processing-Graphical User Interface (MLDSP-GUI),
which is an alignment-free tool for DNA sequence com-
parisons and analysis. The authors highlight that the tool
was designed to address issues that are associated with the
alignment of DNA sequences.

Our proposed model, CNN-Bi-LSTM is an alignment-free
algorithm that consists of CNN layers followed by Bi-LSTM
layers that capture the temporal effects in deoxyribonucleic

acid (DNA) sequences [12]. DNA is made of nucleotide
sequences whose function is to store information in all cells.
Each nucleotide is made of sugar (Deoxyribose in DNA and
Ribose in RNA), a base, and a phosphate. There are four
bases in DNA sequences namely: Adenine (A), Thymine (T),
Guanine (G), and cytosine (C). According to [12], these four
base pairs form the sequence of base pairs {A, T, C, G}.
We consider SARS CoV-2 gene sequences as patterns of let-
ters made from the four nucleotides, A, T, G, and C, and then
use one-hot vectors to represent these sequences in a similar
way to text data. We adopt the procedure by [22] to translate
DNA sequences into sequences of words. For example, [22]
indicates that a dictionary of 64 words is formed when a word
of size three nucleotides is used. This means that a one-hot
vector of size 64 can represent every three-letter word. This
method results in a sequence of words that can be represented
by a two-dimensional matrix that encompasses information
about the precise location of each base in the sequence. This
numerical matrix is the input that is subsequently fed into
a CNN. Additionally, one-hot vectors that are used in this
paper to represent SARS CoV-2 gene sequences can conserve
information about the position of each base in sequences [22].

The use of CNN is inspired by its successes in modelling
DNA sequences. For example, [23] mention that CNNs have
outperformed machine learning algorithms that include sup-
port vector machines (SVM) or random forests in predict-
ing protein binding based on DNA sequences. Also, CNNs
have been successfully used in DeepSea [24] to predict the
chromatin effects sequence alterations with single nucleotide
sensitivity. Besides, using patterns learned from experimental
data, DeepBind has used CNN to discover specific DNA and
RNA binding proteins [23]. The use of the CNN as part of
an algorithm that can classify SARS CoV-2 gene sequences
is also inspired by its successes in text classification [25].
Additionally, CNN has been used in topic categorisation [26],
spam detection [27], and Twitter sentiment analysis [28].

Reference [22] states that one-dimensional sequences of
successive letters can be used to represent text data. There-
fore, one-hot vectors that are fed as input into CNN can be
used to represent text data. Reference [26] recommend the
use of one-hot vectors because the use of look-up tables that
match each word in a word-vector is tantamount to using
uni-grams information, whereas bi-grams and n-grams could
be more discriminating in classifying samples. Thus, the use
of one-hot vectors and concatenating word vectors of words
that are close will include the n-gram information into text
classification.

We use the CNN layers first to provide better input to
the Bi-LSTM layers by generating filters that generalise
sequence patterns [12]. The LSTM layers incorporate the
long and short-term information that is present in DNA
sequences [29]. The use of the Bi-LSTM layers is to ensure
that we can utilise both past and future inputs i.e., DNA
sequences at a given point in time. This means that the
Bi-LSTM layer can make use of past and future DNA
sequences by capturing the long-term relationships of a DNA
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sequence through the application of the forward LSTM as
well as the backward LSTM.According to [12], the Bi-LSTM
layer can characterise a probably very complex order in the
DNA sequence in an efficient manner. Reference [12] devel-
oped DeepSite for predicting DNA-protein binding. DeepSite
has Bi-LSTM network layer(s) followed by CNN layer(s).
Reference [30] developed DanQ, similar to DeepSea, which
is also uses CNN layers and Bi-LSTM layers for predicting
the non-coding function at the start of a sequence. Our pro-
posed model extends the work of [30] in classifying SARS
CoV-2 gene sequences from amongst Coronaviruses as well
as identifying sequences that contain regulatorymotifs for the
SARS CoV-2. Our model reverses the order of appearance of
the Bi-LSTM and CNN layers in DeepSea.

III. MATERIALS AND METHODS
We propose a CNN-Bi-LSTM to classify SARS CoV-2 virus
amongst coronaviruses and predict the short regulatorymotifs
(i.e., DNA binding motifs) that are bound to the proteins
(transcription-factors). Our model is different from Deep-
Site [12] in that, we start with CNN layers that feed into
Bi-LSTM layers. We employ the CNN-Bi-LSTM to extend
the work by [2] to classify accurately SARS CoV-2 genes.
Also, the CNN-Bi-LSTM extends the work of [20] to pre-
dict DNA binding motifs. Besides, combining CNN and
Bi-LSTM layers is motivated by [31] who indicated that
LSTMs performances can be improved by using CNN to
provide better features to the LSTM.

A. DATASETS
The dataset for classifying SARS CoV-2 genes amongst
Coronaviruses are summarised in Table 1. The dataset was
obtained from the NCBI genes database on November 1,
2020.

TABLE 1. Data for classifying SARS CoV-2 genes amongst Coronaviruses.

All repeating sequences were removed resulting in
329 unique sequences. All the virus genes belonged to the
Coronavirus (CoV) family. We attached a label of 1 if a gene
was that of SARS CoV-2 gene and 0 otherwise. The data was
unbalanced with 10.3% positive SARS CoV-2 samples and
89.7% negative samples.

IV. ALGORITHMS
A. CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNNs consist of a convolutional layer, a non-linearity layer,
a max-pooling layer, and a fully connected layer [22]. CNNs
have achieved outstanding performance in image classifi-
cation, computer vision, and natural language processing
(NLP) [32]. Also, they have been applied to text problems
that include spam detection, sentiment classification and

topic categorisation [33]. Text classification seeks to auto-
matically classify text documents into one or more known
categories. Text data is represented as a one-dimensional
sequence of successive letters as opposed to image data which
is represented as two-dimensional matrices. Therefore, if we
are to use text data as an input in CNNs, we change the
one-dimensional sequences of letters into a matrix or 2D
tensor [26].

DNA sequences have patterns of successive letters that
do not have space in contrast to text data which has space
between words. These sequences are made up of ‘‘words’’
from the four nucleotides, A, T, G, and C [34]. The
words formed by the sequences do not have any meaning.
Reference [22] indicates that DNA sequences can be charac-
terised using one-hot vectors into 2D matrices that are, then,
fed into the next layer which in this work is a CNN layer.
We will adopt the one-hot vectors proposed by [22], [26] to
represent DNA sequences as 2D matrices.

A big argument for incorporating CNNs in our proposed
model is that they are fast and efficient in terms of represen-
tation of text or sequences [35]. Thus, we use a deep learning
algorithm that combines a CNN and Bi-LSTM for detecting
sequences with regulatory or transcription motifs and also
for the classification of SARS-CoV-2 genes amongst other
Coronavirus genes.

B. LONG SHORT-TERM MEMORY NETWORK (LSTM)
Reference [36] introduced long short-term memory net-
works (LSTM) which are capable of learning long-term
dependencies through recurrently connected memory blocks
(subnets). Long short-term memory networks (LSTMs) are
an example of recurrent neural networks (RNN) [36]. RNNs
described in detail in [37] are deep neural networks that can
process sequential data where outputs are dependent on the
previous computations. However, RNNs are easily affected
by the vanishing gradients problem [38]. Thus, RNNs become
biased as they only deal with short-term data points. For
time or sequence-dependent data, an RNN takes the output
of a layer at time t and feeds it as part of the input of a
layer at time t + 1. LSTM operates above the RNN and
they add somememory components that assist in propagating
the knowledge learned at a time t to the longer-term time-
steps, (e.g, t + 1, t + 2, . . .). The most important function of
an LSTM is to overlook insignificant parts of the preceding
state, carefully update a current state, and then output only
important parts of the current state that are required in future
states. This solves the vanishing gradient problem in RNNs
by updating a state then propagating forward important parts
of that state that are pertinent to future states. Thus, LSTMs
become far more efficient than RNNs as there is not an
extended back-propagation chain often seen in RNNs [36].

LSTMs use the input gate, forget gate, and output gate
to release information between the hidden state and the cell
state. The structure of an LSTM cell is shown in Fig. 1,
where Xt : input vector, ht : output of the current network,
ht−1: output from previous LSTM unit, Ct−1: a memory of
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FIGURE 1. Schematic representation of a LSTM cell.

the previous unit, Ct : a memory of the current unit,
⊗

:
element-wise multiplication,

⊕
: element-wise summation

and tanh: the hyperbolic tangent.
Fig. 1 shows that an LSTM unit is made up of a cell,

with a state Ct over time. The LSTM unit uses the following
gates: input It , output, Ot and forget, ft gates for modifying
and adding memory in the cell. The flow of information into
the cell as well as out of a cell is controlled by these three
gates. Also, a cell emits ht , an output signal after updating a
gate. To update ht , the sigmoid layer of an LSTM cell unit
is initialised at the forget gate, ft . Then, the LSTM cell unit
determines the importance of Ct−1. Consequently, the sig-
moid layer (‘‘input gate layer’’) chooses the values to update.
After that, a vector of new candidate values, C̃t is created
using the tanh layer. C̃t may be appended to the state Ct−1,
simultaneously, removing or forgetting some values. More-
over, multiplying Ct−1 by ft (without the removed or ‘‘for-
gotten values’’) and then adding It · C̃t updates Ct . Thus,
It · C̃t is made up of the new candidate values multiplied
by the input values of the current state. Lastly, the output of
the LSTM cell is computed by employing the third sigmoid
level along with another tanh filter [39]. The following equa-
tions [39], [40] summarise the process of obtaining the output
of the hidden state, ht ;

ft = σ (Wf [ht−1, xt ]+ bf ), (1)

It = σ (Wi[ht−1, xt ]+ bI ), (2)

C̃t = tanh(WC [ht−1, xt ]+ bC ), (3)

Ct = ft · Ct−1 + It · C̃t , (4)

ot = σ (Wi[ht−1, xt ]+ bo), (5)

ht = ot · tanh(Ct ). (6)

C0 = 0and h0 = 0, indicate initial values, and t represents
the time steps. The activation function is represented by, σ .
It takes values between 0 to 1, thereby, ensuring that the data
is removed completely, partially removed, or preserved. C̃t is
a ‘‘candidate’’ hidden state. Its values are updated using the
current input value and the previous hidden state’s value. It is
an input gate that controls the amount of information from the
newly computed current state that is allowed to pass through,

ht−1 connects the previously hidden layer and the current
hidden layer recurrently,W represents the weight matrix that
connects the inputs to the current hidden layer, the internal
memory of a cell unit is represented by Ct , and the output of
a hidden state is given by ht .

The LSTM neural network uses the activation functions,
tanh and sigmoid. Neural networks use these activation func-
tions to learn complex data patterns. They work by converting
the output signal from a previous cell into a form that serves as
the input to the next cell. Also, they add non-linearity in data
to make it similar to real-world data or problems [40], [41].
Ideally, tanh is used in situations where signals from his-
torical data points are required because it can sustain infor-
mation for a longer period before going to zero [40]. Also,
Fig. 1 shows that we need another activation function called
the sigmoid function to either forget or recall some of the
information.

We use LSTM networks as they are capable of learning
long-term dependencies through recurrently connected sub-
nets known as memory blocks [42]. LSTM networks can
learn complex structures within the sequential ordering of
sequences. Besides, they utilise internalmemory to remember
information across long input sequences. Long short-term
memory (LSTM) networks are designed to solve the vanish-
ing gradient problem associated with RNNs.

C. BI-DIRECTIONAL LONG-TERM MEMORY RECURRENT
NEURAL NETWORK (BI-LSTM)
The LSTM addresses the problem of long-time lags found
in RNNs. There are situations where predictions have to be
made by looking at both the prior and subsequent inputs. The
bidirectional LSTM (Bi-LSTM) proposed by [36] addresses
the problem of making predictions based on previous and
subsequent inputs.

Fig. 2 shows that the Bi-LSTM has a forward layer that
first calculates the network from time T = 1 to time T = t .

FIGURE 2. Schematic representation of a Bi-LSTM.
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The hidden layers’ output at each time-step from T = 1 to
time-step T = t is saved. Then a reverse calculation of the
network using a backward layer occurs and the outcome of
the hidden layer at each time from time-step t to time-step 1 is
calculated and saved [43]. Reference [44] mentions that the
outputs of the forward and backward layer are then combined
at each time step using one of the followingmeans: (i) Concat:
Where the outputs are concatenated together. (ii) Mul: Where
the outputs are multiplied together, (iii) Sum: Where the
outputs are added and (iv) Ave: Where the average of the two
outputs is taken.

We implement concat in our proposed model to merge the
outputs from the forward and backyard layers as it is the
default method often used in bidirectional LSTMs [44]–[50].
Besides, concat doubles the output vector size that serves as
input to the next layer [44], and this will result in better perfor-
mance or a lower log loss. We train our proposed model using
the Backpropagation Through Time (BPTT) algorithm [51] to
resolve the problem of the vanishing/exploding gradient.

V. PROPOSED ARCHITECTURE
Fig. 3 shows the architecture of the CNN-Bi-LSTM that
uses CNN layers as well as max-pooling layers for extract-
ing features from input data, combined with a bi-directional
LSTM network for interpreting the features across time
steps and also perform sequence prediction. The proposed
CNN-Bi-LSTM will consist of three CNN layers, then a
Bi-LSTM layer and a dense layer as the output. Also,
the architecture includes dropout layers that are deployed
to address the problem of over-fitting that is common in
deep neural networks [12]. Our proposed architecture fol-
lows the suggestions made by [22], [26] in that, we replace
the coding/encoding layer and embedding layers by directly
applying the CNN to high-dimensional one-hot vectors;
i.e., embeddings of text regions are directly learned without
going through the word embedding learning process. Also,
we utilise one Bi-LSTM layer.

FIGURE 3. Schematic representation of the CNN-Bi-LSTM.

A. EXPERIMENTS
We carried out experiments to determine the classification
performance of the CNN-Bi-LSTM algorithm on the SARS
CoV-2 dataset described in Section III. For deep learning
methods, pre-processing of data is very important.We created

class labels to indicate whether a genome sequence was that
of SARS-CoV-2 (positive samples) or not (negative samples).
From the NCBI genes database, we obtained 34 positive
samples all of which were marked as SARS-CoV-2 gene
sequences (Table 1). Also, we obtained 295 negative samples,
none of which was marked as SARS CoV-2 gene sequences.

We used Keras [52] to define the CNN-Bi-LSTM model
by first creating the CNN layers, then the Bi-LSTM layers
and output layers. The CNN-Bi-LSTM model was trained to
classify SARS-CoV-2 virus sequences amongst Coron-
aviruses’; as well as classify whether a virus gene sequence
contains SARS CoV-2 regulatory motifs or not. The deep
learning models were trained independently using batch sizes
of 64 as recommended by [12], [53]. We used Kera’s default
weights and biases. The models are trained for 100 epochs
using the recommended default learning rate, lr = 0.001 [12],
[54]. We used dropout ratios equal to 0.1, 0.3, and 0.5. Fol-
lowing [12], we changed the number of cells in the Bi-LSTM
layer from 32 to 256 and set the default number of cells to 32.
The number of filters in the CNN layers is changed from 32 to
256 and we used a default value of 32 filters. Additionally,
we utilised the binary log-loss (binary cross-entropy) and
the efficient Adam [54] optimisation algorithm. The output
layer was a fully connected layer with sigmoid as the acti-
vation function to perform binary classification [12]. Finally,
we evaluated the skill of deep learning models. Deep learning
algorithms are stochastic and have some additional sources of
variation. The additional randomness allowsmodel flexibility
during the learning phase. However, this flexibility can make
the model be unstable i.e., producing different results when
the model is trained on the same data. To mitigate this prob-
lem,we carried out 100 iterations of each experiment and then
took the average of the evaluation metrics for 100 iterations.
Each model was trained for 100 epochs.

VI. RESULTS
The most commonly used model evaluation metric for binary
classification is accuracy which can be misleading when used
as the only performance metric in the case where the data is
unbalanced. The data for classifying SARS CoV-2 genes was
unbalanced with 10.3% positive and 89.7% negative samples.
The dataset for classifying virus genes with regulatory motifs
for the SARS CoV-2 genes was unbalanced with 3.69% pos-
itive samples (with regulatory motifs) and 96.31% negative
samples. This means that classification may not work well
as the classifiers may be biased towards the majority class.
Therefore, the deep learning models are evaluated and com-
pared by making use of a confusion matrix and then deriving
the following metrics:
(i) Sensitivity (Sens)

=
TP

TP+ FN
(ii) Specificity (Spec)

=
TN

TN + FP
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(iii) Precision (Prec)

=
TP

TP+ FP
(iv) Accuracy (Acc)

=
TP+ TN

TP+ FP+ FN + FP
(v) Mathew’s Correlation Coefficient (MCC)

=
TP · TN-FN · FP

√
(TP+ FN )(TP+ FP)(TN + FN )(TN + FP)

where TP represents the true positives, TN represents
the true negatives, FP and FN represent the false pos-
itives and false-negatives, respectively. Reference [55]
states that MCC in the interval [-1, 1], with 1 indicat-
ing that there is perfect classification, -1 indicating a
perfect misclassification.

(vi) Cohen’s Kappa (κ): is a robust statistic that can be used
to assess the performance of classifiers. Also, Kappa
considers a model’s accuracy obtained by chance.
κ can be calculated using; κ = O−E

1−E [56], where O
is the accuracy that is observed and E is the expected
accuracy. In this paper, we will use Cohen’s Kappa to
assess the performances of our algorithms when per-
forming classification tasks. κ is similar to correlation
coefficients and takes values from -1 to +1 inclusive;
where a value of 0 means that the predicted class and
observed class do not agree, while a value of 1 indi-
cates that the observed class and the predicted class
agree perfectly [56]. Also, [57] states that κ values
less than 0.20 indicate poor agreement, values between
0.20 - 0.40 indicate fair agreement, values between
0.40 - 0.60 indicate moderate agreement whilst sub-
stantial agreement starts at a value of 0.61. Excel-
lent examples and explanations on the use of Cohen’s
Kappa for classification can be found in [56].
Besides, [58] provides a caret R package for comput-
ing Cohen’s Kappa. The most commonly used model
evaluation metric for binary classification is accuracy
which can be misleading when used as the only perfor-
mance metric in the case where the data is unbalanced.
The data for classifying SARS CoV-2 genes was unbal-
anced with 10.3% positive and 89.7% negative sam-
ples. The dataset for classifying virus genes with reg-
ulatory motifs for the SARS CoV-2 genes was unbal-
anced with 3.69% positive samples (with regulatory
motifs) and 96.31% negative samples. This means that
classification may not work well as the classifiers may
be biased towards themajority class. Therefore, wewill
use Cohen’s Kappa to evaluate how the actual classes
and the classes predicted by the CNN-Bi-LSTM, CNN-
LSTM, and CNN models agree.

(vii) No information Rate (NIR) and P-Value [Acc > NIR].
A good model is one where the accuracy is
significantly greater than the no information rate.
This means that a model with an accuracy that is

less than the NIR is poor at classifying imbalanced
data as it is just predicting the majority class most
of the time. Such a model is said to be unreliable
[59]. Besides, the model is also said to be poor if
the rate of the majority class equals the classification
accuracy. Therefore, a hypothesis test is carried out
to assess if the overall accuracy rate is greater than
the rate of the majority class (NIR), i.e., P-Value
[Acc > NIR]. A significant P-value [Acc > NIR]
indicates that our model is better than just classifying
all into the majority class.

In addition to the metrics above, the predictive perfor-
mance of each deep learning model is assessed using the
AUC ROC.

A. PARAMETER ANALYSIS
1) PERFORMANCE COMPARISON USING DIFFERENT
LEARNING RATES
To obtain optimal performance for classifying SARS CoV-2,
the hyper-parameters of our deep learning algorithms
need to be tuned. The learning rate (lr) is an important
hyper-parameter that has to be tuned for the deep learning
algorithms to obtain optimal results. Reference [12] state with
a lower lr, the training phase of the deep learning algorithm
becomes more reliable. However, a lower lr may come at
the expense of taking much time during the optimisation
phase as the updated values of the loss function may be
small [12]. A higher lr may cause the training stage not
to converge and it even diverges [12]. Also, [12] mentions
that with a higher learning rate, the optimisation phase may
skip the optimal value, and the optimisation phase of the
loss function may become even worse. Thus, there is a risk
of skipping the optimal value when using a larger learning
rate and this may adversely affect the accuracy of the algo-
rithm [60]. This is because a larger learning rate requiresmore
training time as it is continually skipping the optimal value
and ‘‘unlearning’’ what has already been learned, resulting in
unproductive oscillations of the accuracy. These oscillations
will cause poor generalisation of the accuracy because the
training weights never settle down to give an optimal value
(minimum). As recommended by [12], we used the (default)
learning rate, lr = 0.001 for the Adam algorithm for stochas-
tic optimisation to update the parameters. Moreover, [54]
states that a default lr = 0.001 for the Adam optimiser is
a good learning rate for stochastic optimisers.

2) PERFORMANCE COMPARISON USING DIFFERENT
DROPOUT RATIOS
Deep neural networks with many parameters may suffer from
the problem of over-fitting. To address this problem, we use
the dropout technique described in detail in [61]. The dropout
technique temporarily removes a hidden and or a visible
unit together with all its incoming and outgoing connections.
The units that are selected to be dropped out are selected
at random. In this paper, we investigate the effect of the
dropout technique in preventing over-fitting and improving
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TABLE 2. A comparison of CNN-BiLSTM’s performance with changing
dropout ratios.

TABLE 3. A comparison of CNN-BiLSTM’s performance with changing
dropout ratios.

accuracy. We applied dropouts after the convolutional and
max-pooling layers as well as in the LSTM cell imple-
mentation. Tables 2 and 3 show that the performance of
our proposed model (CNN-Bi-LSTM) is similar and stable
for dropout ratios 0.1 and 0.3. However, the performance
drops slightly when the dropout ratio is set to 0.5. Probably,
this shows that a higher dropout of 0.5 maybe resulting
in a higher variance to some of the layers, and this has
the effect of degrading training and, reducing performance.
Thus, at a 0.5 dropout ratio, the capacity of our model is
marginally diminished causing the performance of the model
to marginally deteriorate. Therefore, for the sake of compar-
ison, we specify a dropout ratio of 0.1 for implementation in
the CNN, CNN-LSTM, and CNN-Bi-LSTM models.

3) PERFORMANCE COMPARISON USING DIFFERENT
NUMBERS OF CONVOLUTIONAL FILTERS IN CNN
We gradually varied the number of filters or kernels in
CNN from 32, 64, 128 to 256. By varying the number of
kernels or filters in CNN, we were able to evaluate Sens,
Spec, Acc, Prec, MCC, AUC ROC, and Cohen’ Kappa values
on the training dataset. Table 4 shows how the evaluation
metrics vary under different numbers of convolutional filters.
We see that the values of Sens, Spec, Acc, Prec for the
CNN-Bi-LSTM model are slightly higher than those of the
CNN-LSTM and CNN models. Also, we observe that the
AUC ROC values for the CNN-Bi-LSTM model are superior
to those of the other models as the number of convolutional
filters increases. This indicates that our proposed model out-
performs the CNN-LSTM and the CNNmodels. Specifically,
the AUC ROC for the CNN-Bi-LSTM model improves con-
siderably as the number of filters increases from 32 to 128.
Table 4 shows that when the number of filters is equal to 32,
the CNN-Bi-LSTM model performs marginally better than
the CNN-LSTM and CNN models in all metrics. For exam-
ple, when the number of convolutional filters is 32, the values
of Sens, Spec, Prec, Acc, AUC ROC, MCC, and Kappa for
our proposed model are 99.97%, 99.97%, 99.91%, 99.95%,
99.81%, 0.9978, and 0.9978, respectively. These results show

TABLE 4. Performance comparison using different numbers of filters in
CNN.

that the performance of the CNN-Bi-LSTM is comparable to
that of the CNN-LSTMmodel and performsmarginally better
by gaps of 1.01%, 1.01%, 0.65%, 0.3%, 6.27%, 0.0159%,
and 0.0164% respectively. Similarly, our proposed model’s
performance is comparable to that of the CNN model and
performs marginally better by gaps of 1.43%, 1.43%, 0.09%,
0.30%, 8.64%, 0.00%, and 0.024% respectively. Therefore,
for the sake of comparison, we use the default 32 cells in the
convolutional layers of all three models.

4) PERFORMANCE COMPARISON USING DIFFERENT
NUMBERS OF CELLS IN LSTM
We carried out experiments with different numbers of cells in
the LSTM part of the model to choose the optimal number
of cells that improves the performances of the deep learn-
ing algorithms. By varying the numbers of cells from 32,
64, 128 to 256, we were able to evaluate Sens, Spec, Prec,
Acc, MCC, AUC ROC, NIR and Cohen’ Kappa values on
the training dataset. Table 5 shows the performances of the
CNN-Bi-LSTM and CNN-LSTM with a different number
of cells in the LSTM. The results show that Sens, Spec,
Prec and Acc for our proposed model are generally higher
than those of the CNN-LSTM model. The AUC ROC of
our proposed model significantly increases when the number
of cells changes from 32 to 128 and then stabilises when
the number of cells is 256. Furthermore, Table 5 shows that
the best performing number of cells in the LSTM is 32.
The values of Sens, Spec, Prec, Acc, AUC ROC, MCC, and
Kappa for the CNN-Bi-LSTM model when the number of
cells is 32 are: 99.97%, 99.97%, 99.81%, 99.95%, 99.81%,
0.9978, and 0.9978, respectively. These values show that
our proposed model outperforms the CNN-LSTM model by
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TABLE 5. Performance comparison using different numbers of cells in
LSTM.

TABLE 6. Model total training time for 100 epochs.

gaps of 1.01%, 1.01%, 0.55%, 0.3%, 6.27%, 0.0159, and
0.0164 respectively. Therefore, for the sake of comparison,
we use the default 32 cells in the LSTM layers.

5) MODEL TRAINING TIME
We also consider the cost in terms of the time each model
takes to train for 100 epochs, i.e., the time it takes to complete
100 training epochs as shown in Table 6.

Table 6 shows that adding a Bi-LSTM layer after the CNN
layers results in the proposedmodel takingmuchmore time to
train for 100 epochs than the CNN-LSTM and CNN models.
Moreover, the results show that the additional time taken by
CNN-Bi-LSTM offers marginally better performance than
the CNN-LSTM and CNN models because the Bi-LSTM
layer has additional training capabilities [62].

B. PERFORMANCE COMPARISON
1) PERFORMANCE COMPARISON OF CNN-BI-LSTM,
CNN-LSTM AND CNN MODELS
Using the results from Table 4, we evaluated the peak per-
formances of the three models. Table 7 displays the peak
performance comparisons of the three models when they are

TABLE 7. Peak performance comparisons in the classification of SARS
CoV-2 amongst Coronaviruses.

used to classify SARS CoV-2 virus amongst Coronaviruses.
Our proposed model is comparable and achieves similar
performances to those of the other models in almost all the
evaluation metrics. The results show that the CNN-Bi-LSTM
achieves 99.97%, 99.97%, 99.92%, 99.95%, 100.0%, and
0.9978 for Sens, Spec, Prec, Acc, AUC ROC, and Cohen’s
Kappa, respectively. These values show that at the peak, our
proposed model’s performance is marginally higher than that
of the CNN-LSTM model by gaps of 1.01%, 1.01%, 0.66%,
0.21%, 6.09%, and 0.0063 respectively for Sens, Spec, Prec,
Acc, AUCROC, and Cohen’s Kappa. Similarly, our proposed
model’s performance is marginally higher than that of the
CNN model by gaps of 0.59%, 0.59%, 0.06%, 0.54%, and
0.0063 respectively for Sens, Spec, Acc, AUC ROC, and
Cohen’s Kappa. These results show that the CNN-Bi-LSTM
that combines the CNN and Bi-LSTM layers marginally
improves performance compared to the other models. Fur-
thermore, these results demonstrate the added advantage of
using the Bi-LSTM layer which incorporates both previous
input values and future input values.

2) APPROXIMATE STATISTICAL TESTS FOR COMPARING THE
CNN-BI-LSTM, CNN-LSTM, AND CNN MODELS
Table 7 shows that the peak performances of our proposed
model are comparable and in some cases marginally higher
than those of the CNN-LSTM and CNN models. However,
there is a need to perform hypothesis tests that can spot
any differences better than the human eye to examine if the
differences in the performance of the models are statistically
significant. Thus, we applied the post-hoc 5×2-fold cv paired
t-test as opposed to the k-fold cross-validated paired t-test
[63] to test for the differences in performance relative to the
AUC ROC. The k-fold cross-validation is widely used to
evaluate the performance of different models by computing
and directly comparing different performance metrics [64].
However, in the k-fold cross-validated paired t-test, the train-
ing data sets may overlap. For example, in 10-fold cross-
validation, each pair of the training data sets shares 80% of
the data examples. This presents a problem as the overlap
may prevent the paired t-test from obtaining good estimates
of the amount of the variation that would have been accounted
for had the training data sets been entirely independent of
the other previous training data sets [63]. Also, [63], men-
tions that the 10-fold cross-validation technique shows higher
probabilities of type 1 errors. To solve the problem where
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the training data sets may overlap, [63] recommended using
a 5 × 2-fold cv paired t-test which is based on repeating
two-fold cross-validations five times. The two-fold cross-
validation is used because it yields larger test data sets as
well as training data sets that are disjoint. The 5 × 2-fold
cv paired t-test is a more powerful test than the k-fold cross-
validated paired t-test as it directly measures variation that is
due to the choice of the training data set. Thus, we use the
5 × 2-fold cv paired t-test to perform a post-hoc analysis to
determine the statistical significance of the differences in the
means of the performancemetric scores. Following [12], [65],
we chose the AUC ROC as a specific measure to choose the
model that would be more accurate on new test data. The test
statistic t̃ , for the 5×2-fold cv paired t-test is calculated using
the following equation [63]

t̃ =
p(1)1√

1
5

∑5
i=1 s

2
i

(7)

where p(1)1 is the difference in the AUC ROC scores of the
CNN-Bi-LSTM vs CNN or CNN-LSTM models for the first
fold of the first iteration, s2i is the variance of the AUC
ROC score differences of the ith iteration. The variance is
computed using;

(
p(1)i − p̄i

)2
+

(
p(2)i − p̄i

)2
. In addition,

p(j)i is the difference in the AUC ROC scores of the CNN-Bi-
LSTM vs CNN or CNN-LSTM models for the ith iteration
and fold j and p̄i =

(
p(1)i + p

(2)
i

)
/2.

Under H0, t̃ approximately follows a t distribution with
5 degrees of freedom. We let H0, be such that there is no
statistically significant difference between the AUC ROC of
the CNN-Bi-LSTM vs CNN or CNN-LSTM models and H1,
the alternative hypothesis, such that there is a statistically
significant difference between the AUCROC of the CNN-Bi-
LSTM vs CNN or CNN-LSTM models. Accepting the null
hypothesis, H0, for a given level of significance would mean
that the differences in the estimated performance metrics are
due to chance. However, if H0 is rejected, we conclude that
any differences in the performance metrics are due to the
differences in the models.

Table 8 shows the post-hoc statistical analysis, using the
5 × 2-fold cv paired t-test relative to the AUC ROC per-
formance metric for the CNN-Bi-LSTM versus the CNN
models. The 5 × 2 cv Paired t-test from Table 8 produced
a t-value = 3.877. This t-value is assumed to follow a t-
distribution with 5 degrees of freedom. Thus, the critical
value, t5,0.975 = 2.571. Since t value = 3.877 > t5,0.975 =
2.571, we conclude that the differences in the AUC ROC
scores are due to the differences in the performance of the
CNN-Bi-LSTM and CNNmodels. Thus, the CNN-Bi-LSTM
outperforms the CNN model relative to the AUC ROC.

Table 9 shows the post-hoc statistical analysis, using the
5 × 2-fold cv paired t-test relative to the AUC ROC perfor-
mance metric for the CNN-Bi-LSTM versus the CNN-LSTM
models. The 5 × 2 cv Paired t-test from Table 9 produced
a t−value = 3.654. The critical value, t5,0.975 = 2.571.

TABLE 8. 5 × 2 cv Paired t-test for the CNN-Bi-LSTM and the CNN Models
Relative to the AUC ROC.

TABLE 9. 5 × 2 cv Paired t-test for the CNN-Bi-LSTM and the CNN-LSTM
Models Relative to the AUC ROC.

Since t value = 3.654 > t5,0.975 = 2.571, we conclude
that the differences in the AUC ROC scores are statistically
significant and are due to the differences in performance of
the CNN-Bi-LSTM and CNN-LSTM models. The results
show that relative to the AUC ROC, the CNN-Bi-LSTM
performs better than the CNN-LSTM.

3) PERFORMANCE COMPARISON OF THE CNN-BI-LSTM
WITH DIFFERENT DATASETS
To evaluate the performance of the proposed CNN-Bi-LSTM
model on new data, we conducted experiments using different
datasets with 25%, 50%, 75%, and 100% of the dataset
with regulatory motifs for the SARS CoV-2 gene sequences
obtained from the NCBI database. Table 10 shows the genes
with regulatorymotifs for the SARSCoV-2 discovered by [9].

Reference [9] analysed whether the following eleven
genes had regulatory motifs for SARS-CoV-2 virus:
orf1ab/43740578, orf8/43740577, orf10/43740576, N/
43740575, orf7b/43740574, orf7a/43740573, orf6/43740572,
M/43740571, E/43740570, orf3a/43740569 and S/43740568,
using MEME [66]. The searches were done to identify com-
mon candidate regulatory motifs that serve as positions where
transcription factors (TFs) can bind to. In turn, TFs control the
expression of the SARS CoV-2 genes [9]. The authors found
out that ten of these genes except the orf1ab/43740578 gene
had DNA sequences that were responsible for turning on/off
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TABLE 10. Genes with Regulatory motifs for the SARS CoV-2.

TABLE 11. Data for classifying whether a virus gene contains regulatory
motifs for the SARS CoV-2 genes.

TABLE 12. Optimum parameter settings for the CNN-Bi-LSTM, CNN-LSTM
and CNN models.

the SARS CoV-2 genes. All the genes that contained the
regulatory motifs for the SARS CoV-2 were attached to
label 1. Also, the gene orf1ab/43740578 is present in SARS
CoV-2 genes but it was attached to the label 0 as it does not
have regulatory motifs for the SARS CoV-2 genes [9]. Also,
all other genes from the Coronaviridae family that do not
contain regulatory motifs for the SARS CoV-2 genes were
attached to the label 0.

The data for classifying whether a virus gene contains
regulatory motifs for the SARS CoV-2 genes was organised
and summarised as shown in Table 11.

Table 11 shows that the dataset is unbalanced with 3.69%
positive samples (with regulatory motifs) and 96.31% nega-
tive samples.We used 80%of the dataset for training and 20%
for testing. Based on the experimental results in Section IV,
we extracted the parameters shown in Table 12. With these
parameter settings, we performed experiments using the
different fractions of the dataset to evaluate the performance
of the CNN-Bi-LSTM.

Table 13 shows that the performance of the CNN-Bi-
LSTM remains excellent when applied to a new dataset. The
new dataset is used to classify whether a virus gene contains
regulatorymotifs for the SARSCoV-2 genes or not. Addition-
ally, we find out that as the cardinality of the data increases,
the AUC ROC increases. This shows that our model’s

TABLE 13. Performance of the CNN-Bi-LSTM for classifying whether a
virus gene contains regulatory motifs for the SARS CoV-2 genes or not.

performance improves with more data. At 100% the
size of our dataset, there is more training data that the
CNN-Bi-LSTM effectively uses to improve its performance.

C. IDENTIFYING NUCLEOTIDES IN REGULATORY MOTIFS
FOR THE SARS CoV-2 GENES USING SALIENCY MAPS
In this paper, we use the saliency map to show which
bases in a virus gene sequence are important for predict-
ing whether the sequence contains regulatory motifs for the
SARS CoV-2 virus gene or not. Moreover, the map shows
the gradient of the model’s prediction for each nucleotide.
This means that the saliency map shows the changes in
the output response value (i.e., whether a sequence contains
regulatory motifs or not) concerning small changes in the
input nucleotide sequence [20]. The gradients can be posi-
tive or negative and all the positive values in the gradients
tell us that a small change to that nucleotide will change the
output value.

Using our best performingmodel (CNN-Bi-LSTMmodel),
the saliency map shown in Fig. 4 shows the bases that have
high magnitudes of saliency values. Bases with high saliency
values are important for predicting the sequence contains reg-
ulatory motifs for the SARS CoV-2 virus or not. The saliency
map has therefore revealed nucleotides that are responsible
for predicting whether a virus gene has regulatory motifs for
the SARS CoV-2 virus gene.

VII. DISCUSSION
The main findings from the performance evaluations of the
deep learning models are: 1) at peak, the CNN-Bi-LSTM
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FIGURE 4. Saliency map for bases in one of the positive samples (orange
indicates the actual bases in motif).

achieves performance scores for Sens, Spec, Prec, Acc,
AUC ROC that are comparable to those of the CNN and
CNN-LSTM models; 2) the CNN-Bi-LSTM, CNN-LSTM
and CNN models produced high scores on the more reliable
statistical measures, the MCC and Cohen’s Kappa, which
are used to measure the quality of binary (two-class) clas-
sifications. The high MCC and Cohen’s Kappa values show
that all these models are useful for binary classification,
an indication that the models obtained excellent results in
all of the four confusion matrix categories (true positives,
false-negatives, true negatives, and false positives); 3) our
proposed model, the CNN-Bi-LSTM can classify the SARS
CoV-2 virus, which is very similar to other viruses in the
Coronaviridae family; 4) the 5 × 2-fold cv paired t-tests
shows that at peak, the CNN-Bi-LSTM achieves an AUC
ROC of 100% which is significantly higher than that of the
CNN and CNN-LSTM models. Consequently, the proposed
CNN-Bi-LSTM model achieves good binary classification
results; 5) the P-value [Acc > NIR ] for CNN-Bi-LSTM
(2.2e-16 < 0.05), CNN-LSTM (2.2e-16 < 0.05) and CNN
(2.2e-16 < 0.05) were all significant at a 5% level of sig-
nificance. These results show that the classification accuracy
is significantly greater (at 5% level of significance) than the
NIR. This means that the deep learning models are useful
for predicting 1s (positive samples) and 0s (negative sam-
ples) even when using unbalanced data. We used the P-value
[Acc > NIR ] because the accuracy may not be sufficient as
a measure of performance especially in our case where the
datasets are imbalanced.

The primary goal of this paper was to develop a classifier
(CNN-Bi-LSTM) that could efficiently distinguish between

SARS-CoV-2 gene sequences from non-SARS CoV-2 gene
sequences and then compare its classification performance
to that of the CNN and CNN-LSTM classifiers. Based on
experimental results and the 5 × 2-fold cv paired t-test,
the CNN-Bi-LSTM outperformed the CNN-LSTM and
CNN models in classifying SARS CoV-2 gene sequences
relative to the AUC ROC. The AUC ROC is a better
measure for differentiating between classes. For example,
if AUC ROC = 1, then a classifier is able to perfectly
distinguish between all the SARS CoV-2 gene sequences
and non-SARS CoV-2 gene sequences. The differences in
performance between the CNN-Bi-LSTM and the other mod-
els is statistically significant at 5% level of significance as
shown by the 5 × 2-fold cv paired t-tests in Tables 8 and 9.
This shows that the CNN-Bi-LSTM model can be used as an
alternative model to the CNN and CNN-LSTM. The CNN-
Bi-LSTM model takes advantage of the ability of the CNN
layers to extract as many features as possible from the DNA
sequences. Besides, the model uses the Bi-LSTM layers to
learn past and future states in making predictions as well
as using the temporal features present in DNA sequences.
The Bi-LSTM can keep the chronological order between
data, which is very important when analyzing long DNA
sequences. Thus, by combining these twomodels into a CNN-
Bi-LSTM, we have created a model that takes advantage of
the power of the CNN in capturing features that are then
used as the input for the Bi-LSTM layers. Therefore, we have
developed a hybrid model that meets the objective of effi-
ciently classifying SARS-CoV-2 among Coronaviruses. The
CNN-Bi-LTSM model consists of three convolutional layers
followed by max-pooling layers and a single Bi-LSTM layer
as well as a fully connected dense layer fully connected
neural network layer which contains 100 neurons for clas-
sification. The convolutional layers had 32 kernels and the
Bi-LSTM had 32 cells. The results of Tables 4 and 5 show
that increasing further the number of kernels in the CNN and
the number of cells in the Bi-LSTM was not beneficial as
there were no significant improvements in the performance of
the proposed model. Based on the findings by [19], we used
three convolutional layers because using additional layers of
convolution and max-pooling may make the neural network
harder to train because it is now ‘‘deeper’’. Reference [22]
utilised two convolutional layers followed by max-pooling
when classifying DNA sequences using the CNN model.
Table 6 shows that the training time for 100 epochs also
increases with model complexity, the CNN-Bi-LSTM has an
additional bi-directional layer that uses information from past
and future states simultaneously, thus, it can understand the
context better. Also, Table 6 shows that the overall number
of parameters for the CNN model is greater than that of the
CNN-Bi-LSTM and CNN-LSTM models. The CNN model
contains 31 394 trainable parameters, and the CNN-Bi-LSTM
contains 27 892 trainable parameters. The CNN has 12.56%
more parameters. This difference in the number of trainable
parameters is a result of differences in the size of the dense
layer of the two models. The dense layer of CNN models is
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connected to all the values of the preceding layer and will
require a larger weight matrix to parametrise the connection.
Conversely, the feature map is processed sample by sample
by the CNN-Bi-LSTM model using the recurrent Bi-LSTM
part of the model. Therefore, the CNN-Bi-LSTMwill require
a much-reduced number of parameter values. We note that
even though the CNN-Bi-LSTM is a complex model com-
pared to the CNN model, it has fewer parameters. This has
implications on the computational resources required when
using the CNN-Bi-LSTM model.

We included in the CNN part of the model 1Dmax-pooling
layers but in practice, this is not always the case as reported
by [31].We used themax-pooling layers to reduce the number
of parameters that the models need to learn and thus reduce
the training time required. Therefore, the max-pooling layer
performs a down-sampling of sequential data via the 1D
max-pooling operation. In this paper, we focused more on
optimising hyperparameters that influence the network archi-
tectures such as the number of kernels in CNN layers as
well as the number of cells in the LSTM layers, that have an
impact on performance. We observed that those parameters
such as the learning rate and the dropout technique had
less effect on performance. For example, we used drop-out
rates equal to 0.1, 0.3, and 0.5 yielding little difference
in terms of performance. Also, this finding is supported
by [67], [68].

Additionally, we demonstrated that our proposed model
was robust enough when applied to new data (datasets for
classifying whether a gene sequence contains regulatory
motifs for the SARS CoV-2). Table 13 shows the perfor-
mance of the CNN-BILSTM model when applied to datasets
of increasing cardinality. As the cardinality of the datasets
increased, there were no significant improvements in perfor-
mance. This shows the robustness of our proposed model
as it is capable of obtaining a very good performance even
with relatively small datasets. This finding seems to indicate
that although deep learning techniques are often employed
with large amounts of data, they may be applied in situations
where obtaining large and labeled datasets may be costly.

VIII. LIMITATIONS OF THE STUDY AND FUTURE WORK
Deep learning models require more time to train. This is
because they have a large number of parameters that need
to be trained. Well-trained models are often computation-
ally demanding and they also require large memory. Thus,
the deployment of deep learning models can be hampered
by computational and memory requirements in cases where
there is limited computational power. Thus, in this paper,
we could not develop ‘‘deeper’’ architectures as they require
more computational resources. Another limitation of our
deep learning approach is that the models do not offer
easily available explanations on how SARS CoV-2 gene
sequences are classified in a particular way, compared to
the alignment-based methods. Thus, we used deep learning
models more as ‘‘black boxes’’ without providing an explain-
able justification for their classification results. Additionally,

our deep learning models require a large set of training
data, as opposed to alignment-based methods that can work
even with one reference genome sequence per class. Thus,
deep learning models require several examples per training
class. Despite these limitations, the deep learning methods
were able to correctly classify SARS Cov-2 amongst Coron-
aviruses and also classify whether a sequence contains regu-
latory motifs for the SARS CoV-2 or not.

For future work, we may evaluate the effect of increas-
ing the number of both convolutional and Bi-LSTM layers
subject to the availability of computational resources to find
a trade-off between how a model performs versus training
time. Still, for future work, we will also recommend inves-
tigating the causal effect of changes in the composition of
the regulatory motifs. Besides, we recommend the use of our
proposedmodel to classify other viral genes aswell as explore
RNA-protein binding predictions.

IX. CONCLUSION
When there is a viral disease outbreak such as that of
COVID-19, there is a need for an understanding of the
virus’s genomic sequence to swiftly act towards containing
the virus, treating those that are affected by the virus, and
developing vaccines that help to disrupt the spread of the
virus. Current tools that are used to detect the virus such as
the molecular technique and RT-PCR require support from
newer and faster deep learning methods. Thus, it is vital to
develop diagnostic tools capable of reliably identifying the
SARS CoV-2 virus and then distinguishing it from other
Coronaviruses or pathogens. These newer methods help in
improving the detection rate. Since the SARS CoV-2 is very
similar to other Coronaviruses, the other Coronaviruses can
exhibit respiratory infections that are the same as those of
SARS CoV-2. Consequently, the identification of the SARS
CoV-2 becomes a challenge. It is, therefore, essential to carry
out similarity comparisons that can timeously differentiate
a novel virus such as SARS CoV-2 from other viruses that
are comparable. The similarity comparisons of the SARS
CoV-2 virus with other similar and known viruses are cru-
cial in distinguishing whether a DNA sequence is that of
SARS-CoV-2 or not. Traditionally, alignment-based methods
such as BLAST can be time-consuming. These methods can
face challenges when comparing large numbers of sequences
that have significant differences in their composition. The
advantages of using alignment-free approaches are that they
have a quick turn-around in producing desired results and
they can simultaneously handle a substantial number of
sequences at the same time.

In this paper, we were able to easily compare short
sequences of genes with different compositions that were
coming from different regions of a complete genome
sequence. For example, the orf1ab virus gene from SARS
CoV-2 was labeled as a negative sample even though it
came from the same sequence (SARS CoV-2 virus complete
genome sequence) as other positive sequences that came from
the same SARS CoV-2 gene sequence.
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We combined a CNN andBi-LSTM to classify SARSCoV-
2 genes from other Coronaviruses as well as classify whether
a genome sequence contains regulatory motifs that serve as
binding sites of transcription factors that regulate the expres-
sion of SARS CoV-2 genes. Besides, correct classification is
important in discovering different species of Coronaviruses,
which may affect people in the future. Besides, the SARS
CoV-2 virus gene is highly transmissible, hence the proper
identification of the SARS CoV-2 is very important in the
management of the spread of the virus. Our experimental
results using the SARS CoV-2 datasets have shown that the
CNN-Bi-LSTM has outperformed the CNN and CNN-LSTM
and it can be applied to identify accurately SARS CoV-2 gene
virus amongst Coronaviruses. The CNN-Bi-LSTM can effec-
tively and efficiently classify DNA sequences datasets of
varying cardinalities that it had not seen before. Our pro-
posed model, the CNN-Bi-LSTM outperformed the CNN
and CNN-LSTM in detecting whether a virus gene contains
regulatory motifs for the SARS CoV-2 virus. Using saliency
mapswewere able to identify the nucleotides or bases that are
important in predicting whether a given gene sequence con-
tains regulatory motifs for the SARSCoV-2 or not. By identi-
fying candidate regulatory motifs together with the bases that
predict whether a given sequence is that of SARS CoV-2 or
not, it enables scientists to understand the virus’s regulation
mechanism(s) of gene expression.
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