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ABSTRACT Both non-equal trail lengths and non-zero initial errors are practical challenges to learning
control of robotic and mechatronic systems. Iterative learning to update input is still desired, because of the
repetitive motion nature of the controlled objects. This paper concerns with the adaptive iterative learning
control method for performing non-identical tasks. The time scaling technique is applied to normalize
non-equal trail lengths, while the error-tracking approach is adopted for copingwith initial errors. Theoretical
results for performance analysis are presented in detail. The uniform convergence of the tracking error
is examined, while boundedness of the variables in the closed-loop is characterized. It is shown that the
fully-saturated learning algorithm plays an important role in assuring uniform boundedness of the control
input. The proposed control design method does not require the magnitude transformation, and removes the
assumption of identical initial conditions. The time scaling technique is verified to be effective in assuring
the expected performance, for tracking tasks with non-equal trail lengths and initial errors.

INDEX TERMS Uniform convergence, initial condition problem, non-equal trial lengths, learning
algorithms.

I. INTRODUCTION
Iterative learning control (ILC) is to make full use of repe-
tition of tasks, and by virtue of learning, the control perfor-
mance is able to be improved effectively. Taking advantage
of the historical control experiences to guide the design of
controllers, learning strategies depend on the repeatable con-
ditions, instead of accurate knowledge about system dynam-
ics [1]. In the published literature, the contraction mapping
based ILCs are relatively rich in theoretical achievements,
embodied in forms of D-type and P-type learning algo-
rithms [2], [3]. Recently, based on the Lyapunov synthesis
approach, learning control theories have been developed to
relax some fundamental assumptions encountered, covering
a wide scope of research [4], [5]. Among others, with Adap-
tive ILC (AILC) parametric uncertainties can be handled
effectively. Such learning controls are on the basis of the
certainty equivalency principle, and the knowledge about
the structure of system dynamics is assumed for control
design [6]–[8]. It should be noted that most of the published
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works assume the linear-in-the-parameter uncertainty, which
might not be satisfied in certain applications. For further
development, the approximation-based design method are
applicable [9]–[11]. Up to now, many efforts have been made
for ILC designs for industrial robots and other practical
applications [12], [13].

The superiority and efficiency of ILC depend highly on
repeatability of the system operation. Yet, as often as not,
such strict requirements (e.g., the identical tracking target,
identical initial condition, identical trial length) may have
potential implementation problems, which are difficult to
be guaranteed in the implementation and limit the practical
application of ILCs.

Tracking iteration-varying tasks is challenging to the con-
ventional ILC. The situation where the tracking tasks slowly
varywith respect to iterationwas tackled earlier in [2], and the
robustness has been characterized for D-type, PD-type and
PID-type learning algorithms. The non-equal task problem
was addressed in the framework of AILC [14]–[16]. It is
found that for the parameter learning, the reference signals
are allowed to be vary with iteration, and the controller
design can be carried out with ease. The coinciding results
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of AILC designs in discrete-time domain were reported
in [17]–[20]. Recently, the robustness with respect to
iteration-dependent references has been established for dis-
crete learning algorithms [21].

A common assumption for ILC is the identical initial con-
dition that the actual initial state is required to be reposited
to the desired one at each iteration. Using a 2-D analysis
approach [22], sufficient conditions were derived to guaran-
tee both convergence of the learning process for a fixed initial
condition and boundedness for variable initial conditions.
Two treatment techniques were reported to copewith the arbi-
trary initial condition issue. One is the time-varying boundary
layer method [23], [24] and the other is the trajectory rectify-
ing strategy [25]–[27]. Utilizing the initial rectifying strategy
to adjust the desired trajectory that the initial segment of the
formed trajectory is jointed smoothly to the desired trajectory
at the selected position, it requires that both the actual trajec-
tory for each iteration and the desired trajectory take the same
initial value. As an alternative, instead of the state/output
tracking, an error-tracking based ILC method was proposed
in [28]. This method does not pose any requirement for the
initial value of the practical error trajectory, and arbitrary
initial shifts are allowed. As can be seen from the pub-
lished results, how effective can the error-tracking approach
be in dealing with problems arising from arbitrary initial
shifts [29].

Conventional AILC designs allow iteration-varying tasks
with equal lengths. In fact, the actual trial lengths of tasks
may vary from iteration to iteration in many applications,
and the conventional designs are no longer being applicable.
The main results reported in the recent literature consid-
ered the statistical property of trial lengths, i.e., a stochastic
variable with uniform probability distribution. However, the
probability is only used for the analysis, and the learning
control design requires none prior information on it [30], [31].
An iteration-average operator was introduced for the ILC
controller design in [30] such that control information of
previous trials can be useful for performance improvement of
current trial. The convergence both in almost sure and mean
square senses was established in [31], as long as the probabil-
ity of full-length iteration is not zero. In [32], the assumption
describes the random variable of the varying-length itera-
tions. By Lyapunov synthesis, it was shown that the adaptive
ILC scheme is effective for parametric nonlinear systems in
which the operation lengths vary randomly, under identical
initial conditions.

Learning can be more efficient when the knowledge
acquired is applied to the task that is similar to the learned
ones. In [33], a time-scale interpolation method was proposed
for the input torque profiles of robots obtained by learning
control, finding the input profile for a new reference trajec-
tory directly from the learned inputs corresponding to other
trajectories. With the use of time/magnitude scaling, direct
learning control strategies have been developed in [34], [35].
It was shown that the learning efficiency can be improved

significantly by utilizing the existing control experiences.
The main idea is that through both time and magnitude
scaling, the trial-varying reference trajectories can be nor-
malized to the trial-invariant ones, with equal trial lengths.
This feature was borrowed for conducting the AILC control
design, in [36], where the magnitude scaling is applied to
make the trajectories be transformed into those with the same
magnitude with respect to the same time scale, while the
time scaling is used to normalize the non-equal trial lengths.
For the contraction-mapping learning algorithms, in [37], the
time-scale transformation was shown to work well for a class
of nonlinear, control-affine systems where the trial duration
is bounded, but unknown a priori. It is well known that
one distinguished feature of AILC is that parameter learning,
instead of input learning, allows trail-varying reference tra-
jectories. Therefore, it is especially important to explore the
AILC design method without the magnitude-scaling trans-
formation, and characterize the convergence performance of
the parameter learning algorithms. In addition, in the related
works there is no effort made to address both non-equal
trail lengths and non-zero initial errors at the same time.
However, practical situations exist, e.g., a roboticmanipulator
which draws circles in Cartesian spacewith different radii and
periods.

In this paper, we focus our attention on the time scaling
technique for AILC control designs for tracking tasks with
non-equal trial lengths, where the error-tracking approach is
adopted in order to cope with initial errors. The performance
analysis is conducted and theoretical results are presented
in detail, by which the uniform convergence of the tracking
error is established, and boundedness of the variables in the
closed-loop is characterized. Numerical simulation is carried
out to demonstrate effectiveness of the proposed learning
control scheme.

The rest of this paper is organized as follows. In Section II,
the ILC problem to be addressed is formulated, which allows
non-equal trail lengths in the presence of initial errors.
In Section III, we present the time scaling technique, the
error-tracking control strategy, and the useful lemmas for
convergence analysis. In Section IV, both the ILC control
design and performance analysis are presented. In Section V,
the learning control design method is extended to the high
order nonlinear systems. In Section VI, the control perfor-
mance in dealing with the non-identical tasks is verified
by the numerical example. The conclusion is finally drawn
in Section VII.

II. PROBLEM FORMULATION
For simplicity of presentation, we address the problem of
trajectory tracking of a simple class of uncertain systems,
as an illustrative example. We shall show that the proposed
ILC strategy is able to learn from the non-identical tasks,
and the obtained results will be extended to the higher-order
systems.

60854 VOLUME 9, 2021



M. Sun et al.: AILC for Tracking Trajectories With Non-Equal Trail Lengths and Initial Errors

Consider the following nonlinear system with parametric
uncertainties:

1
g
dx(t)
dt
= u(t)+ θTφ(x(t)), (1)

where x is the scalar measurable state, u is the scalar con-
trol signal, g is the control gain of the system undertaken,
θ ∈ Rm denotes a vector of unknown parameters, φ ∈ Rm

represents a known state-dependent vector-valued function,
satisfying that φ is bounded as the state is bounded.
The following assumption about system (1) is made.
Assumption 1: The sign of g is known, and without loss of

generality, it is assumed that g > 0.
Taking into account the non-identical trajectories, in the

presence of initial errors and non-equal lengths, the control
objective of this paper is to make the system state xk (tk )
follow the given desired trajectory, xd,k (tk ), tk ∈ [0,Tk ],
as close as possible when k approaches infinity, where tk is
the time index and Tk > 0 is the trial length of the kth
trial. It is observed that, in comparison with the existing
works devoted to ILC methods, the desired trajectories are
even totally different between two cycles, since both the trial
length Tk and the initial value of xd,k (tk ) are allowed to be
iteration-varying.
Remark 1: It is worth noting that for an ILC system, its

learning ability is obtained through the update action at each
time instant along iteration axis, being able to learn from
whatever is invariant with respect to iteration. Obviously,
iterative learning algorithms are applicable for estimating
constant unknowns involved in system (1), in the absence of
initial errors, which allow the tasks to change with iterations,
but require them to be equal in length.

III. PRELIMINARIES
In this paper, we focus our attention on developing a
time-scaling learning strategy for system (1) to address the
tracking control problem with non-equal-length tasks. One
more challenge facing such a problem would be the presence
of initial errors.We adopt the time scaling technique to handle
non-identical tasks, while we use the error-tracking control
strategy to solve the problem of initial errors. As such, the
proposed learning control scheme works effectively for the
trajectory tracking.

A. TIME SCALING
We begin with the description for the time scaling technique
that would be useful for our control design to be presented.
Let us denote T the virtual trial length, and define the time
scaling as follows:

t =
T
Tk
tk , k = 0, 1, 2, · · ·

and

tk =
Tk
T
t, k = 0, 1, 2, · · ·

bywhich the trial intervals are scaled to be of a fixed duration,
T > 0. Thereby the iterative learning can be carried out over
an identical interval, i.e., t ∈ [0,T ].

Remark 2: For the developed learning schemes, let us
choose the virtual length, T . In the case that all trial lengths
Tk , k = 0, 1, 2, · · · , are known, actually we can choose the
length of any trial as the virtual length. In particular, two
typical choices are:

i) T = min{Tk , k = 0, 1, 2, · · · }; and
ii) T = max{Tk , k = 0, 1, 2, · · · }.

For case i), a length contraction is needed such that the
time interval is shortened from [0,Tk ] to [0,T ], whereas for
case ii) a length stretch is required for each trial interval.
The time scale is definitely a linear mapping for normal-
izing the non-equal trial lengths, which makes the problem
solvable.

By applying the time scaling, the smooth desired trajectory,
xd,k (tk ), can be written as

xd,k (tk ) = xd,k

(
Tk
T
t
)
, k = 0, 1, 2, · · · (2)

By denoting ξd,k (t) = xd,k (T−1Tk t), ξd,k (t) = xd,k (tk ).
Then, system (1) at the kth iteration can be expressed by

1
g
dxk (tk )
dtk

= uk (tk )+ θTφk (xk (tk )) , (3)

where tk ∈ [0,Tk ]. Similarly, using the time scaling gives
rise to

T
gTk

dxk
(
Tk
T t
)

dt
= uk

(
Tk
T
t
)
+ θTφk

(
xk

(
Tk
T
t
))

.

Denote ξk (t) = xk
(
T−1Tk t

)
, vk (t) = uk

(
T−1Tk t

)
, and

ψk (t) = φk
(
xk
(
T−1Tk t

))
. Then

T
gTk

dξk (t)
dt
= vk (t)+ θTψk (t), (4)

where t ∈ [0,T ].
With the aid of the time scaling, the original form of

system (3) is transformed into the normal form of (4), with
an identical trial length [0,T ].

B. DESIRED ERROR TRAJECTORIES
Let us define the tracking error as

ξ̄k (t) = ξk (t)− ξd,k (t).

It follows from (4) that

T
gTk

d ξ̄k (t)
dt
= vk (t)+ θTψk (t)−

T
gTk

dξd,k (t)
dt

. (5)

By the conventional design, the objective can be restated as
that, through finding vk (t) for the error system (5), the track-
ing error ξ̄k (t) is assured to converge to zero on [0,T ],
as k increases. Furthermore, to address the initial condition
problem, let us denote by ξ̃k (t) the error between ξ̄k (t) and
ξ∗k (t), where ξ

∗
k (t) indicates the desired error trajectory. Then

the ξ̃k -dynamics can be given as

T
gTk

d ξ̃k (t)
dt
= vk (t)+2T9k (t), (6)
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with

2 =

[
θT ,

1
g

]T
,

9k =

[
ψT
k ,−

T
Tk

(
dξd,k
dt
+
dξ∗k
dt

)]T
.

Remark 3: In comparison with (3), the gain T/Tk appears
in the left-hand side of system (6), indicates the impact of the
non-equal trial lengths.

Now the control objective can be stated as follows: Find the
input profile vk (t), t ∈ [0,T ], such that ξ̄k (t) follows ξ∗k (t) as
close as possible on [0,T ]. It is seen that as ξ̄k (t) converges
to ξ∗k (t), in the presence of arbitrary initial errors, ξk (t) will
converge to ξd,k (t) + ξ∗k (t). The transient and steady-state
specifications for the tracking error are the requirement
for ξ∗k (t).
The following assumption is made, which is only a

restriction on the setting of initial value of the desired error
trajectory, ξ∗k (0).
Assumption 2: The value of ξ∗k (0) is set to satisfy

ξ∗k (0) = ξ̄k (0), (7)

where ξ̄k (0) is the initial value of the tracking error, ξ̄k (t).
Remark 4: Assumption 2 implies that ξ̃k (0) = 0, which

is only a restriction on the initial value of the desired error
trajectory, but not pose any requirement for the tracking
error itself. What’s more, the initial value of the tracking error
is allowed to be given arbitrarily but bounded. In turn, the
system state is allowed to take arbitrary but bounded initial
value. This gives a significant advantage because there is no
restriction on the initial repositioning.

In order to satisfy Assumption 2, the desired error trajec-
tory ξ∗k (t), k = 0, 1, 2, · · · , can be formed as

ξ∗k (t) =

{
ξ̄k (0)ζ (t), t ∈ [0,1]
0, t ∈ (1,T ]

(8)

where 1 is the setting moment to connect the beginning
position and the desired trajectory, and ζ (t) is taken as a
smooth and monotonically decreasing function on [0,1],
which satisfies ζ (0) = 1 and ζ (1) = 0.
Remark 5: From (8), ξ∗k (t) is continuously differentiable

on the interval [0,T ], only depending on two factors, ξ̄k (0)
and 1. The initial error ξ̄k (0) is determined by the actual
state trajectory, while ζ (t) and 1 can be set to assure the
convergence performance of the desired error trajectory.
As ξ̄k (t) completely converges to the pre-specified error tra-
jectory ξ∗k (t) on [0,T ], ξk will completely track the given
desired trajectory ξd,k , for all t ∈ [1,T ]. In turn, xk com-
pletely tracks xd,k , for all tk ∈ [T−1Tk1,Tk ].

C. USEFUL LEMMAS
The following lemmas are helpful for the convergence
analysis to be presented, where Lemma 1 is found in
literature [38].

Lemma 1: Suppose {σk (t)} is an equicontinuous sequence
of function on [0,T ], and converges to zero pointwisely for
each t ∈ [0,T ], as k approaches to infinity, then {σk (t)}
converges to zero uniformly on [0,T ], as k increases.
When applying Lemma 1, we need to check the equiconti-

nuity of {σk (t)}, for which the following can be used.
Lemma 2: If σ̇k (t) is uniformly bounded on [0,T ], then
{σk (t)} is equicontinuous on [0,T ].

Proof: By virtue of the mean value theorem, for t ′, t ′′ ∈
[0,T ],

σk (t ′)− σk (t ′′) = σ̇k (t ′′′)(t ′ − t ′′),

with

t ′′′ = ξ t ′ + (1− ξ )t ′′, ξ ∈ [0, 1].

Since σ̇k (t) is uniformly bounded on [0,T ], there exists
M > 0 such that |σ̇k (t)| ≤ M on [0,T ] and for all k . Then

|σk (t ′)− σk (t ′′)| = |σ̇k (t ′′′)||t ′ − t ′′| ≤ M |t ′ − t ′′|.

For every ε > 0, if we choose δ = ε/M , then for |t ′−t ′′| ≤ δ,

|σk (t ′)− σk (t ′′)| ≤ ε.

Hence, σk (t) is equicontinuous.

Lemma 3: If there existsM > 0 such that∫ t

0
σ̇ 2
k (s)ds ≤ M (9)

on [0,T ], then σk (t) is equicontinuous on [0,T ].
Proof: By appealing to the Schwarz inequality, for

t ′, t ′′ ∈ [0,T ],

|σk (t ′)− σk (t ′′)| =

∣∣∣∣∣
∫ t ′′

t ′
σ̇k (s)ds

∣∣∣∣∣
≤

√∫ t ′′

t ′
12ds

√∫ t ′′

t ′
σ̇ 2
k (s)ds.

It follows from (9) that

|σk (t ′)− σk (t ′′)| ≤
√
t ′′ − t ′

√
M . (10)

Hence, σk (t) is equicontinuous, if we choose δ = ε2/M , for
every ε > 0.

Using Lemmas 2 and 3, the following convergence results
can be established, on the basis of Lemma 1.
Lemma 4: For a sequence of function, {σk (t)}, which

converges to zero pointwisely for each t ∈ [0,T ], as
k approaches to infinity, if σ̇k (t) is uniformly bounded
on [0,T ], then {σk (t)} converges to zero uniformly on [0,T ],
as k increases.
Lemma 5: Suppose {σk (t)} converges to zero pointwisely

for each t ∈ [0,T ], as k approaches to infinity, and there
existsM > 0 such that, for t ∈ [0,T ],∫ t

0
σ̇ 2
k (s)ds ≤ M , (11)

then {σk (t)} converges to zero uniformly on [0,T ], as
k increases.
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IV. AILC DESIGN AND ANALYSIS
Taking into account the ILC problem of system (6) on the
fixed time interval [0,T ], both the control design and perfor-
mance analysis are presented in this section.

For the error system (6) at the kth iteration, we propose the
following learning control law

vk (t) = −κξ̃k (t)−2T
k (t)9k (t), (12)

where κ > 0 is the adjustable gain, and 2k is an estimate of
the unknown parameter vector2, defined in (6). The learning
law for updating 2k is as follows:

2k (t) = 2k−1(t)+ γ9k (t)ξ̃k (t), (13)

2−1(t) = 0, t ∈ [0,T ]

where γ > 0 is the adjustable gain. With the control law (12),
the ξ̃k -dynamics can be expressed by

T
gTk

d ξ̃k (t)
dt
= −κξ̃k (t)+ 2̃T

k (t)9k (t) (14)

with 2̃k (t) = 2−2k (t) being the estimation error.
Nowwe summarize the stability and convergence results of

the proposed AILC controller (12) and (13) in the following
theorem.
Theorem 1: Let the control law (12) together with

the learning law (13) be applied to system (6), under
Assumptions 1 and 2. Then

i) ξ̃k (t),
∫ t
0 2

T
k (s)2k (s)ds and

∫ t
0 v2k (s)ds are bounded, for

each t ∈ [0,T ] and for all k; and
ii) ξ̃k (t) is guaranteed to converge to zero uniformly

on [0,T ], as k goes to infinity.
Proof: The proof includes three parts.

Part A: Boundedness of Lyapunov-like function.
For the kth iteration, let us choose the following form of

Lyapunov-like function,

Lk (t) = V (ξ̃k (t))+
1
2γ

∫ t

0
2̃T
k (s)2̃k (s)ds (15)

with

V (ξ̃k (t)) =
T

2 gTk
ξ̃2k (t). (16)

The difference of Lk (t) between two consecutive iterations,
1Lk (t) = Lk (t)− Lk−1(t), can be written as

1Lk (t) = V (ξ̃k (t))− V (ξ̃k−1(t))

+
1
2γ

∫ t

0

(
2̃T
k (s)2̃k (s)− 2̃T

k−1(s)2̃k−1(s)
)
ds. (17)

It follows from (14) that

ξ̃2k (t) = ξ̃
2
k (0)+ 2

∫ t

0
ξ̃k (s)
˙̃
ξk (s)ds

= ξ̃2k (0)−
2κgTk
T

∫ t

0
ξ̃2k (s)ds

+
2gTk
T

∫ t

0
2̃T
k (s)9k (s)ξk (s)ds

implying that

V (ξ̃k (t)) = V (ξ̃k (0))− κ
∫ t

0
ξ̃2k (s)ds

+

∫ t

0
2̃T
k (s)9k (s)ξk (s)ds. (18)

For examining the integral term on the right-hand side
of (17), we need the following relationship:

2̃T
k (s)2̃k (s)− 2̃T

k−1(s)2̃k−1(s)

= −22̃T
k (s) (2k (s)−2k−1(s))

− (2k (s)−2k−1(s))T (2k (s)−2k−1(s)) . (19)

Substituting (18) and (19) into (17) yields

1Lk (t)

= −V (ξ̃k−1(t))+ V (ξ̃k (0))

− κ

∫ t

0
ξ̃2k (s)ds+

∫ t

0
2̃T
k (s)9k (s)ξ̃k (s)ds

−
1
γ

∫ t

0
2̃T
k (s) (2k (s)−2k−1(s)) ds

−
1
2γ

∫ t

0
(2k (s)−2k−1(s))T (2k (s)−2k−1(s)) ds.

Note that V (ξ̃k (0)) = (2 gTk )−1T ξ̃2k (0) = 0, according to
Assumption 2. We obtain

1Lk (t)

= −
T

2gTk−1
ξ̃2k−1(t)− κ

∫ t

0
ξ̃2k (s)ds

+

∫ t

0

1
γ
2̃T
k (s)

(
γ9k (s)ξ̃k (s)−2k (s)+2k−1(s)

)
ds

−
1
2γ

∫ t

0
(2k (s)−2k−1(s))T (2k (s)−2k−1(s)) ds.

Applying (13) results in

1Lk (t)

= −
T

2gTk−1
ξ̃2k−1(t)− κ

∫ t

0
ξ̃2k (s)ds

−
1
2γ

∫ t

0
(2k (s)−2k−1(s))T (2k (s)−2k−1(s)) ds

and leads to

1Lk (t) ≤ −
T

2 gTk−1
ξ̃2k−1(t). (20)

So far, the non-positivity of 1L(t) along the iteration axis is
confirmed, which gives rise to

Lk (t) ≤ Lk−1(t). (21)

Therefore, Lk (t) is monotonically decreasing with respect to
iteration for each t ∈ [0,T ].
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In order to prove the boundedness of L0(t), we calculate
the derivative of L0(t) as

L̇0(t)

= V̇ (ξ̃0(t))+
1
2γ
2̃T

0 (t)2̃0(t)−
1
2γ
2̃T

0 (0)2̃0(0)

= −κξ̃20 (t)+ 2̃
T
0 (t)90(t)ξ̃0(t)+

1
2γ
2̃T

0 (t)2̃0(t)

−
1
2γ
2̃T

0 (0)2̃0(0)

≤ 2̃T
0 (t)90(t)ξ̃0(t)+

1
2γ
2̃T

0 (t)2̃0(t)

=
1
γ
2̃T

0 (t)20(t)+
1
2γ
2̃T

0 (t)2̃0(t)

=
1
2γ
2T2−

1
2γ
2T

0 (t)20(t)

≤
1
2γ
2T2.

Since L0(0) = V (ξ̃0(0)) = 0, then

L0(t) ≤ L0(0)+
T
2γ
2T2 =

T
2γ
2T2, (22)

which implies the finiteness of L0(t) on [0,T ]. In turn the
uniform boundedness of Lk (t) on [0,T ] can be immediately
established by (21) and (22).

Part B: Boundedness of the variables.
According to the definition of Lk (t), the uniform bound-

edness of ξ̃k (t) on [0,T ] is obtained, and
∫ t
0 2̃

T
k (s)2̃k (s)ds is

bounded on [0,T ] for all k . Since

2T
k (t)2k (t) ≤ 22̃T

k (t)2̃k (t)+ 22T2,

then
∫ t
0 2

T
k (s)2k (s)ds is bounded on [0,T ] for all k as well.

It follows from (12) that

|vk (t)| ≤ κ
∣∣∣ξ̃k (t)∣∣∣+ ‖2k (t)‖ ‖9k (t)‖

≤ c1 + c2 ‖2k (t)‖ ,

where c1 = κ sup
∣∣∣ξ̃k (t)∣∣∣ and c2 = sup ‖9k (t)‖. In view of

the fact that (a+ b)2 ≤ 2 a2 + 2 b2, we have

v2k (t) ≤ 2c21 + 2 c22 ‖2k (t)‖2 .

Hence, the boundedness of
∫ t
0 v2k (s)ds follows by noting that∫ t

0
v2k (s)ds ≤ 2 c21 T + 2 c22

∫ t

0
‖2k (s)‖2 ds < +∞.

Part C: Convergence of the tracking error.
Again using (20) we obtain

Lk (t) = 1Lk (t)+ Lk−1(t)
...

=

k∑
j=1

1Lj(t)+ L0(t)

≤ L0(t)−
k∑
j=1

T
2 gTj−1

ξ̃2j−1(t)

implying that

k∑
j=1

T
2 gTj−1

ξ̃2j−1(t) ≤ L0(t).

By the necessary condition of convergence of series, the
pointwise convergence of ξ̃2k (t) can be established, due to the
finiteness of L0(t). Namely, limk→∞ ξ̃

2
k (t) = 0 pointwisely

for each t ∈ [0,T ].
It follows from (14) that∣∣∣∣∣d ξ̃k (t)dt

∣∣∣∣∣ ≤ κgTk
T
|ξ̃k (t)| +

gTk
T
‖2̃k (t)‖‖9k (t)‖

≤ c3 + c4‖2̃k (t)‖,

where c3 = κgTkT−1 sup |ξ̃k (t)| and c4 = gTkT−1 sup
‖9k (t)‖. Hence,∣∣∣∣∣d ξ̃k (t)dt

∣∣∣∣∣
2

≤ 2c23 + 2c24‖2̃k (t)‖2

implying that∫ t

0

∣∣∣∣∣d ξ̃k (s)ds

∣∣∣∣∣
2

ds ≤ 2c23 T + 2c24

∫ t

0
‖2̃k (s)‖2 ds.

Therefore, ξ̃k (t) is equicontinuous on [0,T ]. In virtue
of Lemma 5, ξ̃k (t) converges to zero uniformly [0,T ],
as k increases, i.e.,

lim
k→∞

ξ̃k (t) = 0 uniformly on [0,T ].

This completes the proof.

Remark 6: By Theorem 1, due to the time scaling tech-
nique, the uniform boundedness of ξ̄k (t) and xk (t) can be
also derived. 2k (t) is assured to be bounded in the sense
of L2[0,T ]. So vk (t) and uk (t) are. It should be noted that
both 2k (t) and vk (t) are not guaranteed to be bounded in the
sense of L∞[0,T ]. So uk (t) is. Nevertheless, by exploiting
the boundedness results, the uniform convergence of ξ̃k (t) on
[0,T ] is established in Theorem 1, which leads to the uniform
convergence of ξ̄k (t) on [1,T ]. Moreover, xk (tk ) is assured to
converge to xd,k (tk ) uniformly on [Tk/T1,Tk ], as k →∞.

V. AILC FOR HIGHER-ORDER SYSTEMS
In this section, the design method is extended to the following
class of nth-order SISO nonlinear systems

ẋi = xi+1, i = 1, 2, · · · , n− 1
1
g
ẋn = u+ θTφ(x)

y = x1

(23)

where x = [x1, x2, · · · , xn]T ∈ Rn is the state vector, u and y
are the scalar input and output of the system, respectively, and
g is the control gain, θ ∈ Rm denotes the unknown parameter
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vector, φ ∈ Rm represents the known state-dependent vector-
valued function. The dynamics at the kth iteration is given by,
for tk ∈ [0,Tk ],

dxi,k (tk )
dtk

= xi+1,k (tk ), i = 1, 2, · · · , n− 1

1
g
dxn,k (tk )
dtk

= uk (tk )+ θTφk (xk (tk ))

yk (tk ) = x1,k (tk )

(24)

Let us apply the time scaling technique for addressing the
non-repeatable learning control problem. The given desired
trajectory yd,k (tk ), tk ∈ [0,Tk ], can be written as

yd,k (tk ) = yd,k

(
Tk
T
t
)
. (25)

Defining ξd,k (t) = yd,k (T−1Tk t) = yd,k (tk ), ξi,k (t) =
xi,k (T−1Tk t), ȳk (t) = yk (T−1Tk t), vk (t) = uk (T−1Tk t),
and ψk (t) = φk

(
xk
(
T−1Tk t

))
, the error system (24) can be

rewritten as
T
Tk

dξi,k (t)
dt

= ξi+1,k (t), i = 1, 2, · · · , n− 1

T
gTk

dξn,k (t)
dt

= vk (t)+ θTψk (t)

ȳk (t) = ξ1,k (t)

(26)

where t ∈ [0,T ].
To handle the control design for the high-order system (26),

the filtered error ξf ,k is defined as

ξf ,k (t) = [3T 1]ξ̄k (t) (27)

and the state error is defined as ξ̄k (t) = ξk (t) −
ξ̄d,k (t) = [ξ̄1,k (t), ξ̄2,k (t), · · · , ξ̄n,k (t)]T , with ξk (t) =

[ξ1,k (t), ξ2,k (t), · · · , ξn,k (t)]T and ξ̄d,k (t) = [ξd,k (t),T
−1
k T

ξ̇d,k (t), · · · , (T/Tk)n−1 ξ
(n−1)
d,k (t)]T . And 3 = [λ1, λ2, · · · ,

λn−1]T is chosen such that polynomial sn−1 + λn−1sn−2 +
· · · + λ1 is Hurwitz. Besides, let us denote by ξ̃f ,k the error
between ξf ,k and ξ∗f ,k , where ξ

∗
f ,k is the desired filtered error

trajectory. As such, the ξ̃f ,k -dynamics can then be expressed
as

T
gTk

d ξ̃f ,k (t)
dt

= vk (t)+2T9k (t), (28)

where

2 = [θT ,
1
g
]T ,

9k = [ψT
k , νk ]

T ,

νk (t) = [0 3T ]ξ̄k (t)−
(
T
Tk

)n
ξ
(n)
d,k (t)−

T
Tk

dξ∗f ,k (t)

dt
.

In order to achieve the control objective, we need to make
the following assumption, a restriction on the setting of initial
value of the desired filtered error trajectory.
Assumption 3: The initial value of the desired filtered error

trajectory, ξ∗f ,k (0) is set to satisfy

ξ∗f ,k (0) = ξf ,k (0), (29)

where ξf ,k (0) is the initial value of the filtered
error ξf ,k .
According to the definition of ξf ,k , a similar formulation

of the desired filtered error trajectory ξ∗f ,k to (8) is obtained:

ξ∗f ,k (t) =

{
ξf ,k (0)ζ (t), t ∈ [0,1]
0, t ∈ (1,T ]

(30)

Remark 7: In fact, practical systems usually keep static at
the beginning of operation so that the initial setting can be
simplified. For the case where ξ̄i,k (0) = 0, i = 2, 3, · · · , n,
the desired filtered error trajectory ξ∗f ,k can be formed as

ξ∗f ,k (t) =

{
ξ̄1,k (0)ζ (t), t ∈ [0,1]
0, t ∈ (1,T ]

where ζ (i−1)(0) = 0, i = 2, 3, · · · , n.
Theorem 2:Consider the adaptive iterative learning system

described by the error system (28) and the controller,

vk (t) = −κξ̃f ,k (t)−2T
k (t)9k (t) (31)

together with the fully-saturated learning law given as, for
t ∈ [0,T ],

2k (t) = sat(2∗k (t))

2∗k (t) = 2
∗

k−1(t)+ γ9k (t)ξ̃f ,k (t) (32)

and 2−1(t) = 0. Under Assumptions 1 and 3, the error ξ̃f ,k
is guaranteed to converge to zero uniformly, as the iteration
number k goes to infinity, while ξ̃f ,k (t), 2k (t) and vk (t) are
uniformly bounded on [0,T ] and for all k .

Proof: Let us choose the following Lyapunov-like func-
tion

Lk (t) = V (ξ̃f ,k (t))+
1
2γ

∫ t

0
2̃T
k (s)2̃k (s)ds,

and

V
(
ξ̃f ,k (t)

)
=

T
2 gTk

ξ̃2f ,k (t).

Differentiating V
(
ξ̃f ,k (t)

)
with respect to time along (28),

we obtain

dV (ξ̃f ,k (t))
dt

= ξ̃f ,k (t)
(
vk (t)+2T9k (t)

)
. (33)

Substituting (31) into (33) results in

dV (ξ̃f ,k (t))
dt

= −κξ̃2f ,k (t)+ 2̃
T
k (t)9k (t)ξ̃f ,k (t). (34)

Integrating both sides of (34) from 0 to t yields, by noting
that V (ξ̃f ,k (0)) = (2 gTk )−1T ξ̃2f ,k (0) = 0, according to
Assumption 3,

V (ξ̃f ,k (t))

= V (ξ̃f ,k (0))− κ
∫ t

0
ξ̃2f ,k (s)ds+

∫ t

0
2̃T
k (s)9k (s)ξ̃f ,k (s)ds

= −κ

∫ t

0
ξ̃2f ,k (s)ds+

∫ t

0
2̃T
k (s)9k (s)ξ̃f ,k (s)ds. (35)
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Using (19) gives rise to

2̃T
k (s)2̃k (s)− 2̃T

k−1(s)2̃k−1(s)

= −22̃T
k (s) (2k (s)−2k−1(s)) . (36)

By (35) and (36), the difference 1Lk (t) can be expressed by

1Lk (t) ≤ −
T

2gTk−1
ξ̃2f ,k−1(t)− κ

∫ t

0
ξ̃2f ,k (s)ds

+

∫ t

0
2̃T
k (s)9k (s)ξ̃f ,k (s)ds

−

∫ t

0

1
γ
2̃T
k (s) (2k (s)−2k−1(s)) ds

= −
T

2gTk−1
ξ̃2f ,k−1(t)− κ

∫ t

0
ξ̃2f ,k (s)ds

+

∫ t

0
2̃T
k (s)9k (s)ξ̃f ,k (s)ds

−

∫ t

0

1
γ
2̃T
k (s)

(
2∗k (s)−2k−1(s)

)
ds

−

∫ t

0

1
γ
2̃T
k (s)

(
2k (s)−2∗k (s)

)
ds.

Applying learning law (32), we obtain

1Lk (t) ≤ −
T

2gTk−1
ξ̃2f ,k−1(t)− κ

∫ t

0
ξ̃2f ,k (s)ds

+
1
γ

∫ t

0
2̃T
k (s)

(
2∗k (s)−2k (s)

)
ds.

By the following relationship [7]:

(2−2k )T
(
2k −2

∗
k
)
≥ 0, (37)

the difference 1Lk (t) can be given as

1Lk (t) ≤ −
T

2 gTk−1
ξ̃2f ,k−1(t) (38)

from which it is concluded that Lk (t) is monotonically
decreasing.

The derivative of L0(t) can be calculated as, in order to
prove the finiteness of L0(t),

L̇0(t) = V̇ (ξ̃f ,0(t))+
1
2γ
2̃T

0 (t)2̃0(t)−
1
2γ
2̃T

0 (0)2̃0(0)

= −κξ̃2f ,0(t)+ 2̃
T
0 (t)90(t)ξ̃f ,0(t)+

1
2γ
2̃T

0 (t)2̃0(t)

−
1
2γ
2̃T

0 (0)2̃0(0)

≤ 2̃T
0 (t)90(t)ξ̃f ,0(t)+

1
2γ
2̃T

0 (t)2̃0(t).

Applying learning law (32), for k = 0,

L̇0(t) ≤
1
γ
2̃T

0 (t)(2
∗

0(t)−20(t))

+
1
γ
2̃T

0 (t)20(t)+
1
2γ
2̃T

0 (t)2̃0(t)

≤
1
γ
2̃T

0 (t)20(t)+
1
2γ
2̃T

0 (t)2̃0(t),

where inequality (37) is used. It follows that

L̇0(t) ≤
1
γ
2T20(t)−

1
γ
2T

0 (t)20(t)

+
1
2γ

(
2T2− 22T20(t)+2T

0 (t)20(t)
)

=
1
2γ
2T2−

1
2γ
2T

0 (t)20(t)

≤
1
2γ
2T2 (39)

by which the finiteness of L0(t) on [0,T ] can be established.
Hence Lk (t) is uniformly boundedness on [0,T ], due to its
monotonically decreasing property.

With similar lines to those in the proof for Theorem 1, we
can prove the conclusions.

Remark 8: By Theorem 2, not only the uniform bound-
edness of ξ̄k (t) and xk (t) can be derived, but also both
2k (t) and vk (t) are guaranteed to be uniform bounded. This
benefits from the use of the saturated-learning algorithm.
By exploiting the uniform boundedness results, in Theorem 2
the uniform convergence of ξ̃k (t) on [0,T ] is established,
resulting in the uniform convergence of ξ̄k (t) on [1, T ].
Moreover, xk (tk ) is assured to converge to xd,k (tk ) uniformly
on [Tk/T1,Tk ], and yk (tk ) is guaranteed to converge to
yd,k (tk ) on [Tk/T1,Tk ], as k →+∞.
Remark 9: Both problems, the non-equal trial lengths and

the non-zero initial errors, are practical challenges. In the
published works, the equal path is usually assumed, when
addressing the initial condition problem; the zero-error ini-
tial errors are assumed when addressing the non-equal trial
lengths. In this paper, we explore the AILC design method
without the magnitude-scaling transformation, for verifying
the applicability of only the time scaling technique for the
AILC controller designs. The current results are the conver-
gence of learning control schemes in the sense of L2. In this
paper, the uniform convergence of the proposed learning
algorithms is established. It is shown that the fully-saturated
learning plays an important role in establishing uniform con-
vergence. In addition, the novel form of Lyapunov function is
proposed, and it is shown to be efficient to solve the problem
due to such iteration-dependent dynamics.

VI. NUMERICAL SIMULATION
In order to verify effectiveness of the error-tracking AILC
method, the numerical simulation is carried out, and the
control performance in dealing with the non-identical tasks
is illustrated in this section.

For the purpose of simulation, the illustrative system
is described in the form of system (3), with g = 0.5,
θ = [0.5 0.1 0.3]T , and φk (xk (tk )) = [0.2 sin(xk (tk ))
0.1xk (tk ) 0.2 − 0.3 cos(x2k (tk ))]

T . The initial value of
the system state xk is randomly set between [−0.8, 0.8].
The control objective is to make the output xk (tk )
follow the iteration-varying control tasks xd,k (tk ) =

Ak (1− cos(π tk )) + Bk t2k , k = 0, 1, 2, · · · ,N , where
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FIGURE 1. State and the desired trajectory as k = 0.

FIGURE 2. State and the desired trajectory as k = 20.

FIGURE 3. State and the desired trajectory as k = 40.

Ak ∈ [0.4, 2.4] and Bk ∈ [−1, 1] take values which are
randomly generated. N = 100 is the number of trials,
the trial length of kth operation is distributed on [3.5, 4].

FIGURE 4. State and the desired trajectory as k = 60.

FIGURE 5. State and the desired trajectory as k = 80.

FIGURE 6. State and the desired trajectory as k = 100.

The virtual length is selected as T = min{Tk}. The controller
and the learning law applied in this example are given by (12)
and (13), with the parameter settings: κ = 30, γ = 20 and
1 = 0.6.
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FIGURE 7. Learning histories.

FIGURE 8. Input profiles.

FIGURE 9. Parameter estimate 21,k .

The simulation results are obtained and shown
in Figs. 1-12. Figs. 1-6 depict the output profiles when
k = 0, 20, 40, 60, 80, and 100, respectively, showing the
convergence history of iteration. The mean squared error

FIGURE 10. Parameter estimate 22,k .

FIGURE 11. Parameter estimate 23,k .

FIGURE 12. Parameter estimate 24,k .

Jk = 1
M

∑M
i=1(ek (i))

2 is adopted as the performance index,
shown in Fig. 7, where ek = xk − xd,k on the time interval
[Tk/T1,Tk ].
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It is seen that in the presence of initial errors, the actual out-
puts track the desired trajectories after the pre-specified initial
intervals, even if the tasks vary from iteration to iteration in
both magnitude and time scales. In addition, the resultant
input profiles are shown in Fig. 8. The parameter estimates
(2k = [21,k ,22,k ,23,k ,24,k ]T ) are shown in Figs. 9-12.

VII. CONCLUSION
In this paper, the adaptive iterative learning control design
method is presented for systems performing tasks with
non-equal trial lengths and initial errors. The time scaling
technique is used for normalization of non-equal paths, by
which the tasks are transformed to those with the same time
scale. The error-tracking approach is adopted for coping with
initial errors, by which the assumption of identical initial
condition is removed. Note that identical initial condition is
common in the conventional learning control designs. The
proposed control schemes assure the uniform convergence of
the tracking error over the operation interval, being different
from the pointwise convergence results reported in the pub-
lished works. Theoretical results of establishing boundedness
of the variables in the closed-loop are presented in detail. It
has been shown that the fully-saturated learning algorithm
plays an important role in assuring uniform boundedness
of the control input. The proposed control schemes do not
require the magnitude transformation, and have been shown
to work well, with only the time scaling technique, by which
the expected tracking performance can be obtained for the
non-equal length tasks in the presence of initial errors.
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