IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 5, 2021, accepted April 12, 2021, date of publication April 16, 2021, date of current version April 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073703

Explanation in Code Similarity Investigation

OSCAR KARNALIM 12, (Graduate Student Member, IEEE), AND SIMON !

!'School of Electrical Engineering and Computing, University of Newcastle, Callaghan, NSW 2308, Australia

2Faculty of Information Technology, Maranatha Christian University, Bandung 40164, Indonesia

Corresponding author: Oscar Karnalim (oscar.karnalim@uon.edu.au)

This work was supported by the University of Newcastle, Australia.

ABSTRACT When using code similarity detection to uncover code plagiarism and collusion, the marker
needs to determine whether any detected similarities might be the result of coincidence. But understanding
the similarities can be difficult and might be prone to human error, because few tools facilitate the
investigation process, and if they do, the similarities are not explicitly explained in human language. This
paper presents STRANGE, an investigation module that exclusively explains code similarities in natural
language (English and Indonesian). For the purpose of reusability, STRANGE can be embedded in JPlag
and other code similarity detection tools. It can also act as a standalone tool for measuring source code
similarity. Our evaluation shows that STRANGE is more helpful than JPlag in the investigation process
since it explains the similarities in natural language. Further, its effectiveness is comparable to that of JPlag
but higher on trivial disguises of the sort that novice students will tend to apply when disguising copied code.

INDEX TERMS Code similarity detection, collusion, computing education, natural language explanation,

plagiarism, programming.

I. INTRODUCTION

Source code plagiarism and collusion are two forms of aca-
demic dishonesty in computing education [1]. They both
involve reusing source code without adequate acknowledg-
ment to all of the contributors [2], [3], but they differ in the
awareness of the contributors: plagiarism is typically copying
from people who are unaware that the copying is taking place,
whereas with collusion, all of the contributors are generally
aware of the copying.

Many strategies have been developed to deal with aca-
demic dishonesty [4]. In the context of source code plagiarism
and collusion, it is common to educate the students about
academic integrity, penalizing them only if misconduct sub-
sequently occurs. At the beginning of the course, the stu-
dents are taught about academic integrity in programming
[5]. Afterwards, for each assessment, the similarity of the
students’ programs will be measured; all students whose
programs are deemed inappropriately similar upon manual
investigation will be penalized. Since it can be demanding to
check all possible program pairs, the similarity measurement
is often performed with the help of an automated similarity
detection tool such as JPlag [6] or MOSS [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

In using a code similarity detection tool for academic
purposes, MiSi€ et al. [8] suggest four steps to be followed,
adapted from Culwin and Lancaster’s work in text similarity
detection [9]. Code collection, gathering all students’ pro-
grams for a particular assessment, can be automated with an
assessment submission system (e.g., BOSS [10]). Similarity
detection pairs the students’ programs and calculates the
degree of similarity of each pair using the detection tool. Sim-
ilarity confirmation, performed manually by the instructors,
checks whether the resulting similarities reflect the human
perception of similarity. Plagiarism (or collusion) investiga-
tion is where the instructors examine each program pair that
demonstrates high similarity to determine if the similarity
constitutes plagiarism or collusion.

MiSic et al.’s last step [8] is the one that involves a ‘burden
of proof” [11], where the instructors should be able to demon-
strate that the suspected cases are not a result of coincidence.
Knowing this, some detection tools (e.g., JPlag [6], Sherlock
[11], and MOSS [7]) enable side-by-side comparison of each
suspicious program pair, with similar code fragments marked,
to assist with the investigation. This is clearly beneficial for
the instructors as the similarities are visually mapped to the
students’ programs.

Notwithstanding the benefits, the side-by-side comparison
module still has four limitations. First, the similarities can
be hard to understand: two similar code fragments can look

59935

https://orcid.org/0000-0003-4930-6249
https://orcid.org/0000-0003-2285-283X
https://orcid.org/0000-0002-5196-8148

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

different at first glance due to surface level variation (changes
that do not affect program semantics, such as in comments,
white space, and identifier names). Second, the similarities
are neither explained nor summarized in natural language,
leaving the instructors to ‘translate’ them during the inves-
tigation process, and subsequently if the similarities are to be
passed to people who are not necessarily code-literate, such
as higher officials or the suspected students. Third, similar
comments are not marked even though such comments can
be evidence of plagiarism or collusion [12]. Fourth, the com-
parison module needs to be developed from scratch for each
similarity detection tool, which can be demanding and time
consuming [13].

To deal with these issues, this paper proposes STRANGE
(Similarity TRacker in Academia with Natural lanGuage
Explanation). It is a side-by-side comparison module that
explains syntax and comment similarities with their surface
level variation in natural language. STRANGE can be embed-
ded in other similarity detection tools via command line
instructions. It can also update the side-by-side comparison
result of JPlag [6]—a common tool for code similarity detec-
tion [14]—and it can act as a standalone similarity detection
tool. To the best of our knowledge, this is the first tool that
combines these features.

The tool has been used for detecting code plagiarism and
collusion in six programming classes offered in two academic
semesters. The classes covered three courses: introductory
programming (Python and Java), basic algorithms and data
structures (Python), and advanced algorithms and data struc-
tures (Java).

STRANGE is expected to help instructors in raising
suspicion of code plagiarism and collusion. Similar code
segments can be more identifiable and self-explanatory
in STRANGE than in other similarity detection tools,
as the similarity is exclusively explained and summarized
in natural language. It might also expedite the investi-
gation process. For instructors who are accustomed to
ignoring surface level variation when investigating pro-
gram pairs, the tool can mitigate the occurrence of human
errors.

Given that STRANGE can be embedded in other similarity
detection tools to explain the code similarities, STRANGE
should be at least as effective as the majority of those tools.
Consequently, we performed a comparative study between
STRANGE and a benchmark tool (JPlag) in terms of effec-
tiveness. We also measured the impact of code similarity
explanation by comparing STRANGE’s side-by-side com-
parison with that of JPlag.

Following the introduction of STRANGE, three research
questions arise:

RQ1 How effective is STRANGE in reporting surface level
variation?

RQ2 Is STRANGE at least as effective as a benchmark tool,
JPlag [6]?

RQ3 Is code similarity explanation useful?

59936

Il. RELATED WORK

Research on automated code similarity or code reuse detec-
tion for plagiarism and collusion has been growing for more
than four decades [14]. Ottenstein [15] developed one of
the earliest techniques for this task, determining the simi-
larity via four software metrics: the numbers of operators,
operands, unique operators, and unique operands. Many sim-
ilarity detection techniques have been introduced since then,
relying on either the submitted source code or the creation
process [16].

Based on the similarity measurement, techniques rely-
ing on the submitted source code can be further classified
into three subcategories: attribute-counting-based, structure-
based, and hybrid [16].

Attribute-counting-based techniques measure similarity
via the frequencies of occurrence of source code charac-
teristics (e.g., the number of assignment statements [17]
or source code tokens [18]); their similarity measurement
is often adapted from other domains such as information
retrieval [19], [20] and data mining [21], [22].

Structure-based techniques were introduced for greater
effectiveness, but with an offset in efficiency [23], as the
similarity is based on code structure. JPlag [6] is a popular
example of this approach, converting student programs to
token strings and then pairwise comparing the strings with
running Karp-Rabin greedy string tiling (RKRGST) [24].

Hybrid techniques combine both attribute-counting-based
and structure-based techniques for enhanced effectiveness or
efficiency. Greater effectiveness is commonly achieved either
by displaying the results of both techniques at once [25] or by
using the output of one technique as an input for another [26].
For efficiency, an attribute-counting-based technique can be
used as a filter for a structure-based technique to reduce the
number of program pairs requiring comprehensive compari-
son based on their structure [23].

The source code creation process has been considered as a
way of reducing the number of false positives [27], as high
similarity among submitted programs does not necessarily
imply plagiarism and collusion [28]. Many additional hints
for raising suspicion can be derived from the process, such as
save timestamps [29], resubmission activity [30], classroom
seating position [31], and social network [32].

Program pairs marked as suspicious by automated detec-
tion software should be investigated manually to confirm
whether the similarities suggest plagiarism or collusion,
or are likely to be coincidental [33]. For that reason, some
similarity detection tools offer a side-by-side comparison
module, which shows the content of a given program pair with
similar fragments marked.

Many similarity detection tools have features similar to
those seen in JPlag’s side-by-side comparison module. Exam-
ples include Plaggie [34] and Deimos [35]. SSID [26] and
Parikshak [36] differ only in their selection of similar frag-
ments. SCSDS [37] does not display its output as HTML

pages.

VOLUME 9, 2021

0. Karnalim, Simon: Explanation in Code Similarity Investigation

IEEE Access

Other tools either have simpler modules or incorporate
external programs. Tools proposed by Chen et al. [38] and
Zakova et al. [39] mark all similar fragments with the same
color. Rather than assigning colors, Sherlock [11] embeds two
strings to mark the beginning and the end of each matched
fragment. ES-Plag [23] replaces program code with its corre-
sponding token string. MOSS [7], Marble [40], and IC-Plag
[31] rely on a diff editor (e.g., TortoiseSVN').

It can sometimes be challenging to understand the sim-
ilarities shown in a side-by-side comparison module; two
similar fragments can look different due to their surface level
variation or, indeed, to disguises applied by students. The sit-
uation can be exacerbated if the instructors do not know what
preprocessing has been applied, and they might conclude that
the tool is behaving erroneously.

The difficulty in understanding the similarities can also
complicate the reporting process, if the similarities need to
be passed to higher officials for further investigation or to
the suspected students as evidence of their dishonesty, and it
becomes necessary to explain the similarities and summarize
them in human language.

Another limitation is that the existing modules exclude
comment similarity even though similar comments can some-
times be strong evidence of plagiarism or collusion [12].
Comments are typically excluded because they can be easily
modified, obfuscating the apparent similarity. However, that
issue can be easily addressed by measuring the comment
similarity separately from the code similarity and considering
only the comments that are similar.

Last but not least, according to a quick observation of
the similarity detection tools listed in a recent literature
review [16], a side-by-side comparison module is imple-
mented by only about one fifth of them despite the benefits.
This is possibly due to the difficulty of creating such a module
from scratch. In response to that, Plago [13], a reusable mod-
ule that can be executed via command line instructions was
proposed. However, the module is not easy to use: along with
the programs to be compared, the user is required to input the
similar fragments and the corresponding token strings.

Natural language text is arguably useful in explaining com-
plex concepts. An obvious example of this in programming is
source code comments, which are generally easier to under-
stand than the code itself. In light of this benefit, several
studies automatically generate comments in natural language
to easily explain some facts. Though many of those studies
are related to program comprehension [41], there are a few
studies covering different domains such as machine learning
reports [42].

ill. THE TOOL

This paper proposes STRANGE, a side-by-side comparison
module that summarizes the similarities and explains them
in natural language. It is also able to visualize surface level
variation and capture similarities in comments as well as

1 https://tortoisesvn.net/

VOLUME 9, 2021

Two source code files

Preprocessing

v

Similar fragment
detection

v

Visualization and
explanation generation

v

A side-by-side
comparison view

FIGURE 1. STRANGE's method to generate a side-by-side comparison
view from a program pair.

those in syntax. The module is expected to help instructors
in understanding and reporting the similarities.

STRANGE is designed to recognize code similarities
either copied verbatim or with variation in comments, white
space, identifier names, code fragment location, constants,
and data types. Most of the recognized variation was inspired
by the low-level disguises in the taxonomy of Faidhi and
Robinson [43], which are expected to occur frequently among
student programs.

The module accepts a pair of programs as input and returns
the side-by-side comparison view via three stages (see Fig. 1).
Preprocessing converts the programs to their intermediate
representations (syntax and comment strings) prior to com-
parison. Similar fragment detection recognizes the similari-
ties using RKRGST [24] for syntax and sequence alignment
[44] for comments. Visualization and explanation generation
summarizes the similarities in natural language and visualizes
the applied preprocessing in an interactive HTML page.

STRANGE can act as a standalone similarity detection
tool that accepts a set of student programs and returns the
pairwise comparison results, but it can also take the output
of JPlag [6] and display the same content in its own side-
by-side comparison view. It also incorporates three additional
features: sub-assessment grouping, code file merging, and
template code removal.

All modes can be embedded in the development of other
similarity detection tools so long as these tools are able to
access the command prompt and run the module as a Java pro-
gram. For the development of Java similarity detection tools,
STRANGE can be attached as an additional library. Further,
since the code is also provided on GitHub,? developers can
adjust it according to their own needs.

STRANGE has a number of noteworthy features. First,
it covers Python and Java, the two most common program-
ming languages for introductory programming in the UK
and Australasia [45]. Second, the generated explanation can
be expressed in either English or Indonesian. The former is
an international language used in many countries, while the

59937

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

latter is the national language used by the people involved
in our evaluation. Third, the applied preprocessing covers
white space removal, comment removal, and token renaming.
The first is automatically applied when the programs are
converted to syntax and comment strings while the other
two are selected due to their frequent use in code similarity
detection [46]. They cover disguises that can be performed
with a little programming knowledge, such as adding blank
lines, removing comments, and renaming variables. Fourth,
it uses a string matching algorithm, RKRGST [24], to check
for similar code fragments, and sequence alignment [44] to
check for similar comments. These are used in preference to
other algorithms as they are widely-used [16] and the results
are relatively easy to interpret. Fifth, while STRANGE might
not recognize all similarities detected by a more advanced
tool in which it may be embedded, its output can still be used
for initial observation, as it recognizes common variations
in code [43], especially those that are trivial but distracting.
Sixth, compared to JPlag, STRANGE can be more effective
on assessments that expect semantically similar solutions as
it uses simpler preprocessing. Seventh, STRANGE can be
downloaded via this link.?> Alternatively, a request can be
emailed to the corresponding author.

A. PREPROCESSING

In the preprocessing stage, from each input program we
extract the syntax string and comment strings with the help
of ANTLR [47]. The syntax string is the primary basis for
raising suspicion, while comment similarities, if detected, are
used only to reinforce the findings.

A syntax string is a sequence of syntax tokens in the
order of their occurrence, with identifiers, numbers, strings,
numeric data types, and string data types generalized to their
corresponding token types. Numeric and string data types
also cover non-primitive ones such as Java’s Float, but only
for Java, as Python has no explicit data type declaration. The
token set used is based on ANTLR grammars.>

The use of syntax strings for raising suspicion negates any
variation in comments and white space as only syntax tokens
are considered. It is also resistant to changes in identifier
names, constants, and data types, as the affected tokens are
generalized.

Some sequences of non-keyword tokens can form effective
keywords; for example, Java’s ‘System.out.print’, which is a
combination of identifiers and periods. To improve accuracy
these tokens should not be generalized. To accommodate
this, a list of user-defined keywords can be provided to
STRANGE. This applies also to ‘keywords’ that are actually
identifiers; for example, those that are introduced by the use
of external libraries such as JES for Python.*

Comment strings comprise all comments found in the
source code, with adjacent ones concatenated to deal with

2https://github.com/oscarkarnalim/strange
3 https://github.com/antlr/grammars-v4
4http://coweb.cc. gatech.edu/mediaComp-teach/26

59938

comment merge and split disguises. Five preprocessing
steps are applied to each comment to deal with other vari-
ation. First, the comment is split into words based on
non-alphanumeric characters to negate any changes in white
space and symbols. Second, stop words (common words such
as ‘the’ and ‘it’) are removed from the list, with the help of
Apache Lucene [48], as they contribute little to the meaning.
Third, the words are converted to lower case to negate capi-
talization changes. Fourth, each word is reduced to its stem
using Porter stemmer in either English [49] or Indonesian
[50], according to the selected explanation language, to deal
with variations in word forms. Finally, the words are concate-
nated into a string to deal with word splitting or concatenation
(e.g., ‘preprocessing’ and ‘preprocessing’).

B. SIMILAR FRAGMENT DETECTION
This phase recognizes similar fragments in the input pro-
grams based on their syntax and comment strings.

Similar syntax fragments are recognized with the help of
RKRGST [24]. The algorithm is preferred to other similarity
measurements since it prioritizes long matches, which are
unlikely to be a result of coincidence. Further, it can occasion-
ally deal with code fragment relocation in reasonable amount
of time. RKRGST includes a parameter called minimum
matching length: a lower value means that the algorithm
will be more sensitive to code fragment relocation but in
exchange, it may report more short fragments (which is not
a problem if the similarity report is still to be investigated
manually). The parameter is reconfigurable but set by default
to two, which gives it the greatest sensitivity in detecting
relocated code fragments.

Because some syntax tokens are generalized in preprocess-
ing, the actual syntax strings of the similar fragments can
be paired inaccurately. For example, assume that there are
two similar Java variable declaration statements ‘x = 5;” and
‘y = 7;°, and that they are written in a different order in each
program. As they share the same generalized form, ‘identi-
fier = number;’, ‘x = 5;” can be paired with ‘y = 7;” while
‘y =75 is paired to ‘x = 5;. STRANGE handles this issue
by comparing the actual strings of these fragments in addition
to the generalized ones, and swapping them if necessary.

Similar comment fragments are detected by iterating
through the comment strings in the first program and pairing
each of them with a similar string from the counterpart if any
is found. The paired string should have at least 50% similarity,
measured with Equation 1, where A and B are the comment
strings, sim(A, B) is the number of similar characters between
both strings recognized via sequence alignment [44], and
size(A) and size(B) are the total numbers of characters in A
and B respectively. For this process, sequence alignment [44]
is preferred to RKRGST [24] as the former is more sensitive
to order, making it easier to understand the similarity of the
shared comments.

2 x sim(A, B)

csim(d, B) = S) ¥ size(B) v

VOLUME 9, 2021

0. Karnalim, Simon: Explanation in Code Similarity Investigation

IEEE Access

/i Assignmem name : PO
¢ s ANGE Code path : o] First code metadata la Copy to dlipboard
Raw Formatted white space Syntax only Content generalisation

Similarity information:

o e | e | e | cmmon |
S010 56 chars Bl -

Explanation:

Syntax 22 tokens
€005 Comment 10
5005 Svmtax |S|m|Iar fragments list | i
5002 Syntax P T ToREm 12
€007 Comment 17 chars 1 token
enne [Y 12 tnlommn 14
25. /] N
26.
27. /* Returns the index of the specified key in the specified array.
28. * This function is poorly named because it does not give the rank
29. * if the array has duplicate keys or if the key is not in the array.
3e. g
31, * key is the search key
32. * a is the array of integers, must be sorted in ascending order
33. * it returns index of key in array a if present; -1 otherwise
34, |-
35. public static int rank(int key, int[] a) {
36. return index0f(a, key);
37. 1
A First code content
39, /* the main program
48. E
41, public static void main(String[] args) {
42, Scanner sc = new Scanner(System.in);
43.
44, // read the integers to form the whitelist
45. int n = sc.nextInt();
46, int[] whitelist = new int[n];
47. for(int i=0;i<n;i++){
48, whitelist[i] = sc.nextInt();
49, 3
5. M

Assignment name : P02

Code path : D‘.am4 Second code metadata |

sible solutions and
are to see two or
them has unusual

The code fragments are similar despite some differences in content and layout. If the task has many pos
students are not required to v articular form of content, this is sus s. In these circumstances it
more honest students share the sam¢ ion implementation. This can al: uspicious when at least one of

layout formatting as it can be an af
yestiomate “| Similarity explanation

The captured di:

1. Number data type it is changed to long and used once.
2_Identifier indexOf is chansed to doRinarvSearch and nsed once

70. dfa[_pattern[N
71. for (int x =

72, for (int c H

73. afalcl[i] = / Copy mismatch cases.

74. dfal_pattern(311(3] // Set match ca

75. x = afa[_pattern[3]1(x]; // Update restart state.

76. 3

77.]

78.

79. // Returns the index of the specified key in the specified array.

80. // This function is poorly named because it does not give the rank
81. // if the array h| in the array.

ol - | Second code content |

83. // key is the sea|

84. // a is the array of integers, must be sorted in ascending order

85. // it returns index of key in array a if present; -1 otherwise

86. 1

87. public static int rank(int key, long[] a) {

88. return doBinarySearch(a, key):

89. }

90.

91. /* Returns the index of the first occurrrence of the pattern string

92. * in the text string.

93. .

94, * txt is the text string

95. * it returns the index of the first occurrence of the pattern strine -

FIGURE 2. STRANGE's side-by-side comparison view comprising seven panels. Similar fragments are highlighted based on their corresponding type,
either syntax or comment. The figure aims to provide a brief overview of the layout without expecting the text to be readable. The orange labels are

added for clarity.

The 50% threshold is arbitrarily defined under a logical
assumption that two entities can only be considered similar
if they share at least half of their content. No empirical
evaluation was performed for this since the threshold con-
tributes only a little to STRANGE; it is used only to determine
whether two comments are similar, not whether two programs
share similar comments. In addition, it has no impact in
selecting suspected programs since STRANGE’s suspicion is
based on syntax similarity. Although comment similarity is
more striking, it acts only as an additional hint for instructors
in case further evidence is needed. Moreover, it is not possi-
ble to measure the effectiveness unless STRANGE’s suspi-
cion mechanism is altered to rely on comment similarity—a
change that is strongly discouraged since it implicitly sug-
gests that comment similarity alone can be sufficient for rais-
ing suspicion, thus placing undue importance on similarity of
comments.

We are aware that comment addition, comment removal,
and paraphrasing can also be used to disguise the comments
of copied program. However, reporting the first two can lead
to confusion due to superfluous information, as comments
can be unique to each student so long as no explicit instruc-
tions are given; and detection of paraphrasing is not worth
the effort, as it takes a considerable amount of time, and
again, comment similarity is not the primary basis for raising
suspicion.

C. VISUALIZATION AND EXPLANATION

GENERATION

In this phase, the similar fragments are suitably displayed
in an HTML page. First, a template HTML page is selected

VOLUME 9, 2021

according to the selected natural language. Then the similar
fragments are converted to HTML code and embedded in the
HTML page via a find-and-replace mechanism: each targeted
field is denoted by a unique string and that string will be
replaced by the corresponding HTML code. An example of
this visualization can be seen in Fig. 2. It involves panels for
navigation, similar fragment list, similarity explanation, left
code metadata, left code content, right code metadata, and
right code content.

The navigation panel enables the user to change the current
layout (the various layouts will be explained later) or to access
the summary, which comprises four metrics, each dealing
with syntax tokens, comment tokens, and the combination of
both. Average similarity [6] considers all token differences,
and is calculated as in Equation 2, where sim(A, B) is the
number of matches, size(A) is the number of tokens in the
left program, and size(B) is the number of tokens in the right
program. This metric is best used when all differences are
equally important. Maximum similarity [6] is less strict than
average similarity; identicality can be achieved when one
program is a subset of the other. With the same terminology
as the average, it is defined as in Equation 3, and is best used
when unnecessary tokens can be added without changing
the meaning of the program. Left-to-right and right-to-left
similarities, calculated as in Equations 4 and 5 respectively,
are useful to check the extent to which one program is a subset
of the other.

2 x sim(A, B)

imA, B) = —— A 2)
avgsim(A, B) = A size(B)

59939

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

The code fragments are similar despite some differences in content. If the task has many possible solutions and students are
ot required to use this particular form of content, this is suspicious. In these circumstances it is rare to tee two or more honest
students share the same solution implementation. This can also be suspicious when the lavout is unusually formatted. as unusual

formatting 1s rarely shared by coincidence.

The captured differences:

1. Number data type int is changed to long and used 2 times.

2. Identifier mdexOf 1s changed to doBinarySearch and used once.

3. Identifier lo 15 changed to hi and used once.

Aligned contents (with differences highlighted):

Aligned position Left form Left position Right form Right position
1 int (number data type) line 14 column 18 int (number data type) line 39 column 18
2 indexOf (identifier) | line 14 column 22 M= line 39 colun 22
(1dentifier)
3 (line 14 column 29 (line 39 column 36
4 int (number data type) line 14 column 30 | long (number data type)| line 39 column 37
5 [line 14 column 33 [line 39 column 41
6] line 14 column 34] line 39 column 42

FIGURE 3. An example of STRANGE's explanation panel for a particular fragment. It describes the similarities, the possible causes,
and the surface level variation (in both list and table views, displayed only partially for conciseness).

sim(A, B)

maxsim(A, B) = ——— - 3)
min(size(A), size(B))
Irsim(A, B) = M “4)
rsim(A, B) = size(B)
. _ sim(A, B)
risim(A, B) = ize) ©)

The similar fragment list panel records any similar frag-
ments (both syntax and comment) in a table. Each row is
associated with one similar fragment and contains five pieces
of information: fragment ID, fragment type (either syntax
or comment), minimum character length, number of similar
tokens, and concern priority. The last three are specifically
tailored to indicate a fragment’s strength in raising suspicion.
Concern priority is proportional to the lengths of the matching
strings, and is arbitrarily doubled for comments as similarity
in comments is more striking than syntax similarity. Clicking
on any row will focus the targeted fragment in both code
content panels and display the summary in the similarity
explanation panel.

The similarity explanation panel gives a natural-language
description of the similarities of a matched pair of fragments
and their surface level variation, starting with a summary sen-
tence and then giving possible reasons for raising suspicion.
Any surface level variations will then be listed, sorted by
their frequency of occurrence, or by their position in the left
program if the frequencies are the same. A table aligning the
syntax tokens or the comment words, with their differences
highlighted, is also provided for further investigation. An
example can be seen in Fig. 3.

For syntax fragments, four explanation templates are pro-
vided: verbatim copy, similar but different white space, simi-
lar but different content, similar but different white space and

59940

content. An appropriate template is selected by comparing the
syntax strings. If all of the original tokens are the same and
located in the same relative position (both row and column),
the verbatim copy template will be used. If all of the original
tokens are the same but they are located in different relative
positions, it is similar but different white space. If the original
tokens are different but become similar once generalized, and
they share the same relative position, it is similar but different
content. If the original tokens are different but become similar
once generalized, and they have different relative positions,
it is similar but different white space and content.

If the fragment has different content prior to generalization,
the surface level variation will be listed as points: each point
has one sentence highlighting one variation and its pattern is
“CT OCL is changed to OCR and used F”’. CT is the content
type (e.g., identifier); OCL is the original token from the left
code; OCR is the original token from the right code; and
F depicts the occurrence frequency of that variation in the
fragment.

A table aligning the syntax tokens contains three pieces
of information for each entry, mapped to five columns:
aligned position (i.e., the relative order of the syntax tokens),
the original token from the left program and its absolute
position, and the original token from the right program and
its absolute position. For convenience, the varied tokens are
highlighted.

Three templates are provided for comment fragments:
verbatim copy, similar but different white space and/or
non-alphanumeric characters, and partially similar. The
template selection is based on layered comparison of the
comment strings. If the comments are identical before
preprocessing, it is verbatim copy. If the preprocessed com-
ment words are identical, it is similar but different white

VOLUME 9, 2021

0. Karnalim, Simon: Explanation in Code Similarity Investigation

IEEE Access

space and/or non-alphanumeric characters. If only some of
the preprocessed comment words are identical, it is partially
similar. For reporting purposes, the preprocessing of stop
word removal and concatenation is not applied: stop words
are worth reporting, and concatenation makes the comments
hard for humans to read.

For comment fragments that are partially similar, the sur-
face level variations will be listed as bullet points and an
aligned table. The mechanism is similar to that for syntax
fragments except that the syntax tokens are now replaced with
comment words.

The left and right code metadata panels store the assign-
ment name and file path of each program, while the pro-
grams are displayed in the code content panels with Google
Prettify,5 which highlights some tokens, adds line numbers,
and distinguishes odd and even lines. Similar fragments are
also highlighted using either green for syntax or orange for
comments. The highlighting mechanism splits the fragment
line-wise, encapsulates each line with a link tag, and assigns
a unique ID derived from the fragment ID. Each link tag in
the left code targets the corresponding code on the right and
vice versa.

Some side-by-side comparison modules (e.g., that of JPlag
[6]) highlight each fragment with a unique color to distin-
guish it from others. However, we avoid that as the mech-
anism can lead to inconspicuous colors, especially if many
fragments are involved, and instructors may find it difficult to
read the highlighted code fragments. Moreover, STRANGE
has its own mechanism for distinguishing matched fragments:
a single click on a fragment will highlight the fragment in
both code content panels with a darker color, making the
fragment more visible against the white and gray background
of the containing panel.

Four layouts are provided for similarity investigation. The
raw layout displays the programs as they are. The formatted
white space layout shows the programs reformatted with
either google-java-format® for Java or YAPF’ for Python.
This layout can be useful if the instructor prefers to ignore
white space variation. The formatted layout is then updated
to the syntax-only layout by removing all comments; this is
useful if the investigation ignores comments. In the content
generalization layout, tokens displayed in the syntax only
layout are replaced with their generalized form if applicable.
The layout can also be used to understand how the similarity
is determined.

The similarity investigation layouts are generated in four
steps. First, the whole method is executed to generate the
raw layout. Second, the programs are reformatted and then
passed to the whole method once again to generate the for-
matted white space layout. Third, the syntax only layout is
generated by removing comments from the formatted white

5 https://github.com/google/code-prettify
6https:// github.com/google/google-java-format
7 https://github.com/google/yapf

VOLUME 9, 2021

space layout. Finally, some tokens in the syntax-only layout
are generalized to generate the content generalization layout.

Changing the layout will affect the information displayed
in the similar fragments list and the similarity explanation
panel. Comment fragments are displayed only in the raw and
the formatted white space layouts. White space modification
is discussed only in the raw layout. The syntax generalization
layout only discusses the generalized forms of the programs.

D. OTHER MODES

STRANGE can update JPlag’s output by taking its directory
as the input and displaying the same data in its own side-
by-side comparison view. The replacement is based on the
program pairs listed in JPlag’s ‘index.html’. The new views
will be assigned the same names as the replaced ones, making
them automatically accessible from JPlag’s ‘index.html’.

STRANGE can also act as a standalone tool to detect
similarities shared in a programming assessment, though only
syntax and comment similarities are considered. It accepts
an assessment directory of student programs, in which each
program is written in Java or Python and is in its own sub-
directory. As output, STRANGE returns a directory contain-
ing the side-by-side comparison views. An entry HTML page
will also be generated to navigate through the resulting views.

For large classes, it can be time consuming to generate all
possible comparison views when the instructor is likely to
examine only a few of them. STRANGE’s standalone mode
can limit the comparison views to program pairs with undue
similarity by setting the minimum similarity threshold for
suspicion.

In addition to the aforementioned modes, STRANGE fea-
tures three supporting modes: sub-assessment grouping, code
file merging, and template code removal.

Sub-assessment grouping is applicable when the assess-
ment consists of several sub-assessments that are to be graded
or investigated separately. This mode generates a new direc-
tory for each sub-assessment, containing only the relevant
programs. The programs are grouped according to the sub-
assessment’s filename pattern expressed as a Java regular
expression. The generated directories can be used directly
as the input of STRANGE’s standalone mode to detect
similarities.

Code file merging is applicable when the complete assess-
ment task involves more than one code file. This often hap-
pens in courses that partly focus on code modularity and
reusability, such as object-oriented programming. The mode
generates a new assessment directory where all code files for
each student submission are merged into one large code file,
separated by comments describing the original file’s relative
path. Again, the generated directory can be used directly
as the input of STRANGE’s standalone mode to detect
similarities.

Template code removal is applicable when code has been
provided or suggested for students to use, and should there-
fore not be considered in raising suspicion. This mode
excludes the given code from each code file found in each

59941

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

£ T —— </
// line below prior to template removal:

// public class Temp {

// line below prior to template removal:
p p
// public static void main(String[] args) {

System.out.println("Hello World");

}

FIGURE 4. An example of template code removal on a Java code file with
‘public class’ and ‘public static void main (String[] args)’ as the template
code.

student’s assessment directory. For readability, the excluded
code will be replaced with spaces of the same size, and a
comment showing the original form will be added for each
affected line. See Fig. 4 for an example. It is worth noting
that upon removal, the code files are not guaranteed to be
compilable as many template code fragments are integral to
the syntax and/or semantics of the program. These modified
code files can also be used as the input of other similarity
detection tools, so long as the detection techniques can deal
with incomplete parsing.

The template code is removed in two consecutive stages,
inspired by Duri¢ & Gasevic [37]. First, the template code is
converted to a syntax string with the help of ANTLR [47],
with comments and white space removed. Then each student
code file is converted to a syntax string in a similar way, and
compared to the template string using RKRGST [24] with two
as the minimum matching length (for the reason explained in
subsection III-B); any similar tokens from the student code
file will be replaced with same-sized spaces and each affected
line will be indicated by a comment showing the original
content prior to removal.

Being a greedy algorithm, RKRGST does not guarantee
a completely accurate result. However, it is still preferred
for reasons of time efficiency; more computation and con-
textual information are required for higher accuracy. Further,
RKRGST’s result is arguably acceptable as that algorithm is
often used for detecting code similarities [16].

IV. EVALUATION

This section evaluates STRANGE on the basis of the three
research questions presented in the introduction. RQ1 is
addressed by evaluating STRANGE’s effectiveness in report-
ing surface level variation. RQ2 is addressed by com-
paring its effectiveness with that of JPlag in dealing
with similarity disguises and recognizing copied programs.
RQ3 is addressed by highlighting the differences between
STRANGE’s and JPlag’s side-by-side comparison views, and
testing both views on tutors. Appropriate ethics approval
was obtained for the evaluation involving tutors and student
submissions.

59942

A. ADDRESSING RQI1: THE EFFECTIVENESS OF STRANGE
IN REPORTING SURFACE LEVEL VARIATION

If two code files share a high number of similar code frag-
ments, this can potentially raise suspicion of plagiarism or
collusion. Being aware of this, perpetrators sometimes obfus-
cate some of the similarities by applying disguises. However,
as the perpetrators are often unable to write the code unaided,
the applied disguises are commonly superficial and only
affect the surface representation. This section summarizes the
capabilities of STRANGE in detecting and reporting some
common disguises.

To create a test suite of programs, we began with four
Java programs from Sedgewick and Wayne’s algorithms
book [51], covering binary search, Knuth-Morris-Pratt string
matching, linear regression, and shell sort. Each program
was modified by applying ten disguises, two each from five
categories: comment modification, white space modification,
identifier renaming, code fragment relocation, and constant
value and data type change. They were inspired by the
low-level disguises in the taxonomy of Faidhi and Robinson
[43], which are expected to be common among perpetrators
who have little programming skill. The tool’s effectiveness
on more advanced disguises such as structural modification
is reported in subsection I'V-C; it is not discussed here since
these disguises are not specifically reported by STRANGE.
Several dummy methods were also added to make the cases
more realistic, as perpetrators often mix the copied code with
their own to reduce the chance of being caught.

The process was repeated with different disguise instances,
resulting in eight modified programs, each of which was
paired with the program on which it was based. Python ver-
sions of the original programs were then created and modified
in a similar way, doubling the program pairs to 16. Disguises
in constant values and data types are not applicable in Python
due to its loose typing, so these were replaced with additional
disguises from the other categories. The natural language
used in the programs is limited to English, as changing the
human language affects mainly the comments.

STRANGE’s capability to detect the disguises was
assessed by measuring the syntax similarity of each program
pair with maximum normalization, a form of normalization
that is resistant to the added dummy methods (see Equa-
tion 3). Its capability in reporting the disguises was also
summarized, via manual observation of the resulting side-
by-side comparison view.

STRANGE was confirmed to be highly effective, lead-
ing to 100% similarity for 10 of the 16 pairs, while the
remaining six pairs averaged 99%. Comment and white space
modification is handled by removing those prior to compar-
ison. Identifier renaming, constant value change, and data
type change are handled with token generalization, with the
affected tokens being replaced with their corresponding token
types. Code fragment relocation can be partially detected with
the help of RKRGST. However, as RKRGST does not search
for optimal matches and the similarity is defined based on

VOLUME 9, 2021

0. Karnalim, Simon: Explanation in Code Similarity Investigation

IEEE Access

the generalized form, this only applies when the fragments
are unusually long or have uncommon generalized token
representations. Code fragment relocation is a reason why
STRANGE failed to recognized some similarities in six of
the 16 program pairs.

In terms of reporting the disguises, comment modification
is reported by pairing the similar comments and explaining
their differences at word level. White space modification is
reported by stating its existence in the summary sentence. As
white space changes are not marked in the similar fragments,
the differences are not easy to see in the code content panels,
especially if the modification is quite minor; for example,
removing all spaces in a Python program statement (e.g.,
‘x =X + 3" to ‘x = x + 3’). Identifier renaming, constant
value change, and data type change are reported in the same
way as comment modification except that the differences
are described at token level. Code fragment relocation is
not explicitly reported as such. Rather, each of the relocated
fragments is just paired with the corresponding fragment
located at a different position in the other program.

The difference in programming language does not affect
the similarity degree and report except in the number of
involved tokens, as Python tends to use fewer tokens than Java
in expressing program statements. For example, Python does
not require statements to be terminated by semicolons so long
as they are on their own lines.

B. ADDRESSING RQ2: COMPARING STRANGE WITH
JPlag IN DETECTING AND REPORTING CODE

SIMILARITY DISGUISES

STRANGE can be used to update similarity reports of exist-
ing similarity detection tools. At least, it should have com-
parable effectiveness with a benchmark tool (JPlag [6]) in
detecting and reporting code similarity disguises. This sub-
section compares both tools using two evaluation metrics:
average degree of similarity, to assess whether the tool detects
the disguises; and proportion of reported disguises, to assess
whether the tool reports the disguises.

The evaluation data set was created by 21 tutors of intro-
ductory programming, assuming that their experience in
marking student assignments equips them to act as plagiarists.
All of them scored at least B4+ when they completed the
course, had a GPA of at least 3 out of 4, and had at least
six months experience of tutoring. They were grouped based
on their preferred programming language (11 chose Java
and 10 chose Python), and were asked to disguise four pro-
grams from Sedgewick and Wayne’s book [51] (i.e., binary
search, descriptive statistics, Boyer-Moore string matching,
and selection sort) in which the comments had been simpli-
fied and translated to Indonesian, the tutors’ native language.
For Python tutors, the programs had been manually converted
from Java to Python.

Tutors were required to complete the disguising process
in 45 minutes, making minimum changes to the program logic
and recording all applied disguises. The process was expected
to result in 84 disguised code files, 44 in Java and 40 in

VOLUME 9, 2021

Python. However, only 83 code files were collected since one
Java tutor submitted only three of the four programs. The dis-
guised code files were then paired with their corresponding
raw code files and became the data set.

This data set is preferred to the data sets from subsec-
tion IV-A as the applied disguises are not limited to those
known by the authors.

On the data set, STRANGE results in 98% average simi-
larity degree, which is comparable to that of JPlag. A paired
two-tailed t-test with 95% confidence rate found no signifi-
cant difference between the two tools. It was not practical to
check whether both tools found the same similarities in the
same program pairs, but the high average degree of similarity
in both tools suggests that it is very likely.

The proportion of reported disguises is based on how many
of the tutor’s recorded disguises were noted and explained by
the tool. Since JPlag only highlights the similarities without
describing the differences (i.e., applied disguises), its propor-
tion of reported disguises is automatically assigned to 0%.
STRANGE was found to report 203 of 373 applied disguises
(54%), which means that it is reasonably effective in reporting
the disguises. The proportion increases to 70% if disguises
focusing on addition or removal are excluded; few similarity
detection tools report such differences, focusing instead on
similarities.

In this tutor-generated data set, identifier names are the
most common elements to be disguised, followed by com-
ments and white space. Modification of those components
is easy as it requires limited programming knowledge. This
is aligned to STRANGE’s preprocessing, which generalizes
identifiers and removes comments and white space.

STRANGE failed to report 32 disguises involving code
fragment relocation as the relocated fragments are short and
RKRGST is not designed to find optimal matched fragments.
Other unreported disguises are:

e Major comment change (3 occurrences). Paraphrased
or summarized comments are undetected as comment
semantics are ignored.

« Importing mechanism change (6 occurrences). These
changes were applied mainly by Java tutors, who
changed the coverage of the importing mechanism
(e.g., replacing ‘import java.util.Scanner’ with ‘import
java.*’). STRANGE recognizes these statements as
standard syntax, resulting in some mismatches.

o Function structure change (4 occurrences). This was
applied by changing the order of function parameters,
changing the return value type of a function, or replacing
a function call with the code of its body. While these
are not addressed by STRANGE, they do require a level
of programming knowledge that might be rare among
students who choose to copy program code.

o Program statement replacement (40 occurrences). This
disguise was commonly applied to arithmetic or log-
ical expressions; some such disguises are obvious as
the replacing expressions are inefficient (e.g., replacing
‘i=14 1’ with ‘i=1— 2+ 1’). Other common disguises

59943

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

were to introduce or remove a temporary variable, or to
change the order of the branches of an if statement.
Language-specific features such as dynamic parameters
in Python’s for loop syntax and inbuilt mathematical
functions were also often used as replacements. Again,
as STRANGE does not specifically address these, they
are not detected or reported.

C. ADDRESSING RQ2: COMPARING STRANGE WITH
JPlag IN RECOGNIZING COPIED PROGRAMS

STRANGE can be used to investigate suspicious program
pairs suggested by existing similarity detection tools. Hence,
it should be at least as effective in recognizing copied pro-
grams as a benchmark tool (JPlag [6]). This subsection
conducts the comparison using f-score, the harmonic mean
of precision and recall, calculated as (2 x precision x
recall)/(precision + recall). Precision is the proportion of
suspected program pairs that are copied to all suspected pairs.
Recall is the proportion of suspected program pairs that are
copied to all copied pairs.

To perform this comparison we used the IR-Plag data
set [52]. This data set is based on seven initial Java programs
that cover introductory programming materials (output, input,
branching, looping, function, array, and matrix). These seven
programs were disguised by nine introductory programming
tutors to 355 variants through the application of specific types
of similarity disguise. In addition, another set of tutors wrote
15 independent — not copied — versions of each of the seven
programs, so the IR-Plag data set includes both 355 disguised
and 105 independent programs to carry out the same tasks.
The data sets from previous subsections cannot be used here,
as the metrics that we are using require independent pro-
grams.

The disguises were drawn from the highest six levels of
Faidhi and Robinson [43], in which lower levels describe
simpler disguises and higher levels indicate more complex
disguises. Level 1, the lowest level after verbatim copy
(level 0), involves modification of comments and white
space; level 2 involves identifier modification; level 3, com-
ponent declaration relocation; and level 4, function structure
change. The last two levels are program statement replace-
ment or structural change (level 5) and logic change (level 6).
Level 0 (verbatim copy) is not included since it is trivial to
detect copied programs with no disguises.

For each level, the original programs were paired with
their corresponding disguised and independent programs.
The effectiveness of STRANGE and JPlag was then mea-
sured, with suspected program pairs deemed to be those
with similarity degree greater than or equal to both 75% and
the average similarity. The 75% threshold ensures that the
suspected pairs share high similarity, even when the aver-
age similarity is low. Our manual observation of 92 Java
and 24 introductory programming assessments shows that
program pairs whose similarity is at least 75% are indeed
suspicious. The statistical significance was measured with a
two-tailed paired t-test with 95% confidence rate.

59944

—e—STRANGE JPlag

100%
80%
60% .\‘\\
40% \ ——

20%
0%

F-score

L1 L2 L3 L4 L5 L6

Disguise level

FIGURE 5. STRANGE vs JPlag on IR-Plag data set: f-score.

Fig. 5 shows that STRANGE generates higher f-scores
than JPlag on the first two levels; the differences are statisti-
cally significant (p-values < 0.01). JPlag’s program statement
generalization (e.g., considering ‘i++’ and ‘i =i+ 1’ as the
same) complicates the detection process at these lower levels
as the degree of coincidental similarity is increased; many
copied pairs can have degrees of similarity comparable to the
independent pairs. That same generalization is expected to be
beneficial with program statement replacement (level 5), but
with this data set there is no significant improvement. On the
remaining levels, the performance of the tools is comparable
and there are no significant differences since the disguises are
handled in similar ways.

D. ADDRESSING RQ3: DIFFERENCES BETWEEN THE
SIDE-BY-SIDE COMPARISON VIEWS OF STRANGE

AND JPlag

This subsection highlights differences between STRANGE
and a benchmark tool, JPlag [6], in terms of their side-
by-side comparison views. Both views were qualitatively
compared based on 164 suspicious program pairs (92 Java
and 72 Python).

The Java program pairs were selected from student sub-
missions to 92 distinct introductory programming assessment
tasks (with three to 22 programs each), by pairing the stu-
dent programs for each task, and choosing one for which
JPlag’s average similarity is closest to but no lower than the
suspicion threshold used in Subsection IV-C (i.e., the greater
of 75% and the average of all pairwise similarities). Manual
observation confirms that for this evaluation, program pairs
whose similarity degree is at least as high as the suspicion
threshold are indeed suspicious. The Python program pairs
were selected in the same manner, except that three pairs were
selected for each task since only 24 tasks are available (with
ten to 19 programs each). The first two pairs are those for
which JPlag’s average similarity is closest to but no lower
than the suspicion threshold, and the third is the pair with
the highest similarity. These pairs are preferable to those in
other data sets as the programs are written by students rather
than tutors or the authors, and should therefore provide more
realistic cases for this qualitative assessment.

VOLUME 9, 2021

0. Karnalim, Simon: Explanation in Code Similarity Investigation

IEEE Access

Based on the side-by-side comparison views, JPlag seems
to deal with more code disguises than STRANGE. For
example, it nullifies the impact of changing ‘i++ to
‘i =1+ 1’ or changing ‘String [] args’ to ‘String args []’
in Java. Nevertheless, if the instructor is not aware of the
mechanisms, these can be perceived as errors. STRANGE’s
detection mechanism is less advanced, but ensures that each
marked similarity is explained. To further assist the instructor
in understanding the similarities, STRANGE provides natural
language explanations and several layouts showing the code
in various representations.

Not all of JPlag’s nullifying mechanisms are guaranteed
to be beneficial. The exclusion of comments, for example,
ignores the fact that similar comments can be evidence of
copying, as comments are commonly unique to each stu-
dent if they are neither automatically generated nor explic-
itly instructed. STRANGE deals with this by separating the
comments from the code and measuring their similarity sep-
arately. In the data set, STRANGE found 24 similar com-
ments containing unique information such as computer ID,
potentially used for raising suspicion. Seventeen of them were
found in Java program pairs and seven in Python pairs.

Although JPlag ignores comments, they are still displayed
in code content panels and occasionally highlighted if they
occur within similar code fragments. This can be confusing
for instructors since the comments can be perceived to play
some part in determining similarity. STRANGE separates
comments from program code and therefore ensures that the
former will not be unwittingly highlighted with the latter.

JPlag also seems to consider expressions and constants as
the same, possibly under an assumption that the given pro-
grams share the same semantics. For assessments with many
possible solutions, this can lead to incorrect matches as not
all expressions can be replaced with constants and vice-versa.
Although STRANGE generalizes constants, it still considers
expressions as they are.

JPlag appears to generalize some program statements to
single tokens (e.g., Java’s ‘System.out.println’) to reduce
false positive matches. Some of those statements can then go
undetected, as the number of matched tokens can be lower
than RKRGST’s minimum matching length. STRANGE does
not generalize in this manner, so it is able to capture those
statements, but at a slight expense in efficiency.

To differentiate similar code fragments, JPlag displays
each of them in a unique color. According to our observation,
the generated colors can be lighter ones, making them hard to
detect against the white background of the code content panel.
Further, if many fragments are involved, some colors look
alike. STRANGE uses only two colors for highlighting: green
for syntax and orange for comment. To avoid confusion, each
code fragment can be highlighted with a click, and will appear
in a darker version of the same color, adding more contrast
against the white and gray background.

JPlag’s similar fragments are highlighted on top of the
given code, which is displayed as plain text. This might lead
to more investigation effort as reading code as plain text

VOLUME 9, 2021

TABLE 1. Average usability measures of JPlag’s and STRANGE's views.

Metric JPlag | STRANGE | Variances | P-value
Time in minutes 42.5 393 Equal 0.15
Recorded instances 20.4 34.5 Unequal < 0.001

can be challenging. It can be worse if the code fragments
are different at surface level (e.g., different comments, white
space, or identifiers) as the instructor needs to deduce why the
tool considers the code fragments to be similar. STRANGE
shows the code as it might be displayed in an IDE; some
tokens are highlighted and the lines are numbered. Several
layouts are provided to help exclude surface differences and
thus to draw attention to the similarities. The formatted white
space layout reformats the white space according to particular
rules, nullifying modification in that aspect. The syntax only
layout excludes comments from consideration. The content
generalization layout shows the generalized version of each
syntax token, showing why the code fragments are considered
similar despite having different surface tokens.

E. ADDRESSING RQ3: THE USEFULNESS OF CODE
SIMILARITY EXPLANATION

Code similarity explanation is expected to be useful if
STRANGE’s side-by-side comparison view, which alone
provides such an explanation, is more helpful than JPlag’s
during the investigation process carried out by the instruc-
tors. To examine this expectation, the 21 tutors mentioned
in subsection IV-B participated in this phase of the study.
Each tutor was shown eight program pairs written in their
preferred programming language and asked to list any similar
fragments and the corresponding disguises. Four pairs would
be observed with JPlag’s view in up to 45 minutes, and the
other four with STRANGE’s view in up to 45 minutes. We
hypothesized that if one view was more helpful, the task
using that view would be completed in less time, and/or the
tutors would record more similar fragments and disguises.
The statistical significance was measured with a two-tailed
t-test with 95% confidence rate; not the paired test, as the
tutors’ responses were collected anonymously.

The program pairs were taken from the data set used in
subsection IV-A, covering four topics from Sedgewick and
Wayne’s book [51]: binary search, Knuth-Morris-Pratt string
matching, linear regression, and shell sort. For this particular
data set, each topic has two copied programs with comparable
disguises, permitting one copy to be examined with JPlag and
the other with STRANGE, without favoring either tool.

Table 1 shows that the use of STRANGE’s view leads
to more recorded fragments and disguises than JPlag’s.
STRANGE summarizes the similarities and the disguises in
natural language, making it easier for tutors to discern and
report them. There was no significant difference in comple-
tion time, as the tutors found more to report with STRANGE.

After completing both tasks the tutors were asked to com-
plete a survey summarizing their perspective of code similar-
ity explanation. The survey consisted of 14 statements, each

59945

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

TABLE 2. Survey questions about code similarity explanation and the responses.

ID Question Agree Do not know Disagree
SQO1 Natural language explanation helps me to understand what kinds of similarity have been found. 21 0 0
SQO02 Natural language explanation helps me to identify white space modification (e.g., adding extra 21 0 0
blank lines between program statements).

SQO03 Natural language explanation helps me to identify comment modification (e.g., replacing a 19 2 0
comment word from ‘changing’ to ‘change’).

SQ04 Natural language explanation helps me to identify identifier renaming (e.g., changing a variable 21 0 0
name from ‘height’ to ‘ht’).

SQO05 Natural language explanation helps me to identify variable type change (e.g., replacing ‘int’ 11 0 0
with ‘float’). This is not applicable to Python tutors.

SQO06 Natural language explanation helps me to identify changes in constant values (e.g., assigning a 18 3 0
variable to 1 instead of 0).

SQO07 Natural language explanation helps me to identify rearrangement of program statements (e.g., 19 2 0
moving some statements to a different location in the program).

SQ08 Having the white space formatted helps me to not consider white space in my manual 20 0 1
observation.

SQ09 Having the comments removed helps me to not consider comments in my manual observation. 17 0 4

SQ10 Having some identifier names generalized to the same token helps me to not consider identifier 18 1 2
name variation in my manual observation.

SQ11 Having some variable types generalized to the same token helps me to not consider variable 11 0 0
type variation in my manual observation. This is not applicable to Python tutors.

SQ12 Having some constant values generalized to the same token helps me to not consider constant 18 2 1
value variation in my manual observation.

SQI13 Having different types of similarity displayed in different colors helps me to understand what 20 0 1
kinds of similarity have been found.

SQ14 Ordering similar fragments according to their concern priority enables me to focus first on 18 1 0

obviously similar fragments.

of which can be answered with ‘agree’, ‘do not know’, or ‘dis-
agree’. For each question, respondents could also provide a
short explanation supporting the choice. The survey questions
and the responses can be seen in Table 2. SQO05 and SQ11 are
not applicable to Python tutors as the language has no variable
type declaration. SQ14 had no response from two tutors due
to human error.

As seen in Table 2, five survey questions (SQO1, SQO02,
SQ04, SQO5, and SQ11) were answered unanimously with
‘agree’, suggesting that the tutors find those features crucial
in the investigation process.

The remaining questions still drew mainly positive
responses but with a few ‘do not know’ or ‘disagree’
responses. To help us understand the causes, we noted the
explanations given by the tutors. For SQ06 and SQ12, a few
respondents were not aware of a changed constant value as
that change altered only one source-code token. For questions
SQO08 and SQO9, a few respondents did not find the format-
ted white space layout or syntax only layout to be helpful,
believing that the raw layout is sufficient for the investigation
process. Three non-positive responses to SQ10 were from
respondents who were unaware of the importance of the token
generalization. For SQ13, one respondent felt that it could be
confusing having only two colors for highlighting matched
fragments. The respondents who answered ‘do not know’ for
SQO03 and SQO7 did not explain their reasons for that choice.

V. CONCLUSION AND FUTURE WORK

This paper presents STRANGE, a side-by-side comparison
module for code similarity investigation. It explains and sum-
marizes similarities, in both syntax and comments, using
natural language. STRANGE can be used in the development

59946

of other similarity detection tools. It can also be used to
reinterpret the output from JPlag, and can act as a standalone
tool for measuring source code similarity.

STRANGE effectively reports many surface level varia-
tions (RQ1), including comment modification, white space
modification, identifier renaming, constant value change, and
data type change. Code fragment relocation is handled only
when the fragments are fairly long and have uncommon
generalized forms.

STRANGE is more effective than JPlag [6], a benchmark
tool for code similarity detection, in reporting similarity
disguises and detecting copied programs with surface level
variation (RQ2). The tools are comparable in dealing with
advanced disguises.

Code similarity explanation, as featured in STRANGE’s
side-by-side comparison view, is useful for the investigation
process (RQ3). It helps instructors to recognize more similar-
ities and the disguises applied to them. The instructors gener-
ally agree that such explanation is helpful in the investigation
process.

Our evaluation is subject to four limitations that suggest
future work. First, all data sets are at the level of introduc-
tory programming since that is probably the best course in
which to start educating students about academic integrity.
It is important to validate the findings on different data sets
such as the SOCO data set [19], the OCD data set [53], and
the BigCloneBench data set [54]. Second, not all possible
disguises are discussed as we focus on the common ones
according to Faidhi and Robinson [43]. Additional findings
might be obtained by including other disguises, even those
that are cross-language [20]. Third, the evaluation was per-
formed with JPlag version 2.11.8. Some findings might not

VOLUME 9, 2021

0. Karnalim, Simon: Explanation in Code Similarity Investigation

IEEE Access

be applicable on other versions. Fourth, the JPlag analysis
was based only on the user perspective and the corresponding
paper [6]. As the tool is open source and has been updated
several times since the publication of that paper, an analysis
of the tool’s code might provide a different perspective.

In addition to addressing the aforementioned limitations,
we expect to extend STRANGE to cover more programming
languages and more natural languages, and to deal with more
advanced disguises. It will also be interesting to test the tool’s
scalability on larger data sets as that factor might be important
for programming courses with hundreds of students.

ACKNOWLEDGMENT

The authors would like to thank Australia Awards Scholarship
for financially supporting the first author and William Chivers
from University of Newcastle, Australia, for his overall con-
tribution.

REFERENCES

[1] Simon, B. Cook, J. Sheard, A. Carbone, and C. Johnson, ‘“Academic
integrity: Differences between computing assessments and essays,” in
Proc. 13th Koli Calling Int. Conf. Comput. Educ. Res. (Koli Calling), 2013,
pp. 23-32.

[2] R. Fraser, “Collaboration, collusion and plagiarism in computer science
coursework,” Informat. Educ., vol. 13, no. 2, pp. 179-195, Oct. 2014.

[3] G. Cosma and M. Joy, “Towards a definition of source-code plagiarism,”
IEEE Trans. Educ., vol. 51, no. 2, pp. 195-200, May 2008.

[4] J. Sheard, Simon, M. Butler, K. Falkner, M. Morgan, and A. Weerasinghe,
“Strategies for maintaining academic integrity in first-year computing
courses,” in Proc. ACM Conf. Innov. Technol. Comput. Sci. Educ.,
Jun. 2017, pp. 244-249.

[5] Simon, J. Sheard, M. Morgan, A. Petersen, A. Settle, and J. Sinclair,
“Informing students about academic integrity in programming,” in Proc.
20th Australas. Comput. Educ. Conf. (ACE), 2018, pp. 113-122.

[6] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among
a set of programs with JPlag,” J. Universal Comput. Sci., vol. 8, no. 11,
pp. 1016-1038, 2002.

[71 S. Schleimer, D. S. Wilkerson, and A. Aiken, ‘“Winnowing: Local algo-
rithms for document fingerprinting,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data (SIGMOD), 2003, pp. 76-85.

[8] M.J.Misic, J. U. Z. Proti¢, and M. V. TomaSevi¢, “Improving source code
plagiarism detection: Lessons learned,”” in Proc. 25th Telecommun. Forum
(TELFOR), Nov. 2017, pp. 1-8.

[9] F. Culwin and T. Lancaster, ““Visualising intra-corpal plagiarism,” in Proc.
Sth Int. Conf. Inf. Visualisation, 2001, pp. 289-296.

[10] M. Joy, N. Griffiths, and R. Boyatt, “The boss online submission and
assessment system,” J. Educ. Resour. Comput., vol. 5, no. 3, p.2,
Sep. 2005.

[11] M. Joy and M. Luck, “Plagiarism in programming assignments,” IEEE
Trans. Educ., vol. 42, no. 2, pp. 129-133, May 1999.

[12] U.Inoue and S. Wada, ““Detecting plagiarisms in elementary programming
courses,” in Proc. 9th Int. Conf. Fuzzy Syst. Knowl. Discovery, May 2012,
pp. 2308-2312.

[13] R. Franclinton and O. Karnalim, “A language-independent library for
observing source code plagiarism,” J. Inf. Syst. Eng. Business Intell., vol. 5,
no. 2, pp. 110-119, 2019.

[14] M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection
and detection tools used in academia: A systematic review,” ACM Trans.
Comput. Educ., vol. 19, no. 3, pp. 27:1-27:37, 2019.

[15] K.J. Ottenstein, “An algorithmic approach to the detection and prevention
of plagiarism,” ACM SIGCSE Bull., vol. 8, no. 4, pp. 30-41, Dec. 1976.

[16] O. Karnalim, Simon, and W. Chivers, ‘“‘Similarity detection techniques for
academic source code plagiarism and collusion: A review,” in Proc. IEEE
Int. Conf. Eng., Technol. Educ. (TALE), Dec. 2019, pp. 1-8.

[17] Z. A. Al-Khanjari, J. A. Fiaidhi, R. A. Al-Hinai, and N. S. Kutti, “PlagDe-
tect: A java programming plagiarism detection tool,” ACM Inroads, vol. 1,
no. 4, pp. 66-71, Dec. 2010.

VOLUME 9, 2021

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(35]

(36]
(371

(38]

(40]

(41]

F. B. Allyson, M. L. Danilo, S. M. José, and B. C. Giovanni, ‘“Sherlock
N-overlap: Invasive normalization and overlap coefficient for the similarity
analysis between source code,” IEEE Trans. Comput., vol. 68, no. 5,
pp. 740-751, May 2019.

E. Flores, A. Barron-Cedefio, L. Moreno, and P. Rosso, “Uncovering
source code reuse in large-scale academic environments,” Comput. Appl.
Eng. Educ., vol. 23, no. 3, pp. 383-390, May 2015.

E. Flores, A. Barrén-Cedefio, L. Moreno, and P. Rosso, “Cross-language
source code re-use detection using latent semantic analysis,” J. Universal
Comput. Sci., vol. 21, no. 13, pp. 1708-1725, 2015.

T. Ohmann and I. Rahal, “Efficient clustering-based source code plagia-
rism detection using PIY,” Knowl. Inf. Syst., vol. 43, no. 2, pp. 445-472,
May 2015.

G. Acampora and G. Cosma, “A fuzzy-based approach to programming
language independent source-code plagiarism detection,” in Proc. IEEE
Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Aug. 2015, pp. 1-8.

L. Sulistiani and O. Karnalim, “ES-Plag: Efficient and sensitive source
code plagiarism detection tool for academic environment,” Comput. Appl.
Eng. Educ., vol. 27, no. 1, pp. 166-182, Jan. 2019.

M. J. Wise, “YAP3: Improved detection of similarities in computer pro-
gram and other texts,” in Proc. 27th SIGCSE Tech. Symp. Comput. Sci.
Educ., 1996, pp. 130-134.

M. E. B. Menai and N. S. Al-Hassoun, “Similarity detection in java
programming assignments,” in Proc. 5th Int. Conf. Comput. Sci. Educ.,
Aug. 2010, pp. 356-361.

J. Y. H. Poon, K. Sugiyama, Y. F. Tan, and M.-Y. Kan, “Instructor-centric
source code plagiarism detection and plagiarism corpus,” in Proc. 17th
ACM Annu. Conf. Innov. Technol. Comput. Sci. Educ. (ITiCSE), 2012,
pp. 122-127.

V. Ljubovic and E. Pajic, “Plagiarism detection in computer program-
ming using feature extraction from ultra-fine-grained repositories,” IEEE
Access, vol. 8, pp. 96505-96514, 2020.

S. Mann and Z. Frew, ““Similarity and originality in code: Plagiarism and
normal variation in student assignments,” in Proc. 8th Australas. Conf.
Comput. Educ., 2006, pp. 143-150.

P. Vamplew and J. Dermoudy, “An anti-plagiarism editor for software
development courses,” in Proc. 7th Australas. Conf. Comput. Educ., 2010,
pp- 83-90.

N. Tahaei and D. C. Noelle, “Automated plagiarism detection for computer
programming exercises based on patterns of resubmission,” in Proc. ACM
Conf. Int. Comput. Educ. Res., Aug. 2018, pp. 178-186.

A. Budiman and O. Karnalim, “Automated hints generation for inves-
tigating source code plagiarism and identifying the culprits on in-class
individual programming assessment,” Computers, vol. 8, no. 1, p. 11,
Feb. 2019.

A.Zrnec and D. Lavbic, “Social network aided plagiarism detection,” Brit.
J. Educ. Technol., vol. 48, no. 1, pp. 113-128, Jan. 2017.

D. Weber-Wulff, “Plagiarism detection software: Promises, pitfalls, and
practices,” in Handbook of Academic Integrity. Singapore: Springer, 2016,
pp. 625-638.

A. Ahtiainen, S. Surakka, and M. Rahikainen, “Plaggie: GNU-licensed
source code plagiarism detection engine for java exercises,” in Proc. 6th
Baltic Sea Conf. Comput. Educ. Res. Koli Calling (Baltic Sea), 2006,
pp. 141-142.

C. Kustanto and I. Liem, “Automatic source code plagiarism detection,” in
Proc. 10th ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput., May 2009, pp. 481-486.

S. Sharma, C. S. Sharma, and V. Tyagi, “‘Plagiarism detection tool, ‘Parik-
shak,” in Proc. Int. Conf. Commun., Inf. Comput., 2015, pp. 1-7.

Z. Buri¢ and D. Gasevic, “A source code similarity system for plagiarism
detection,” Comput. J., vol. 56, no. 1, pp. 70-86, 2013.

X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, ““Shared informa-
tion and program plagiarism detection,” IEEE Trans. Inf. Theory, vol. 50,
no. 7, pp. 1545-1551, Jul. 2004.

K. Zdkova, J. Pistej, and P. Bistdk, “Online tool for student’s source code
plagiarism detection,” in Proc. IEEE 11th Int. Conf. Emerg. eLearning
Technol. Appl. (ICETA), Oct. 2013, pp. 415-419.

J. Hage, P. Rademaker, and N. van Vugt, “Plagiarism detection for Java:
A tool comparison,” in Proc. Comput. Sci. Educ. Res. Conf., 2011,
pp. 33-46.

X. Song, H. Sun, X. Wang, and J. Yan, “A survey of automatic generation
of source code comments: Algorithms and techniques,” IEEE Access,
vol. 7, pp. 111411-111428, 2019.

59947

IEEE Access

0. Karnalim, Simon: Explanation in Code Similarity Investigation

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

J. M. Alonso and A. Bugarin, “ExpliClas: Automatic generation of expla-
nations in natural language for Weka classifiers,” in Proc. IEEE Int. Conf.
Fuzzy Syst. (FUZZ-IEEE), Jun. 2019, pp. 1-6.

J. A. W. Faidhi and S. K. Robinson, “An empirical approach for detecting
program similarity and plagiarism within a university programming envi-
ronment,” Comput. Educ., vol. 11, no. 1, pp. 11-19, Jan. 1987.

X. Huang, R. C. Hardison, and W. Miller, ““A space-efficient algorithm for
local similarities,” Bioinformatics, vol. 6, no. 4, pp. 373-381, 1990.
Simon, R. Mason, T. Crick, J. H. Davenport, and E. Murphy, “Language
choice in introductory programming courses at australasian and UK uni-
versities,” in Proc. 49th ACM Tech. Symp. Comput. Sci. Educ., Feb. 2018,
pp. 852-857.

O. Karnalim, Simon, and W. Chivers, “Preprocessing for source code
similarity detection in introductory programming,” in Proc. 20th Koli
Calling Int. Conf. Comput. Educ. Res. (Koli Calling), Nov. 2020, pp. 1-10.
T. Parr, The Definitive ANTLR 4 Reference. Raleigh, NC, USA: Pragmatic,
2013.

M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action: Covers
Apache Lucene 3.0, 2nd ed. Shelter Island, NY, USA: Manning, 2010.

M. F. Porter, “An algorithm for suffix stripping,” in Program: Electronic
Library and Information Systems. Bingley, U.K.: Emerald Group Publish-
ing, 2006.

F. Z. Tala, “A study of stemming effects on information retrieval in
Bahasa Indonesia,” M.S. thesis, Inst. Logic, Lang. Comput., Universiteit
van Amsterdam, Amsterdam, The Netherlands, 2003.

R. Sedgewick and K. Wayne, Algorithms, 4th ed. London, U.K.: Pearson,
2011.

O. Karnalim, S. Budi, H. Toba, and M. Joy, ““Source code plagiarism detec-
tion in academia with information retrieval: Dataset and the observation,”
Informat. Educ., vol. 18, no. 2, pp. 321-344, Oct. 2019.

C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Softw. Eng., vol. 23, no. 4, pp. 2464-2519,
Aug. 2018.

J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia, “Towards
a big data curated benchmark of inter-project code clones,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evol., Sep. 2014, pp. 476-480.

59948

OSCAR KARNALIM (Graduate Student Mem-
ber, IEEE) is currently pursuing the Ph.D.
degree with the University of Newcastle, Aus-
tralia. He is currently an Assistant Professor with
Maranatha Christian University, Indonesia. His
primary research interest includes code similarity
detection. He has published 24 articles on that
topic, many of which are indexed in IEEE Xplore,
ACM Digital Library, and ScienceDirect. He also
serves as a reviewer for many journals and con-

ferences, including IEEE Access, CAE (Wiley), Heliyon, IEEE SMC, IEEE
EDUCON, and IEEE TALE.

SIMON is currently a Senior Lecturer with the
University of Newcastle, Australia. His main
research interest includes academic integrity
in programming. He has published more than
20 papers in that topic, mostly in computing educa-
tion conferences, such as ACM SIGCSE, ITiCSE,
and ICER. He is a reviewer for many computing
education journals and conferences.

VOLUME 9, 2021

