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ABSTRACT Semantic segmentation is used in many fields like agriculture, medical imaging, and
autonomous driving. The paper proposes an end to end solution for efficient weeds and crop segmentation in
field environment application. The crop/weeds segmented output is utilized to generate a decision map for
variable rate fertilizer and herbicide application. Currently available models are memory expensive and do
not have real time performance unless enough computational power is accessible in field. We use Maximum
Likelihood Classification (MLC) and image processing techniques to label field images in three classes;
background, crop, and weeds. This data is processed through our modified U-Net, which improves the
semantic accuracy with reduced memory cost. We train our model with DICE loss and compare the results
with state of the art. We achieve 89.12% mean Intersection Over Union (mIOU) with 86.11%, 82.99%, and
98.23% individual IOU for crop, weeds, and background, respectively. Our proposed model uses only 15M
parameters which are 57M less than the state-of-the-art models with a compromise of 1% mIOU score.

INDEX TERMS Canola detection, weed control, maximum likelihood classification, dilated convolution,
depth wise separable convolution.

I. INTRODUCTION
Semantic segmentation is the understanding and classifica-
tion of image regions at the pixel level. It helps in getting
information about the objects in an image, and their estimated
locations. It is an important task in computer vision to know
object boundaries for precision applications. Deep Convolu-
tional Neural Networks (DCNN) have made it possible to
solve such high level problems. DCNNs like AlexNet [1],
VGG [2], ResNet [3], and Inception [4] are well known
architectures. These networks were originally proposed for
image classification but now they are also being used for
related tasks like translation and semantic mapping. These
networks extract deep features in an image to understand its
content. The information we get from semantic mapping is
helpful in many fields like autonomous driving [5]–[8], med-
ical imaging [9], [10], and precision agriculture [11]–[13].
In this paper, we use semantic segmentation to detect weeds
and crop in canola field images. The detection of weeds and
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crop helps in generating a map of the field which is used in
variable rate herbicides application.

One of the challenging tasks of performing semantic seg-
mentation is image labelling. In each field, type of crop,
weeds, and soil texture are changing. Moreover, the shape
of plant is changing with growth. These constraints make
it difficult to provide a general solution towards weeds and
crop mapping. For each crop and soil type we may need
to label data from scratch. Previously published dataset on
sugar beet crop for weeds detection, is more of an experi-
mental data [14]. With constant light, high definition, and
multi-spectral sensors the dataset simplifies the real field
environment challenges. It is not economical and scalable to
collect data under such constraints. Our targeted dataset is
collected using commercially available simple RGB camera.
The images are taken in uncontrolled environment and it
presents the real-field problem. While labelling the images,
equipment vibration caused blurring. The last season dead
plants and plant shadow posed significant challenge. Under
the given circumstances, vegetation extraction to remove the
background becomes extremely difficult.
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Considering the challenges of uncontrolled field condi-
tions data and less effective output of vegetation extracted
through manual indices, we use a semi-automatic and robust
procedure to segment background pixels. The extracted veg-
etation is fine tuned and processed in several steps to make
labelling of images time efficient. We segment background
usingMaximumLikelihood Classification (MLC) [15]. Once
the background is subtracted, we use noise removing tech-
niques to fine tune the extracted vegetation. After extracting
the vegetation, we add a human annotator in the loop to label
the minority class pixels. Once we have vegetation and one
class labelled (either crop or weed), we use image subtraction
to get other class labelled. In the final step, noise is removed
and missing pixels are labelled.

For weeds/crop segmentation task, we need a solution
which is cost effective in terms of computational and memory
resources for edge deployment. It should also perform at par
with the state of the art. The state of the art models have high
computational andmemory requirements.We propose amod-
ified version of U-Net [10] for the semantic segmentation.
To improve segmentation, we pass the input image through
three parallel Dilated Convolutional Layers (DCLs). This
process helps in the extraction of relevant cues like boundary
information and object connectivity which are important in
the segmentation task. These cues placge in semantic trans-
lation. Once we have the relevant features, they are pro-
cessed using traditional model but with improved accuracy.
We perform our experiments with ResNet-50 [3] as encoder
and use U-Net [10], SegNet [16], HRNet_Mscale [17], and
Deeplabv3+ [18] as decoder architectures. For training the
models, we use DICE loss to measure the overlap. To quan-
tify the improvements, a brief comparison is made. We also
perform computational cost comparison to describe the effec-
tiveness of the proposed modifications.

The major contributions of this work are listed below:
• A complete end-to-end solution for agricultural image
segmentation which includes semi-automated image
labelling for three class problem and crop/weeds seg-
mentation for a real-world agriculture data.

• An efficient light weight network that helps inmitigating
memory and performance issues for remote deployment.

The paper is arranged in 5 sections. In Section 2 we review
the related literature, Section 3 covers the labelling process
and model modifications. We also include ablation study in
Section 3. We discuss results and make comparison between
different models in Section 4. We conclude our work and
discuss the recommendations for future work in Section 5.

II. RELATED WORK
Semantic segmentation is an active research area. Most of the
research in this domain is related to autonomous driving. The
state of the art models use multiple streams to process infor-
mation like shape stream (residual shape processing blocks)
and regular stream (backbone architecture) [19]. Some of the
researchers use feature selection mechanism based on Gated
Convolutional Layers (GCLs) [20] to improve segmentation.

We provide literature review related to techniques focused on
improving segmentation.

Liu et al. [21] study the Neural Architecture Search (NAS)
for image segmentation. The search is performed on network
and cell levels yielding promising results for dense image
prediction. The NAS based design exceeds human proposed
networks given the large data. Stochastic gradient descent
is used for hierarchical architecture search. To target the
computational cost, constraint differentiable formulation of
NAS [22], [23] is used. They achieve 85.6% mean Intersec-
tion Over Union (mIOU) on the COCO dataset without the
use of pre-trained models.

DeepLab [24] uses DCL in which the filters are padded to
receive larger field. It helps in maintaining feature map with
higher resolution. Networks like Deeplabv3+ [18] employ
Atrous Spatial Pyramid Pooling (ASPP) module consisting
of four different DCL. Using different dilatation rates in
each atrous convolutional layer, this module probes features
at multiple scales of the input feature map. It uses bilin-
ear sampling to reproduce larger image translation. This is
not an effective way of upsampling because of its indepen-
dence from data. Zhi Tian et al. on the other hand provide
Data-dependent Upsampling (DUpsampling) technique to
improve the segmentation performance [25]. They provide
a low resolution path to correctly upsample the translation
mapping. Instead of computing the loss with a high resolution
ground truth Y, it is compressed through linear projection
to the size of translation output before bilinear upsampling.
They report a mIOU of 88.1% for the PASCAL VOC test set.
The disadvantage to this kind of upsampling is its poor gen-
eralization. DUpsampling is good for small label space but it
is unable to generalize complex or large label space because
of its strong data dependency [26]. Huikai Wu et al. propose
a Joint Pyramid Upsampling (JPU) to address this prob-
lem. JPU also confronts the challenge of high computation
complexity for DCL [26]. This type of upsampling focusses
on learning computationally less expensive and simplified
upsampling when it is fed with high resolution guidance and
low-resolution target image.

To construct the segmentation map, traditional segmenta-
tion networks are largely dependent on high level features
representation. The cost of extracting high-level feature rep-
resentation is reduced spatial resolution. Just considering
high-level features is not enough to achieve pixel level trans-
lation. Given high-level features, information about the spa-
tial distribution is also needed. This information is mainly
available in earlier layers. Skip connections help the model to
maintain spatial stability by sharing intermediate information
between layers. Given the fact that earlier layers not only pos-
sess spatial information but also low-level features, the selec-
tion of relevant information is very important. To extract and
process the appropriate information Xiangtai Li et al. pro-
pose Gated Fully Fusion (GFF) scheme [20]. The GFF uses
multilevel feature maps to generate enriched features with
high resolution. They achieve 82.3% mIOU on Cityscapes
dataset. Takikawa et al. process the information in regular
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and shape-based streams to improve the semantic map using
boundary information [19]. GCLs are used to extract and
fuse the useful information in shape stream. The high-level
features from different intermediate layers of regular stream
are used to learn the edges of semantic map. The high-level
features from regular stream and shape-based stream are
finally fused together using ASPP module. They report a
mIOU of 80.8% for Cityscapes dataset.

One of the key elements in training DCNN is using enough
examples to boost accuracy. Image augmentation like blur-
ring, zooming, and tilting is helpful in improving the results
but there can be better ways to achieve this goal. For example,
Y. Zhu et al. propose a joint adventure of image and label
propagation mechanism to scale up training examples [27].
The next pixel location is estimated using motion vectors
predicted using vector-based approach [28]. The fine-tuned
data is used to train DeepLabv3+ [18] reporting a mIOU
of 83.5% on Cityscapes dataset. In [29], a dual ASPP and
decoder are used to perform semantic and instance segmen-
tation. There are two major changes introduced in [29] when
compared to Deeplabv3+ [18]. One is introduction of an
extra low level feature branch for the decoder and second is
adding a 5 × 5 depthwise-separable convolution layer after
each upsampling stage.With score of 84.2%mIOU, this work
concludes that selectivity of low scale features is important
and can satisfactorily improve the results.

One ofmajor failures of the state of the art models is around
the boundary of object. For instance, in [30], erroneous pixels
are concentrated at boundary of the object. The number of
mistakes decreases with the increase of distance from the
boundary. In [30] a post processing technique is utilized
to refine the boundary errors using a direction map. The
SegFix [30] technique with HRNet+OCR [31] improves the
mIOU by 1% with almost real time efficiency.

Objects at different scales impact the model performance
for semantic segmentation.With simple encoder-decoder net-
works this problem is addressed in [32] and [18], [24], [25]
using pyramid pooling and dilated convolution, respectively.
This solves the object scaling problem, but introduces grid-
ding artifacts [33], [34]. Empty spaces in dilated filters reduce
the strength of the relationship between adjacent pixels. This
results in loss of spatial information. Thomas Ziegler et al.
propose solution to this problem by providing smoothing in
DCLs [35]. Before each DCL, interpolation filter is applied
on each input channel of the layer. It helps in extracting
more local information by introducing role from neighbour-
hood pixels. These methods rely on the last layer for scaling
features which has reduced receptive field. To counter this
challenge [36] and [37] leverage intermediate features to
understand scaling along with last layer. These techniques
use dilation and pooling, which result in patterned scaling.
The more aligned scaling is discussed in [31], [38]–[40].
The other way of extracting scaled information is to use a
joint network for different scaled images. The information is
then fused using different approaches like pooling and atten-
tion mechanism [41]–[45]. Recently, A. Tao et al. pointed

the failure of different segmentation techniques for objects
at multiple scales [17]. Generally, for large objects, these
techniques perform good for low resolution images and poor
for higher ones. In contrast, detection of small objects is good
in high resolution images. In [17], attention-based scheme is
utilized to blend the information frommulti-scale predictions.
The results achieved are state-of the art for Cityscape dataset
with 85.1%mIOU.

Asad and Bais propose MLC based image labelling mech-
anism for weeds detection in canola field images [13]. They
study different state of the art models to detect weeds in
canola fields. They state that SegNet [16] with ResNet-50 [3]
backbone performs better for weeds detection reporting a
mIOU of 82.88%. This work propose binary segmentation
solution with background and weed being the classes of
interest. They report a IOU score of 66.48% for weeds.
Milioto et al. propose a lighter network for weeds detection
in sugar beet considering an architecture similar to Seg-
Net [11], [16]. They initially process the 4-Channel input
image to extract different important information like indices
and gradient. This information is further processed through
the network to learn mapping. They report a mIOU of 80.8%.
Dilated convolution based networks are also used for weeds
and crop segmentation [46]. P. Lottes et al. utilize odometry
information to select consecutive 5 images in a row. This data
is used in sequential module to extract arrangement of crop
and weeds. The encoded features from sequential module are
used to perform weeds and crop detection. This work reports
mean F1 score of 92.4%.

We aim to improve the segmentation for weeds detection
under a challenging dataset. We provide end to end solution
for weeds and crop segmentation including the labelling of
images at pixel level. The image labelling is semi-automatic
and only useful for agricultural images from same domain.
We develop a modified version of U-Net [10] with reduced
number of parameters and lessmemory. At input side, we pro-
pose parallel feature extraction mechanism using DCLs. This
technique extracts bigger connectivity of low-level features
from image using different dilation rate. One can think of
dilated filter as an approximation of large kernels but with less
parameters. These extracted features are helpful in improving
the segmentation using traditional network stream. We con-
vert each convolutional layer in a two-operation layer, point
wise and depth wise convolution. This helps in reducing the
number of trainable parameters. In next section we discuss
the dataset, labelling, detail of the model, and its design
rationality.

III. METHODOLOGY
We propose semi-automatic image labelling scheme for agri-
cultural images. We process data through multiple image
processing techniques to get a fine pixel level annotation for
the three classes, weed, crop, and background. We propose
extracting features using padded filter at different scale to get
a bigger picture of features. We utilize point wise and depth
wise convolution to reduce number of parameters. In the
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FIGURE 1. Dataset description and visuals: This figure highlights some of the key problem in dataset. The dataset has multiple uncontrolled field
environment challenges including but not limited to shadow (yellow rectangle in stage II image), late germinated plants (circled in last section of image)
and dead plants. The figure also gives an overview of how difficult this challenge is with changing growth of the plant.

following subsections, we describe the collection of datasets,
labelling tool, and the proposed changes in U-Net model.

A. DATASET COLLECTION AND CHALLENGES
Our dataset consists of 1000 images collected from multiple
canola fields at two growth stages. The first stage has two
unfold leaves and the second stage has five or more leaves.
The second stage also has late germination of canola plants.
The possible reasons of late germination are rain-fed irriga-
tion, different water levels, and variable rate seeding over
the field. The dataset is collected using a simple but high
resolution RGB camera mounted on a Quad. The image col-
lection process is designed to address the economic and com-
mercial constraints of data storage and transmission. Vary-
ing lighting condition and soil texture, plant and equipment
shadows, dead plants, occlusion, blurring, and multiple weed
types are some of the challenges in the dataset. We apply
multiple augmentation techniques to enhance the dataset.
Primarily, we apply blurring, cropping, rotation, horizontal,
and vertical flip operation to augment field and corresponding
semantic map. Artificially blurring the images helps mitigate

the problem associated with real world equipment. Rotation
and flipping the images change the distribution of data inside
image giving more examples for training.

Figure 1 shows images from two stages and their over-
lapped labels. The yellow circles and rectangles signify some
of the details in the dataset. Particularly, we highlight the
shape diversity within a same crop but from two stages. The
images having canola plants with four or less leaves are
categorized as Stage I. Images containing canola plants with
more than four leaves are categorised as Stage II canola. The
shadow in Stage II image is one of the challenges which may
result in bad performance for manual vegetation extraction.
One can also see the overlapping crop and weed plants in the
2nd last row of Stage II image. This is a difficult challenge to
address because sometime crop/weed is partially occluded.
The missing part is hard to reconstruct unless more informa-
tion is available. We approximate this problem by assigning
the label of top plant. It is difficult to inspect the plants at
early stage with naked eye. The yellow circles in Figure 1
show the late germinated plants. We can see that the late
germinated plants are not necessarily of the same shape as
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the canola plants in the Stage I. Given the limited data, the
late germinated plants may be minority class and can result
in low performance. As the growing plants change shape
overtime it is hard to understand the same plant at different
stages. We need large number of examples to understand
useful mapping.

B. IMAGE LABELLING
Image labelling is the very first task to perform while doing
semantic segmentation. It is time consuming and tedious.
We may end up labelling a large number of different types
of plants due to narrowly timed growth stages of plants.
Crop and weeds segmentation for different field type, area,
environment, and the stage of the plant require data labelling
from scratch. We devise a semi-automatic labelling protocol
to quickly and timely address this real-world problem. In the
proposed scheme of image labelling task, a field image is
passed through a number of image processing techniques
to reduce the human effort. In the first step, field image is
converted into binary approximation of vegetation and back-
ground. The dead plants, stones and soil are separated from
the vegetation and classified as background. The vegetation
extraction based on indices is not suitable here because of the
colour variation and shadows in the images.We tried different
indices but using them comes at a cost of losing valuable
information. We use MLC technique to classify the image
pixels in two classes. MLC is supervised classification tech-
nique using Bayes’ theorem [47]. As suggested in [13], train-
ing samples are taken from the mosaic made from stitching
the images. The training samples represent the background
and vegetation class. According to Bayes’ theorem [15], if we
represent class iwith ci and v as a measurement vector we can
write probability of class i given the feature vector v as:

P (ci| v) =
P (v|ci)× P(ci)

P(v)
(1)

The probability decides if the feature vector v belongs to
class ci. The goal here is to classify data in two classes,
the background and vegetation, making the classification as
binary decision. For binary classification we can write [15]:

v ∈ ci if P(ci |v) > P(cj |v) (2)

Equation 2 states that if the probability, P(ci|v), is the largest
the feature vector vwill belong to class ci. The total probabil-
ity P(v) can be calculated as:

P (v) =
N∑
n=1

P (v|ci)× P(ci) (3)

This gives us following equation:

v ∈ ci if P (v|ci)× P(ci) > P
(
v
∣∣cj)× P(cj) (4)

P (v|ci) is assumed to have multivariate normal distribution
and can be estimated from the training dataset [15]. Multi-
variate normal distribution for N-dimensional space can be

written as:

P (v|ci) = (2π )
−N
2 |Y i|

−1
2 e
−

(v−zi)
T

2 Y−1i (v− zi) (5)

Which for binary case simplifies to:

P (v|ci) = (2π)
−1
2 |Y i|

−1
2 e
−

(v−zi)
T

2 Y−1i (v− zi) (6)

where zi and Y i are mean vector and co-variant matrix,
respectively. Once the background is subtracted, images are
converted to binary representation with zero as background
and white as vegetation. This binary image has noise and may
include connected blobs of more than 25 pixels which are
not vegetation. Common techniques for noise removal like
median or averaging filtering are not very effective. These
methods help to remove noise but are not reliable to filter
bigger blobs which are neither crop nor weed. To get rid of
noise, we first find the connected blobs in the image and
calculate their areas. If the area of an 8-connected blob is
smaller than 25 pixels then it is removed. Once the image
is noise free, the next concern is edges of the blobs. While
converting the image into binary the reflection of vegetation
effects the boundary of the object. To tackle this problem,
we smooth the boundary by image subtraction. We first find
the perimeter of all the objects and then subtract it from the
noise free image.

Given a background subtracted image we label the easier
class by either drawing polygons or using the watershed
algorithm. The watershed algorithm [48] is used where there
is no occlusion problem. In watershed algorithm the con-
nected pixels can be assigned same value or colour. When
one of the class is labelled, it is used to generate the label
for other class using image subtraction. Once everything is
done we manually correct any missing labels. The process is
shown in Figure 2. The red blobs in binary vegetation image
represents the noise. The yellow rectangles indicate some
of the noisy pixels in the image. This noise is removed by
filtering the image based on the area of 8-connected blobs as
shown in Figure 2 (iv). The perimeter is extracted (as shown
in Figure 2 (v)) from the noise free image. This subtraction
results in smoothed image having less reflection around the
edges. It is presented in Figure 2 (vi). The green rectangle in
Figure 2 (vi) represents the area which we label by drawing
polygon. The red rectangle indicates the area where water-
shed algorithm is more suitable and time efficient. Based on
visual inspection of the image, minority class is decided and
labelled as shown in Figure 2 (vii). The majority class label
is shown in Figure 2 (viii). It is extracted by subtraction of
labelled image and noise free vegetation (Figure 2 (vi)). The
final fine-tuned label is achieved by combining the crop and
the weeds label. It is shown in Figure 2 (ix). This process,
on the average takes four to five minutes to label one image.
The time depends on the minority class pixels.

C. DILATED U-NET
After completing the image labelling task, the next task
is to learn the semantic mapping from the field image.
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FIGURE 2. Step by step Semi-automatic Image Labelling for Agriculture Images, the process shows the output of each
operation applied to achieve the final label. Vegetation is extracted from the field image using MLC [15] which is then
processed through a two-step noise removal process. The minority class is labelled through human annotator, the label for
third class is obtained by image subtraction.

We experiment with basic segmentation networks such as
SegNet, U-Net, and Deeplabv3+ with ResNet-50 as back-
bone. SegNet and U-Net are the well-known architectures
for semantic segmentation. Both models use skip connections
to share the information from previous layers. The informa-
tion shared by U-Net is more detailed than that of SegNet.
SegNet only shares the pooling indices. These architectures
with traditional feature extractors are not reliable for seman-
tic segmentation. One of the reasons of poor performance
is losing spatial configuration. While extracting deep and
high-level features, we end up having reduced feature space.
With reduced feature space it becomes difficult to construct
a good object representation as semantic map. Although the
skip connections share some of the information to maintain
the spatial stability but they are not very helpful.

Another problem of these architectures is their reliance
on high level features to generate results. The shape-based
feature and high-level information are extracted collectively.
This confuses the architecture to perform well. While seg-
menting the object, boundary of the object is of concern.
It makes shape-based features ofmore interest. To get a bigger
picture of the connected blobs, one of the solutions is learning
bigger kernel to extract the boundary information. Increasing
the filter size adds more parameters to learn and increases
the computation cost. The other way to get an approximate
bigger picture is to use dilated convolution where padded

filters are used to extract the low-level features. If the dilation
rate is d , there will be d−1 zeros added in the filter. 1D dilated
convolution for a kernel k is given below [35]:

O[i] =
Z∑
z=1

X [i− d · z]k[z] (7)

where O represents output and X is the input vector. A 2D
visualization of dilated filter with different dilation rates is
given in Figure 3(a).

The connectivity of the object and shape information is
very important in semantic segmentation. The information
about the connectivity of object can be extracted using large
kernels, but it is computationally expensive and requires more
memory. We assume that if the feature extractor is fed with
shape enriched information, it can perform better. Based
on our assumption, we propose modified version of U-Net.
We add three parallel layers at input side with dilation rate
of 2, 6, and 9 to extract features at multiple scales. We use
ResNet-50 as feature extractor where in every middle layer
of identity block a dilation rate of 2 is used. Figure 3(b)
shows themodified identity block in ResNet feature extractor.
We use U-Net like skip connections with nearest-neighbour
upsampling technique. The feature vectors from skip connec-
tion are fused using concatenation layer at different scales
of decoder. To reduce the number of parameters, we convert
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FIGURE 3. Dilated Filter representation [49] and modification within ResNet feature extractor, in Figure
(b) X represents the number of channels in the input and D_rate is the dilation rate.

all convolutional layers to be depth wise separable [50].
A depth wise separable layer performs convolution in two
steps. In first step, the depth wise spatial convolution is per-
formed. It deals each input channel separately. In second step
point wise convolution is performed. The modified network
is shown in Figure 4.

Initially, we used cross entropy loss to train our mod-
els. This loss is not suitable for semantic segmentation task
because the total loss is averaged over all pixels. Given,
boundary information, size, and the shape of object as impor-
tant features, one cannot expect better tuning of the model.
Also, if the dataset is unbalanced the task of semantic
segmentation becomes more challenging. Although dataset
imbalance problem can be addressed using weighted cross
entropy, but this loss is still incompatible due to its discrete
nature. The discrete nature means it deals with the individual
pixel classification but not area overlap measure. DICE loss
on the other hand provides a score of how much area of an
object is classified correctly. We train our model globally
using DICE loss proposed in [51]. With the DICE loss the
model adjusts the weights to increase the overlap between
prediction and ground truth. The DICE loss can be calculated
using the following equation (8):

L(Ypred ,Ytrue) = 1− 1
C

∑C
c=1

2
∑N

i Ypredi,cYtruei,c∑N
i Y

2
predi,c

+
∑N

i Y
2
truei,c

(8)

where Ypred ∈ [0, 1] is predicted probability, the softmax
output, and Ytrue ∈ [0, 1] is the ground truth. N represents
the number of pixels and C denotes the total number of
classes. We train the models for 200 epochs and use Adam
optimizer with learning rate 0.0001. Initially, we perform
our experiment using stepwise learning rate decaying policy.
Using this policy may lead to optimization instability because
of its discontinuous nature. Then, we change it to polynomial
rate decay as it is smoother and leads to better results.

D. ABLATION STUDIES
In this section, we present selection of different architectural
components. We conduct several experiments to analyse the

design component of the proposed model. We performed all
our experiments with ResNet-50 [3] backbone.

We start with simple ResNet-50 based U-Net. We train the
model using Categorical Cross Entropy (CCE) loss. Using
CCE loss, results in mIOU of 82.4%. Our dataset is highly
imbalanced and CCE loss is not suitable as it assigns more
weightage to correctly predicted class. Instead of CCE loss
we use overlap measure (DICE loss) as penalty. This loss
performs well for imbalanced data because it computes loss
over misclassified object area. In comparison to CCE, using
DICE loss improves the results from 82.4% to 88.73%.

To make the network lighter we convert all the layers
to depthwise-separable convolutional layers. This results in
less trainable parameters with a compromise on performance
reporting 84.36% mIOU. To tackle this challenge, we intro-
duce dilation rate of 2 in middle layer of each of the identity
block in ResNet-50. This extracts the alignment related fea-
tures encoded within the deep feature vector. This improves
mIOU by 2%.

With a mIOU of 86.54% we are looking to achieve more
robustness in the results. We introduce parallel dilated input
layers to extract low level features to help the model to
process shape-based features within the same stream.We per-
form experiments with different number of input layers.
While doing experiments, we try to strike balance between
performance and model complexity. To accomplish this,
we keep the number of filters same i.e., 64 and change the
number of input dilated layers. We test 2, 3, and 5 input
layers to find a suitable combination. We keep dilation rate
at 2, 6, 9, 12, and 15 for each addition of layer respectively.
Addition of parallel dilated convolution layers improves the
results by more than 2% with minor increment in number
of parameters. This is true for all the three combinations of
layers. Table 1 gives an overview of performance evaluation
using mIOU, number of parameters, Floating Point Oper-
ations (FLOP), and memory consumed. We have included
the details of modification and the results achieved under
specific configuration. We start with a model with memory
of 152.7MB and 170.5B of FLOPs. This model has 38.04M
parameters that are reduced to 15.22M by converting all the

VOLUME 9, 2021 59747



H. S. Ullah et al.: End to End Segmentation of Canola Field Images Using Dilated U-Net

FIGURE 4. Modified U-Net, the skip connections represent the information sharing in the direction of arrows. Decoders has
six blocks of upsampling, depth-wise separable, and normalization layers with 512, 256, 128, 128, 64, and 64 filters each.
All the layers has filter size 3× 3 other than the parallel layers where we use 7× 7, 5× 5, and 3× 3 shaped filter. The
number of kernels in last layer is equal to number of classes which are in our case 3.

TABLE 1. This table reports the experimental evaluation and design parameters of the model. All the models are based on U-Net (ResNet-50). CCE
represents categorical cross entropy, DICE is the overlap measure. DS Convolutional layer represents depth-wise separable convolutional layer. This
evaluation represents the detailed designing parameters of the proposed model. The ↓ and ↑ arrows represent the best value trend. The columns having
↓ arrow represent that the minimum is the best. The ↑ arrow represents that highest is best.

layers to depthwise separable convolutional layers. The new
size of the model is 61MB. The addition of parallel low
feature extraction mechanism uses almost 0.03M parameters
making the total parameters 15.25M and memory 61.5MB.
Provided the less trainable parameters the FLOPs drops from
170.5B to 54.44B which is more than 3× drop. Although
using two parallel layers has less parameters and FLOPs
compared to three and five but it has less performance score.
With only two parallel layers, model reports an overall mIOU
score of 88.68%. Adding three parallel layers instead of two,
increases the parameters and FLOPs by 0.01 M and 1.69
B respectively. The results are promising for three layers

with an improvement of 0.44%. Adding five layers instead
of three or two does not improve performance. We select the
best trade off between all the limits and choose the model
with three dilated parallel layers. The architecture with three
parallel layers achieves 2.58%overall improvement. The cho-
sen model shows nearly equal performance compared to best
performing heavy weight model.

IV. RESULT AND DISCUSSION
We perform extensive experimentation to evaluate different
models. We use 75% of the data for training the model and
15% for testing, and the rest of the data is used to validate the
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TABLE 2. Comparison of different models with our model is briefly described in above table. Based on the results above, our model is more confident in
detecting weeds and background with a score of 92.4% for weeds and 99.45% for background. In overall picture, HRNet_Mscale performs better with
mIOU of 90.34%.

model. Keeping in view the memory constraints, we split the
high-resolution images in four tiles of size 800 × 512 each.
We use this data to train themodel and save themodel weights
with best validation set accuracy. Once the model training
is done, we collect our quantitative performance measure
on test data. Accuracy is not a good measure for semantic
segmentation. Although it is classification task but given the
imbalanced data, even an accuracy of more than 90% does
not mean anything as most of the pixels belongs to back-
ground class. For this reason, we use IOU score and Average
Precision (AP) to compare the performance of the models
on test data. AP gives a measure of confidence of model
under different thresholds. Whereas, IOU score measures the
overlap between the ground truth and prediction. It can be
calculated by Equation 9:

IOU =
Ytrue

⋂
Ypred

Ytrue
⋃
Ypred

(9)

We report the individual and mean IOU score for weeds and
crop detection in Table 2. HRNet_Mscale [17] has the best
numbers with mIOU of 90.34% with 89.32%, 85.36%, and
96.33% for crop, weed, and background, respectively. Our
proposed modifications in U-Net model not only achieve
comparable performance but also reduces the number of
trainable parameters. We have included AP in Table 2 for
individual class. In AP, the proposed model show overall
higher confidence by 0.5% comparing with the second-best
benchmark model. The important thing is to note the AP for
weeds classification, for the proposed model it is higher by
1.33% compared to state of art indicating our model is more
confident in weeds detection.

HRNet_Mscale [17] with mIOU of 90.34% shows excep-
tional results. For IOU, it outperforms in crop and weeds
detection by 2.47% and 1.04% respectively compared to
second best. In contrast, the overall AP is higher for
modified-U-Net. Our model is more certain about the positive
detection given themAP of 95.33%. The proposedmodel lags
in AP for crop class by a score of almost 1% in compar-
ison with HRNet_Mscale. Although HRNet_Mscale shows
good performance for overlap measure but it is less certain
about the class of specific pixel. It is also not practical for
our application which requires a light model with a given

compromise on accuracy. Our model shows nearly equal
performance compared to other state of the art models having
more parameters. We miss some of the late germinated plants
in the labelled data.Majority of the examinedmodels not only
understand the labelled data but also help in improving the
ground truths by pointing out the mistakes or missed labels.
The trained model can also be used to ease the labelling
process. The model trained on small data can help reduce the
effort needed to label the minority class pixels. With no or
very little fine-tuning, one can label the images efficiently.

TABLE 3. This table represents comparison of model performance with
different memory and computation power constraints. Our model has
only 15M trainable parameters and barely occupies space on a remote
device. It is also computationally efficient so provides time efficient
response.

Table 3 shows comparison of the models based on their
evaluation score (mIOU) and computational complexity. The
proposed model only takes 15M parameters and perform
nearly equal to best performing model. The proposed model
reports 89.12% mIOU with 86.11%, 86.11%, and 98.23%
for crop, weed, and background, respectively. There is a
compromise of 1% overlap score compared to best per-
forming model with an achievement of 56.85M reduction in
parameter. The proposed model only require 61.5MB stor-
age and perform 54.44B multiply and add operation given
one image. The FLOPs for best performing model are 2.3×
more than the proposed model making it unfavourable choice
for a near real time response. The memory requirement for
model storage and deployment is itself significantly low
almost by a factor of 10 compared to the best performing
model.

The qualitative results are shown in Figure 5 and Figure 6.
The green represents crop and red colour indicates weeds.
As visible from the images in Figure 5, the soil texture and
crop size are varying. The figure reports the results based
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FIGURE 5. Qualitative results of three top performing models on different challenging images in the dataset. The figure shows results on blurry image,
image with shadow, multistage, and early-stage crop. In Fig. (a) DeepLabv3+ shows best performance for blurry images. Fig. (b) reports performance on
images with shadow, the propose model works better compared to Deeplabv3+ and U-Net. Part (c) shows visual results for images with multistage
plants, U-Net does not detect late germinated plants whereas Deeplabv3+ shows best performance. In Fig. (d) we report results on different soil texture,
the proposed model effectively captures this variance in soil and outperforms DeepLabv3+.

on complex scenarios related to technical and environmental
constraints. As discussed earlier the image acquisition mech-
anism can result in images with varying light, blurring of
the image, and shadow. These limitations are visualized in
Figure 5(a) & (b).
In blurred images, the difficulty is to exactly estimate the

object’s class. Our proposed model does not perform well
for these images. The likely reason is the information loss
in extracting deep features. DeepLabv3+ [18] shows bet-
ter performance on blurry images. An example is shown in
Figure 5 (a). Shadows in the images also make the segmenta-
tion task harder unless enough good examples are provided.
The U-Net [10], and SegNet [16] with ResNet-50 backbone
miss important information under the shade. Our proposed
model has better performance for images with shadow. Also,
it is evident from Figure 5 (b) that the U-Net mislabel the
object under shade. It is classified as background. On the
other hand, DeepLabv3+ and our modified model correctly
identify the presence of an object and its class that is the crop
in this case.

Shape of crop andweeds is changingwith growthmaking it
a challenging task for the model to segment plant at multiple
stages. In Figure 5(c) we present example image with crop
and weeds at different growth stages. U-Net [10], fails to
identify crop labels at early stage. In images with multi-stage
crop, U-Net [10], classify early-stage crop plants either as
background or weed, it gives poor comparison in term of
generalization. DeepLabv3+ [18] achieve better results in
detecting the weeds and crop at multiple stages (late germi-
nated plants) as shown in Figure 5(c).

Our model (modified U-Net) outperforms the remaining
models for changing background texture as shown in Fig-
ure 5(d). The soil texture primarily varies due to different
amount of water in the soil. Variations in background reduce
the model performance. As discussed earlier, dataset contains
two stages of canola crop. Results from both stages are
visualized in Figure 6. The second stage has late germinated
plants in which some of them are barely recognizable. If we
compare both stages, we can see that the first stage has some
resemblance with late germinated plants. This resemblance
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FIGURE 6. The late germinated crop and early-stage crop detection: The image in Fig. (a) shows prediction of late germinated plants available with in later
stage crop. Fig. (b) shows performance of the proposed model on early-stage crop. Our model shows better performance when only one stage is available
in the given image.

is not very prominent as the late germinated plants are from
multiple growth stages.

Looking at overall picture and visual examples it can
be concluded that DeepLabv3+ [18] outperforms other
models. U-Net [10] although provides second best mIOU
score but it is unable to detect the mislabelling in the
test data. The crop IOU for HRNet_Mscale [17] signi-
fies that performance of the model for crop is by far the
best among the compared models. In the end, given weeds
detection as an essential factor for variable rate herbicide
application, our proposed model provides a better trade-off
between generalization, memory, quantitative, and qualitative
results.

V. CONCLUSION
In this paper, we proposed a semi-automatic image labelling
mechanism at pixel level. This scheme is suitable for weeds
and crop discrimination in agriculture images. Field images
are classified in background and vegetation which are then
fine-tuned to remove noise. We label minority class by
drawing polygons and use image subtraction to get the
other class labelled. To achieve an easily deployable, and
memory and response efficient model, we modify classic
U-Net model. The modification achieves comparable per-
formance score. We extract features from the given images
using dilated convolution with three different dilation rates.
We report a mIOU of 89.12% for test data. Overall, in com-
parison with the best score, there is a decrease of 1.2%
in mIOU score. Our model uses 57M less parameters than
HRNet_Mscale [17].

There is still need of improvement in accelerating labelling
mechanism. We spend 4-5 minutes per image for labelling
which can become problematic task for large number of
images. We are exploring other ways of easing the labelling
process as proposed in [52]. This work needs efforts on
preparing the dataset. Other possibilities of extending this

work are, looking into a multi class segmentation task where
we assign class for each of the weed. Again, it requires tons
of images labelled at pixel level which is a time consuming
task.
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