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ABSTRACT Convolutional neural network (CNN) models have recently demonstrated impressive classi-
fication and recognition performance on image and video processing scope. In this paper, we investigate
the application of CNN to identifying modulation classes for digitally modulated signals. First, the received
baseband data samples of modulated signal are gathered up and transformed to generate the constellation-like
training images for convolutional networks. Among the resulting training images, the proposed convolutional
gray image is preferred for network training and inference because of the lower computational burden.
Second, we propose to use a multiple-scale convolutional neural network (MSCNN) as the classifier.
The skip-connection technique is deployed for mitigating the negative effect of vanishing gradients and
overfitting during the network training process. Numerical simulations have been carried out to validate the
effectiveness of the proposed scheme, the results show that the proposed scheme outperforms the traditional
algorithms in terms of classification accuracy.

INDEX TERMS Convolutional neural network, automatic modulation classification, deep learning.

I. INTRODUCTION
In modern wireless communication systems, the modulation
type of transmitted signal is mandatory for a receiver to suc-
cessfully demodulate the original transmitted message. Con-
ventional way of doing this involves sending a header or pilot
signal along with the original message to inform the receiver
about the modulation type. However, such approach incurs
penalty in terms of bandwidth utilization and data throughput.
While intelligent receivers can mitigate this drawback by
intelligently pre-processing the received signal to identify the
modulation type of the transmitted signal with no need of
prior knowledge. This has led to huge interest in developing
automatic modulation classification (AMC) techniques [1],
which is actually an intermediate step between signal detec-
tion and demodulation. It is usually preferred in adaptive
modulation scenarios such as software defined radio (SDR)
and cognitive radio (CR) [2], where the transmitted modu-
lation can be dynamically chosen such that the spectral effi-
ciency is constantly optimized. NowAMChas found a variety
of applications in both commercial and military fields such as
spectrum management, surveillance and threat analysis.
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Over the past few years, numerous methods for AMCwere
proposed in the literature [3]. They can be mainly divided
into two categories, namely, Likelihood-Based (LB) meth-
ods [4]–[6] and Feature-Based (FB) methods [7]–[11]. The
former treats AMC as a hypothesis testing problem, where
the exact or approximated likelihood function of the incoming
signal is calculated and compared with a threshold value.
Note that if the probability density function (pdf) of the
received signal is known and identical to the actual pdf of
the parameters, the LB method yields the optimal solution in
terms of correct classification rate (CCR) since it minimizes
the probability of false classification. However, LB methods
usually suffer from model mismatch with respect to carrier
frequency and phase offsets [8]. In addition, the LB methods
always have a high computational complexity. So LB solution
serves as an upper bound performance benchmark of any
classifier, while they are commonly discarded in practical
use.

FB methods are popular in the practical implementations
because of the less complexity involved. Most of FB methods
usually consist of two steps, the first step involves extract-
ing features from the received signal. In the second step,
a linear or nonlinear classifier is designed to perform the
classification. Numerous features with their respective merits
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and defects were proposed. Among them, the most used
are high-order cumulants [6]–[8], wavelet transform [9], and
cyclic statistics [10]. As for the classifier, machine learning
algorithms, such as support vector machines (SVM) [11],
K-nearest neighbor (KNN) [8], and artificial neural net-
works [10], have been widely studied for inference. Whereas
these methods were developed and optimized for some envi-
ronments, they suffer from performance degradation for mis-
match between extracted feature and classifier because the
feature selection procedure and classification are independent
of each other. The quality of the whole AMC relies on both
the performance of classification algorithm and the ability of
the features to differentiate between the constellations of a
given set. Obviously, the features that are insensitive to the
inherent parameters of the received signal such as the phase
and frequency offsets, the synchronization, and the noise are
preferred. Unfortunately, such properties are rarely achieved
by manually designed feature under various conditions.

More recently, studies have shown that deep neural net-
works (DNN) can learn from the complex data structures
and achieve superior classification accuracy [12]. This makes
them an obvious choice in AMC problem because of the
much denser modulation schemes used in the modern com-
munication system. Kim used a fully connected model with
three hidden layers [13]. To feed the DNNmodel, twenty-one
features are computed from the received data samples based
on power spectrum density and cumulants. Ali proposed a
fully connected DNN model based on autoencoder with non-
negativity constraints [14], where the input features are fourth
order cumulants. Note that the fully connected DNN model
always involves toomany free parameters to be trained, which
usually results in high computational load for network learn-
ing and inference. In addition, the above DNN model used in
AMC only serves as a classifier, which is still independent of
feature extraction.

Recently, the convolutional neural network is more pop-
ular for modulation classification to overcome some obsta-
cles of traditional machine learning algorithms. As for CNN
based AMC, the feature extraction procedure is incorpo-
rated into CNN model, the model extracts feature from data
autonomously, then the challenging task of manual feature
selection can be avoided. CNN-basedmethods can be roughly
divided into two categories according to the input of net-
work. One was trained using IQ component signals, while
the other was trained using image-based constellation dia-
grams. For example, a complex-valued network [15] consid-
ered the correlation between the real and imaginary parts of
signal, is proposed to demonstrate the high potential for AMC
and validate the superior performance compared with the
real-valued network. However, a complex-model has a higher
computational complexity because of the plenty of complex
valued multiplications involved. Huyunh-The [16] proposed
a cost-efficient convolutional neural network (MCNet) for
AMC, whose input is IQ components and network archi-
tecture is built with several specific convolutional blocks to

concurrently learn the spatiotemporal signal correlations via
different asymmetric convolution kernels. Although the accu-
racy performance was good, thousands of parameters were
used in the network, which is still large relative to the small
IQ length. Kim et al. [17] proposed a novel CNN architecture
for AMC with low computational complexity compared with
MCNet. The proposed model showed good performance in
the SNR range from −4dB to 20dB.

Compared with IQ component-based model, image-based
model is more elegant for AMC, because it can provide the
visualization of modulation categories. Huang et al. proposed
a compressive CNN (CCNN) for AMC [18], where multiple
images (called RCs and CGCs) are utilized as the input of the
network. The CGCs further considered the two-dimensional
probability distribution of signal samples on the basis of RCs.
However, there are still two limitations. First, the location of
each sample within a grid region is not considered. Second,
the impact of each sample in a region on its neighboring pixel
is ignored. To handle these problems, Doan [19] leverages
a bivariate histogram and an exponential decay mechanism
to obtain gray-scale constellation image. Meanwhile, a novel
CNN model, namely FiF-Net, is introduced for modulation
classification. However, the computation burden of generat-
ing an image is higher since it must compute the distances
between sample points and the center of each pixel. In [20],
modulation classifiers are developed based on transfer learn-
ing of classical ResNet-50 and Inception V2 deep learning
model, where the classifiers are trained with color images
generated through the constellation density of the masked
signal. The constellation density matrix (CDM) based mod-
ulation classification algorithm is proposed to identify the
orders of different modulation categories. Despite exploiting
more explicitly discriminative features of constellation dia-
grams, modeling a modulation classifier from color image
suffers from poor performance along increment of QAM
at lower SNR level. In [21] the transfer learning of clas-
sical AlexNet and GoogleNet are adopted for AMC using
multiple constellation-like image data sets. As for the CNN
based AMC, the training images generation is crucial for
model learning. Unfortunately, the constellation diagrams
generated from data samples are binary images with lim-
ited resolution, or enhanced gray (color) images with high
computational load. Moreover, classical large CNN models
are actually inappropriate for AMC problem since the con-
stellation diagrams of the incoming signals are relatively
simple images with uniform background, training of these
models based on constellation-like images probably result in
overfitting.

In this paper, we focus our attention on the CNN based
AMC problem. In order to overcome the aforementioned
drawbacks, the constellation-like convolutional gray images
are generated for model training, which exhibit better rep-
resentation than binary images and other existing gray
images. Moreover, the multiple-scale convolutional neural
network (MSCNN) with dropout is proposed as the classifier.
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II. PROBLEM FORMULATION
We assume that the radio frequency (RF) signal in the receiver
is preprocessed such that the received waveform consists of
samples of prefiltered and pulse shaping digital signal in
multipath fading channel. The oversampled data point reads

r(n) = αe(j2π fonTs+ϕo)
L−1∑
l=0

s(l)h(n− lT − n′)+ w(n) (1)

where α represents the channel attenuation factor, {s(l)}L−1l=0
are L complex transmitted symbols drawn independently
from a finite alphabet constellation, h(n) represents the over-
all effect of pulse shaping filter and physical channel, w(n)
is additive white Gaussian noise with power σw2, fo is the
carrier frequency offset due to the impairment between trans-
mitter and receiver, ϕo is the phase offset, n′ represents the
propagation delay, T is the symbol period, Ts is the sampling
period, then the oversampling rate is given by ρ = T/Ts.
In this paper, we assume that the channel is flat fading or be

properly equalized such that h(n) is negligible and the param-
eters T and n′ are assumed to be known. The goal of AMC is
to identify which modulation scheme has been utilized with
the knowledge of N received samples r = [r(1), . . . , r(N )].
A CNN based AMC technique for adaptive modulation sys-
tem is shown in Fig. 1, where the imaging method for data
conversion and the training of CNN model are critical points.
In the sequel, the focus will be on these two points.

FIGURE 1. The architecture of CNN based AMC technique for adaptive
modulation system.

III. TRAINING IMAGES GENERATION
The received signal in equation (1) can be represented by its
constellation diagram through mapping signal samples into
scattering points on a complex plane. Note that the complex
plane is infinite, while the signal samples represented by
the scattering points are distributed within a certain area in
the complex plane. Moreover, the amplitude of the received
signal varies from different channel responses and modula-
tion types, which makes the selection of appropriate area for
constellation diagrammore difficult. If the selected area is too
small, some signal samples may be excluded from the image.
On the contrary, if the area is too large, signal samples may
crowd a small region, which makes it difficult to discriminate
the higher order modulation types.

In order to solve this problem, we compensate for the
arbitrary channel attenuation by normalizing the received
complex baseband samples as (r(n)− µr )/σr , where µr and
σr are the mean and standard deviation of received samples.

After that, the signal samples are distributed in a relatively
fixed area, which is convenient for us to choose an appropriate
complex plane. We select a 6× 6 complex plane, assuming a
typical signal-to-noise ratio (SNR) range from 0 to 15 dB.

A. BINARY IMAGE
According to the distribution of signal samples in constella-
tion diagram, a pixel limited binary image is straightforward.
In this case, the selected complex plane is uniformly divided
into grids, which correspond to pixels in the resulting binary
image. Naturally, if the grids contain signal sample points,
the corresponding pixels are set 1, otherwise 0. Then the con-
stellation diagram of the signal is converted to binary image.
However, there might be multiple samples that crowded one
pixel, in this case the pixels with one or more sample points
are treated identically. So binary image is unable to provide an
accurate representation of the distribution of signal samples.

B. GRAY IMAGE
For a pixel of binary image, the number of sample points
in corresponding grid has been ignored, which degraded the
resulting image quality. In order to improve the represen-
tation accuracy of the pixels with multiple sample points,
the binary image can be upgraded to gray image by regarding
the number of sample points as the weight coefficient for the
pixels with multiple sample points. The multiple pixels with
different number of sample points are shown in Fig. 2. For
a gray image, the pixels 3, 6, 13, 14 will have the weight
coefficients 1, 2, 4, 3 respectively, which can be normalized
to form the intensity value for these pixels.

FIGURE 2. Sample ponits and pixels.

C. ENHANCED GRAY IMAGE
Although the number of samples in each pixel is con-
sidered in the gray image, the impact of each sample
in a pixel on its neighboring pixels is neglected. Hence,
an enhanced gray image is developed, which takes into
consideration the distances between sample points and cen-
troids of pixels. Concretely, it adopts an exponential decay
model, oij =

∑N
n=1θ

−λd(n,ij) , where oij represents the cumu-
lative impact of all received sample points on (i, j)th pixel,
d(n,ij) is the distance between the centroid of (i, j)th pixel and
sample point r(n), θ is the base of exponential function, and λ
is the decay factor. oij can be normalized to form the intensity
values to generate an enhanced gray image.
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D. CONVOLUTIONAL GRAY IMAGE
The enhanced gray image greatly improves the image quality
for the subsequent classification procedure. However, it has
two limitations. Firstly, for the pixels located in the boundary
between two adjacent constellation points, there are usually
rare signal sample points available in the corresponding grids,
then the boundary pixels commonly have very small intensity
values relative to the constellation point pixel, which is useful
to identify the different constellation diagrams. Whereas,
the enhanced gray imaging model still compute the cumu-
lative impact of all data samples on the boundary pixels. This
results in a dim boundary between two adjacent constellation
point, and hence it is difficult to identify the higher order
modulations in noisy channel. Secondly, according to the
enhanced gray imaging model, the computation of intensity
of each pixel involves the distance from the corresponding
grid to all data samples and the subsequent N exponential
operation. When the number of signal samples N is large or
a higher resolution is preferred, the computational burden of
enhanced gray image will be prohibitive for the generation of
a large amount of training images for deep model.

FIGURE 3. Resulting image in natural coordinate system and graphic
coordinate system.

In order to overcome the aforementioned drawbacks,
we put forward a convolutional gray image generation
method, which is based on the simple convolution operation
of local gray image. First, let us build a gray image R(i, j)
using the received complex-valued signal r(n) with N data
samples. Let b denote the selected boundary of the complex
plane, and 1 denote the grid size, which actually represents
the resolution of the resulting image. Fig. 3 shows the image
in natural coordinate system and graphic coordinate system.
For a certain sample point r(n), it contribute to the corre-
sponding pixel by

R(i, j)←− R(i, j)+ 1 (2)

where the graphic index i and j are related to data sample r(n)
by

i =
⌈
b− Im[r(n)]

1

⌉
(3a)

j =
⌈
b+ Re[r(n)]

1

⌉
(3b)

where notation dxe denotes the smallest integer that is greater
than or equal to x. After that, the gray image can be obtained
by the following normalization procedure

R(i, j)←− R(i, j)/p (4)

where p is the maximum of R.

FIGURE 4. Schematic diagram of convolution filter.

Second, note that the constellation diagram of a modulated
signal actually represents the cluster of data samples. So it is
appropriate to take into account only the impact of surround-
ing data samples to the selected pixel, which represents the
local features for the modulated signal. In order to efficiently
calculate the locally clustered gray image, we propose to use
a convolution kernel W , which is shown in Fig. 4. It can be
seen that the stride of the convolution filter is simply set to the
image resolution1, and the size of the filter is determined by
positive integer A and B. The filter weight coefficients can be
evaluated by

W (a, b) = θ−λdab (5)

where dab = 1
√
x2 + y2 is the Euclid distance between the

(a, b)th element of filter and its centroid. The other parame-
ters are similar to that used in an enhanced gray image. The
reason why we choose the aforementioned filter is based on
the following. The enhanced gray image is actually obtained
by passing the signal samples through a 2D filter with infinite
size, because the impact of all data samples on the certain
pixel are evaluated. However, it is inappropriate to use such
a large filter since only the data samples that belong to the
certain constellation point contribute to the corresponding
pixel. So a 2D filter with finite size, say [A, B], is preferred,
which is expected to solve the dim boundary problem in
enhanced gray images. The computation of filter coefficients
in (5) reflects the fact that the data sample points closed to the
certain pixel have a greater impact than those far away from
the pixel.

Third, for the complex-valued received signal r(n), the pix-
els of convolutional gray image can be computed by

I (i, j) =
A∑

a=−A

B∑
b=−B

W (a, b)R(i+ a, j+ b) (6)

where I (i, j) represents the intensity of the pixel (i, j). By per-
forming a convolution operation instead, the computation
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FIGURE 5. Convolutional gray image for five modulation categories.

complexity for generating a higher resolution image will be
greatly decreased compared to enhanced gray image. More-
over, faster computation of (6) can be implemented via fast
Fourier transform in frequency domain. The resulting convo-
lutional gray images for different modulations are depicted
in Fig. 5.

IV. DEEP NETWORK FOR AMC
In modern communication systems, reliability is one of the
most import indexes to evaluate the system performance,
which demands a well-performed AMC model in terms of
classification performance. Hence, the multiple-scale archi-
tecture of a modulation classification convolutional neural
network, named MSCNN, is proposed to learn modulation
patterns from constellation like uniform background images.
The network architecture is presented in Fig. 6. The deep
network is specifically designed with several convolutional
blocks associated with skip connections, in which each block
comprises various asymmetric convolutional layers and com-
prised of one convolutional layer, followed by one batch nor-
malization layer and ReLU activation function. The proposed
network is capable of analyzing the multi-scale feature map
correlations exhaustively to promisingly improve the accu-
racy of modulation classification under poor conditions with
the cheaper computational cost. At the beginning of network,
an input layer configured by the size of 240× 240× 1 to
be compatible with the volume size of resulting image is
followed by a process block with 64 kernels of size 3× 3 to
acquire coarse features. With 2× 2 kernels, the first pooling
layer is able to reduce the size of the feature map to optimize
the extraction of the image characteristics with the stride of
(2, 2). Subsequently, two layers of process layers organized
in parallel, called pre-block as illustrated in Fig. 7(a), use
an asymmetric kernel matrix of kernel sizes 3× 1 and 1× 3
corresponding to vertical and horizontal kernels, respec-
tively, instead of 3× 3 to decrease the number of trainable
parameters. After that, the network consists of three modules
for deeply mining more explicitly discriminative features at
multi-scale feature maps. Each module has two sophisticated
process blocks, called M-block and M-block-drop respec-
tively, which are cascaded along the network backbone. For
details, M-block is configured by three process layers with
different kernels, 3× 1, 1× 3, 1× 1 kernels arranged in
parallel, at which all feature maps are then merged in the
depth dimension at the output of each block via depth-wise
concatenation layer. It is worth noting that the reason why
the spatial dimension of feature maps remains unchanged at
the output of M-block is that all kernels are applied with

stride (1, 1). Meanwhile, another dimension-reduced version
of M-block, named M-block-drop, is given with the same
structure ofM-block, except a dropout layer is carried out fol-
lowing a 3× 1 process layer as shown in Fig. 7(b). Notably,
different from the traditional CNN model, where the max-
imum pooling operation is applied in convolution blocks,
a dropout layer (rather than a pooling operation) follows
every convolutional block instead. This modified architec-
ture not only implements the down-sampling of the feature
maps, but also improves the robustness of the model against
the various additive noise. Moreover, it enables to prevent
the network training process from overfitting. M-block-drop
is also applied immediately after the pre-block to quickly
diminish the dimension of feature maps and subsequently
reduce the computational burden of following layers. As a
result, the feature maps go through the M-block-drop, whose
dimension before reaching the concatenation layer will be
halved. In order to be compatible with output of dropout layer
when performing depth concatenation, two remaining layers
are deployed with stride of (2, 2). Each block has two 1× 1
convolutional layer: one for feature extraction and another on
the top for reduction of the channel dimension. The module is
finalized with M-block-drop. By following this architecture,
the spatial size of output feature volume halves for every
module.

To improve the accuracy performance of AMC model for
mitigating the negative effect of vanishing gradient prob-
lem caused by popular ReLU activation function in a rel-
atively deep network and maintain the informative identity
of previous layers, skip-connection technique is deployed
for associating M-blocks via an element-wise addition layer
as described in Fig. 6. Unlike the traditional structure of
network, skip-connection mechanism allows the network to
learn the integrated information. At the end of network,
the feature maps of the last M-block are gathered with
its input by a depth concatenation layer. It is obvious that
multiple scale features extracted in each block and the
informative identity maintained throughout the network via
skip-connection are jointly synthesized to enrich the AMC
model. MSCNN can overcome the problems of vanishing
gradients and overfitting during the network training process.
The network is finalized with an average pooling layer with
the pool size of (2, 2), a fully connected layer (where the
number of hidden nodes is identical to the number of modu-
lation categories considered for classification), and a softmax
layer arranged sequentially after the fully connected layer.
The detailed configurations of MSCNN are given in Table 1.

V. RESULTS
The simulation settings are as follows: 1) complex base-
band modulated signal are obtained from the output of addi-
tive white Gaussian noise (AWGN) channel with four noise
level (the corresponding SNR is 0dB, 5dB, 10dB, 15dB);
2) 1000 data samples are collected to generate the gray
image, enhanced gray image and convolutional gray image
respectively, the binary image is ignored because of its low

62920 VOLUME 9, 2021



W.-T. Zhang et al.: Training Images Generation for CNN Based AMC

FIGURE 6. The overall network architecture of MSCNN.

FIGURE 7. Description of convolutional blocks deployed in the MSCNN. (a) the Pre-block; (b) the
convolutional M-block-drop; (c) the convolutional M-block; and (d) the structure of Process block.

resolution; 3) We consider the classification of 5 modula-
tion categories, including BPSK, OQPSK, 8PSK, 16QAM,
64QAM, each of which contain 20000 labeled images for
model training and 5000 labeled images for performance test.
Notably, the SNR of test dataset is different from that of
the training dataset (1dB-14dB for test data), which indicates
a more difficult scenario for classification model to predict
the modulation categories. Therefore, the test accuracy of a
trained network may not be high enough compared with the
results in existing literatures.

A. PARAMETERS SELECTION
For enhanced gray image and convolutional gray image,
the parameter θ and λ play an important role in imaging
process. In this section, we will discuss the parameters selec-
tion. The exponential functions (5) with different θ and λ
are plotted in Fig. 8. As shown in Fig. 8, the exponential
function decreases rapidly with a larger θ or λ, which have
an important effect on imaging. With the increment of θ or
λ, the equivalent support receptive field of convolution 2D
filter shrink in imaging process. Fig. 9 shows the effect of
different λ in generating convolutional gray images for BPSK
modulated signal under additive white Gaussian noise. One
sees that a smaller λ blurs the edge between two adjacent con-
stellation points. Especially at lower SNR, adjacent constel-
lation connected to each other due to the noise interference,

FIGURE 8. The exponential window evaluated at different θ and
λ: (a) λ = 1; (b) θ = e.

which makes it difficult for classifier to identify the modula-
tion type. Whereas a larger λ will produce lower resolution
gray images that is similar to binary image. So θ and λ are
tradeoff parameters between blurred gray image and binary
image. Fortunately, these parameters can be determined using
empiric values with a wide range.

Fig. 10 shows the resulting images by two different imag-
ing methods. We see that the convolutional gray image pro-
duced a sharper change than enhanced gray image between
light and dark, where sample density is different. This prop-
erty enables our method to yield a clearer edge between
two adjacent constellations under noisy interference scenario,
which is superior in modulation classification.
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TABLE 1. Detailed configuration of network architectrue.

FIGURE 9. The convolutional gray image with different λ: (a) λ = 3;
(b) λ = 12; (c) λ = 50.

B. EFFECT OF IMAGING SCHEMES ON 64QAM
RECOGNITION
We present some simulation results to show the effect of
different imaging schemes. The reason why we show the
results of imaging schemes on 64QAM is that it is hard to
recognize among the aforementioned modulation categories.
In our simulation, the same set of complex samples is used

FIGURE 10. The generated images by different imaging methods: (a) the
enhanced gray image; (b) the convolutional gray image.

to generate three types of images, including gray image,
enhanced gray image, and convolutional gray image. For
each imaging method, corresponding images are fed into
MSCNN for training. Then 1000 test images are generated for
64QAM modulated signals with SNR=4dB. Table 2 records
the accuracy of three imagingmethods. As shown in the table,
the classification accuracy improves from 73.6% to 91.9%
if the convolutional gray image is utilized instead of the
gray image. Notably, despite achieving the greatest accuracy
of 91.9%, 64QAMsuffers themisclassificationwith 16QAM.

C. COMPARISON OF COMPUTATIONAL LOAD FOR
DIFFERENT IMAGING SCHEMES
In this example, we investigate the computational load of
imaging schemes, because this is a very important issue
for adaptive demodulation systems applicable in real time
scenario. The same set of complex valued data samples is
used to generate the gray image, enhanced gray image and
convolutional gray image respectively. For each imaging
method, we compare the impact of the number of samples and
different resolutions on imaging time, where the resolutions
we considered include 200× 200, 300× 300, 400× 400,
600× 600.

FIGURE 11. CPU time versus the number of samples under different
resolution images.

Fig. 11 plots CPU time versus the number of samples for
generated images with different resolutions. We see that the
imaging time of enhanced gray image significantly increases
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TABLE 2. Classification results of three imaging method for 64QAM with SNR = 4dB using MSCNN.

when the number of samples grows. In addition, it is sig-
nificantly higher than that of other imaging schemes under
the same number of samples and resolution, which validates
our analysis in section III. Concretely, when the number of
samples is 1000 and the resolution is 200, the imaging time of
enhanced gray image is more than five times of convolutional
gray image. The reason for its high computational load is that
it is obtained by evaluating the impact of all data samples on
each pixel with repeated exponential computations. Whereas
the proposed convolutional gray image avoids the repeated
exponential operation, and the convolution kernel is calcu-
lated just once and shared for each pixel. Moreover, we adopt
fast convolution operation with convenient implementation.

Note that the imaging time of gray image and convolutional
gray image keep almost constant under different resolution
when the number of samples increases. In addition, when
the resolution grows, the imaging time of gray image and
convolutional gray image slightly increases. We see that the
computational load of convolutional gray image is slightly
higher than that of gray image, the additional computational
burden lies in the convolution operation, which is computa-
tionally cheaper as indicated in the gap of CPU Time between
two imaging schemes.

FIGURE 12. Classification accuracy versus modulation types under
different images.

D. CLASSIFICATION PERFORMANCE OF MSCNN FOR
DIFFERENT MODULATIONS
We report the classification accuracy of MSCNN for five
modulation categories separately, where the numerical results
are plotted in Fig. 12. In general, the classification accuracy

increases along the increment of SNR levels. In our
simulation, the classification accuracy of low order modula-
tion categories, including BPSK, OQPSK, 8PSK, are 100%
under different imaging methods. Meanwhile, MSCNN on
convolutional gray image recognizes 16QAM and 64QAM
signals competently with the accuracy rates of 96.4% and
91.9%, respectively, at 4dB SNR. It is observed that the
classification accuracy keeps getting worse along increment
of QAM due to vulnerability of high-order modulation sig-
nal. For instance, the accuracy of gray image significantly
decreases over 16% when upgrading the QAM order from
16 to 64. As the worst modulation in our simulation, 64QAM
suffers the confusion with 16QAM. It is well known that
high-order modulations usually achieve high transmission
rate in wireless communication system, but the modulation
recognition of received signal will be less accurate due to the
fact that the distance between scattered points distributed in a
constellation map is narrower, and hence close constellation
points are vulnerable with noise.

As for the proposed convolutional imaging scheme,
by using an appropriate kernel the convolution operation
produces a gathering effect for each constellation point and
creates a clear edge between two adjacent constellation
points. Consequently, convolution gray image achieves a sig-
nificant increment in accuracy of 64QAM compared with
other images. At an SNR of 1dB, the convolutional gray
image achieves 4.9% and 18.3% improvement compared to
enhanced gray image and gray image respectively. It is not
surprising that the enhanced gray image shows higher perfor-
mance than gray image at the most of SNR levels.

E. COMPARISON OF DIFFERENT CLASSIFIERS
In this example, AMC algorithm using MSCNN model
on convolutional images is compared with that using the
SVM on different features extracted from the received sig-
nal, particularly SVM-7 and SVM-5 [8], and GoogleNet on
three-channel images [15]. The comparison result is plotted
in Fig. 13, where SVM-5 includes two sixth order and three
fourth order cumulants and SVM-7 includes three fourth
order cumulants and four sixth order cumulants respec-
tively. Observing Fig. 13, the MSCNN model achieves the
classification rate of 83.7% at 1dB SNR, which is bet-
ter than SVM-7 and SVM-5 by approximately 5.26% and
6.84%, respectively. For two machine learning algorithms,
the SVM-7 algorithm with more features employed slightly
performs better than SVM-5. However, SVM-7 has a higher
computational burden than SVM-5. In terms of inference
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FIGURE 13. Average classification accuracy of different classifiers versus
SNR.

TABLE 3. Comparison of capacity and inference time for different
networks.

time, SVM-7 spends 55% more than SVM-5 because it
should computemore features. It is worth noting that theman-
ual selection of features is a critical issue and affects classifi-
cation performance noticeably in classical machine learning
algorithms. However, the CNN-based algorithm even per-
forms better without manual feature selection. Subsequently,
we compared our MSCNN with FiFNet [19] for constella-
tion based modulation classification using convolutional gray
images. Observing the results in Fig. 13, we see that the
classification accuracy of the proposed model was better in
the SNR range from 1dB to 4dB, where the proposed model
improves classification accuracies of 2.5% at 2dB compared
with those of FiFNet. The network capacity and average infer-
ence time are summarized in Table 3, where inference time
is averaged over 5000 trials. It can be seen that MSCNN is
cheaper than FiFNet by approximately 34% of capacity (aka
the number of trainable parameters). However, the inference
time of both networks is almost equivalent. This is because
that both depth-wise concatenation and addition operations
are performed many times by MSCNN. Finally, the perfor-
mance of MSCNN using convolutional gray images is com-
pared with GooleNet using three channel images. We see that
MSCNN outperforms GoogleNet at the most of SNR levels.
This is not surprising because GoogleNet is a standard deep
network for general purpose applications, such as large scale
classification with more than 1000 categories. It is probably
not efficient for modulation classification using simple uni-
form background images. on the contrary, it will cause the
problem of gradient vanish or overfitting. In terms of capacity

and inference time, there is no doubt that GoogleNet is the
largest one.

FIGURE 14. Average accuracy of three types of images versus SNR.

F. CLASSIFICATION ACCURACY OF MSCNN FOR
DIFFERENT IMAGING SCHEMES
We investigate the performance of MSCNN for the generated
three type images. The classification accuracy for each imag-
ing method varied with SNRs is presented in Fig. 14. Note
that the convolutional image outperforms the gray image
and enhanced gray image within the SNRs less than 8dB.
In lower SNR cases, the data samples belong to a certain
constellation point cannot be gathered round in gray image
due to noise interference, while the enhanced gray image
gives rise to dim boundary problem. However, the convolu-
tion kernel with finite size is used to improve the aggregation
of interfered data samples and solve the dim boundary prob-
lem, and hence improved accuracy was observed. Concretely,
at an SNR of 4dB, MSCNN model on convolutional image
achieves 1.6% and 3.3% improvement compared with gray
image and enhanced gray image. Both convolutional gray
image and enhanced gray image considered the impact of
data samples on the selected pixel, but convolutional gray
image performs more accurately and requires less computing
resources than enhanced gray image. By deploying an appro-
priate kernel size, convolutional gray image achieves good
trade-off between accuracy and computational cost.

VI. CONCLUSION
In this paper, a multiple-scale convolutional neural network,
namely MSCNN, is proposed for constellation-based mod-
ulation classification. The network architecture consists of
several processing blocks to comprehensively learn more
intrinsic characteristics from constellation-like image. Mean-
while, the convolutional gray image is developed, in which
convolution kernel is deployed to overcome the drawbacks
in existing imaging schemes. The trained MSCNN on con-
volutional gray image dataset achieves the averaged clas-
sification accuracy of approximately 97.7% at 4 dB SNR.
With a well-designed network and effective imaging method,
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MSCNN on convolutional gray image outperforms other
models in terms of accuracy. For future works, the impacts
of interference and frequency selective fading channel will
be investigated.
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