IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 12, 2021, accepted April 5, 2021, date of publication April 15, 2021, date of current version April 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073606

Estimation of Lateral Track Irregularity Through

Kalman Filtering Techniques

SERGIO MUNOZ!, JAVIER ROS2, PEDRO URDA"“3, AND JOSE L. ESCALONA3

! Department of Materials and Transportation Engineering, University of Seville, 41092 Seville, Spain

2Department of Mechanical Engineering, University of Navarra, 31009 Pamplona, Spain

3Department of Mechanical and Manufacturing Engineering, University of Seville, 41092 Seville, Spain

Corresponding author: Sergio Muiloz (sergiomunoz @us.es)

This work was supported by the Consejeria de Economia, Conocimiento, Empresas y Universidad de la Junta de Andalucia, through the
program “‘Programa Operativo FEDER 2014-2020,” awarded to the University of Seville, financed with the European Regional

Development Fund (FEDER), under Project US-1257665.

ABSTRACT The aim of this work is to develop a model-based methodology for monitoring lateral track
irregularities based on the use of inertial sensors mounted on an in-service train. To this end, a gyroscope
is used to measure the wheelset yaw angular velocity and two accelerometers are used to measure lateral
acceleration of the wheelset and the bogie frame. The main contribution of the present work is the
development of a very efficient Kalman-based monitoring strategy to estimate the lateral track irregularities.
The Kalman filter is based on a highly simplified linear bogie model that is able to capture the most relevant
dynamic behaviour of the vehicle. The behaviour of the designed filter is assessed through the use of a
detailed multibody model of an in-service vehicle running on a straight track with realistic irregularities. The
model output is used to generate virtual measurements that are subsequently used to run the filter and validate
the proposed estimator. In addition, the equivalent parameters of the simplified model are identified based
on these simulations. In order to prove the robustness of the proposed technique, a systematic parametric
analysis has been performed. The results obtained with the proposed method are promising, showing high
accuracy and robustness for monitoring lateral alignment on straight tracks, with a very low computational
cost.

INDEX TERMS Kalman filters, railway engineering, vehicle dynamics, railway safety, track irregularities,

track surveying.

I. INTRODUCTION

The main function of railway tracks is the correct guidance
of the vehicle, without compromising its stability. These
two requirements, guidance and stability, are usually in con-
flict and a balance must be achieved [1]. Any deviation
from the ideal track geometry can excite unwanted vehicle
dynamic responses, leading to poor ride quality or, possibly,
to safety problems. These deviations, called track irregulari-
ties, are usually described using four variables [2]: 1) track
gauge variation and 2) lateral alignment for horizontal
deviations, and 3) cross-level and 4) vertical profile for verti-
cal ones. In the European Union, for instance, the Standard
EN13848 [3] is used to define the acceptable limit levels
for track irregularities according to their wavelength in three
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different ranges: D1 = [3,25] m, D, = [25,70] m and
D3 = [70, 200] m. Consequently, when evaluating the quality
of the track geometry, irregularities should be analysed taking
into account both these wavelength ranges, as well as the
maximum allowed forward velocity of the vehicle.

It is essential that the maintenance of the railway tracks
meets the appropriate standards of quality for both ride safety
and passenger comfort in the vehicle. In this respect, con-
tinuous monitoring of track geometry is usually carried out
through the use of track recording vehicles (TRV), which
provide an accurate measurement of irregularities using dif-
ferent sets of optical, laser or inertial sensors. However,
the use of these dedicated trains with sophisticated measuring
devices is complex and very expensive. As an alternative,
the development of inexpensive measuring systems to be used
on in-service vehicles for continuous monitoring of track
conditions seems very attractive. Consequently, simple and
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robust measuring systems, combined with the development
of dynamic model-based filtering techniques, are required to
achieve an accurate estimation of the track geometry. Some
work in this direction has already been carried out. An exten-
sive review on the perspectives on the use of in-service
vehicles for the monitoring of railway tracks can be found
in [4]. Even though their conclusions are promising, most
of the works referred to have no experimental validation,
being academic in nature. From an industrial point of view,
the use of model-based Bayesian filtering techniques, such
as Kalman filtering, are pointed out as the most promising
approaches for monitoring track geometry.

Kalman filters are also applied to monitor the rail-
way vehicle running safety. An example is the work of
Wang et al. [5], where an adaptative extende Kalman fil-
ter (AEKF) is applied to the estimation of the vehicle rollover
safety evaluation showing execellent results. The system pro-
posed uses the measurement of the lateral load combined with
the measurement of an inertial measurement unit. Kalman
filters are also commonly applied to calculate the forward
velocity of a vehicle in a more accurate way than using
exclusively a GPS receiver. This is a very challenging subject
on the vehicles’ industry, especially when it is necessary to
monitor the position and velocity of a moving vehicle while
moving in areas with deficient GPS service. In the work
of Xiaolin et al. [6], the longitudinal speed of a four-wheel-
independently-actuated electric vehicle is satisfactorily esti-
mated using a Kalman filter. Finally, in several works by
Goodall et al. [7]-[10], the Kalman filter is applied for the
condition monitoring of different important variables related
to the wheel-rail interaction, such as the evaluation of the
creep contact forces or the detection of low-adhesion condi-
tions during the ride.

Another interesting application of the Kalman filter is the
sensor fusion, which is based on the combination of redun-
dant information from different sensors to minimize their
errors and enhance their performance. In this sense, several
works dealing with the integration of Inertial Navigation Sys-
tem and Global Navigation Satellite System (INS/GNSS) to
enhance the accuracy of vehicular navigation can be found in
literature [11]—[14]. In these works, the integration of INS and
GPS enables to sufficiently exploit the individual advantages
of both standalone sensor systems and obtains an optimistic
solution.

Regarding the monitoring of vertical irregularities, the sim-
plest methods consist of the integration of accelerometer and
gyroscope derived signals to obtain the absolute position of
the wheelset and hence the track geometry. For example,
in [15], the vertical profile of the track is estimated by inte-
gration of the vertical curvature of the track centre-line, which
is derived from the pitch-rate gyroscope sensors mounted on
the bogie frame of an in-service vehicle. However, the inte-
gration of measured signals leads to low accuracy and a
drift in the obtained results. High-pass filtering alleviates
the drift problem at the expense of losing information in
the low frequency range. In [16], vertical track irregularities

VOLUME 9, 2021

are estimated through a sensor fusion algorithm based on
complementary filters: the signals from an accelerometer and
a gyroscope installed on a bogie are used and the estimation
of low frequency irregularity relies on the data from the
gyroscope while the high frequency irregularity relies on the
data from the accelerometer. Fairly good results are obtained
in the estimations, although a loss of accuracy is shown in
the case of variable forward velocity of the vehicle. In [17]
and [18], vertical track irregularities are identified through
Kalman filter-based techniques, using a kinematic and a
dynamic model, respectively. Both works result in relatively
acceptable accuracy in the estimated irregularities using an
accelerometer and a gyroscope.

Regarding lateral irregularities, their estimation is much
more difficult and challenging, since the lateral displacement
of the wheelset depends not only on the lateral irregularities of
the track but also on the lateral sliding of the wheelset relative
to the track, which is related to the creep force dynamics.
Furthermore, lateral irregularities, especially lateral align-
ment, are shown to be much more influential in the dynamic
behaviour of the vehicle than vertical ones. In [19], the lateral
alignment of the track is estimated through integration of
lateral curvature of the track centre-line, using a procedure
analogous to the one used in [15]. In addition to the problems
of drift and low smoothness related to numerical integration,
the proposed method cannot take into account the lateral
displacement of the wheelset relative to the track. In [20],
a Kalman filter is used as a naive integrator of the lateral
acceleration of the wheelset to obtain the lateral displace-
ments and, subsequently, a set of compensation filters are
used in the corresponding wavelength bands to correct these
predictions from the lateral displacements of the wheelset.
A model-based unknown input identification filter is used
in [21]. Here, a linearized lateral dynamic model of a bogie
with two wheelsets is used. In this work, the use of H-infinity
theory in order to maximise the sensitivity of the lateral
displacement of the wheelset is of note, as is the robustness
of the disturbances and system inputs to the displacement
estimation error. More recently, in [22], the authors propose
three different model-based methods to estimate both lat-
eral track alignment and cross-level irregularities: 1) pseudo-
inversion of the vehicle’s frequency response function (FRF)
matrix, 2) unknown input estimation using a deterministic
observer and 3) unknown input estimation using a linear
Kalman filter as a stochastic observer. They use a very com-
plex linear dynamic model of a railway vehicle composed
of one car body, two bogies and four wheelsets. In the pro-
posed model and with 17 degrees of freedom, the relative
motion between the wheelset and the track has been taken into
account, considering the effect of the creepage forces acting
at wheel-rail contact. The proposed methodologies have been
validated through the use of numerical experiments based
on a rich non-linear multibody model. Quite good results
in the estimation are obtained with all three methods, espe-
cially with the Kalman filter approach. The main drawback
of these methods is the complexity of the dynamic model
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used (17 degrees of freedom) and the high number of the
sensors to be installed on the vehicle (36 accelerometers). It is
noticeable that this is one of the few references in which real
data are used for validation: the FRF approach has been run
using real measurement data from a track recording vehicle
(TRV). Even though the results are promising, a degradation
in performance is shown in comparison with the validation
using virtual sensor synthesised data.

Even though there are several references dealing with the
estimation of track irregularities, the published literature on
the estimation of lateral alignment is relatively scarce and
only focuses on tangent (straight) line track segments. Fur-
thermore, a considerable number of works are rather obscure,
with important details omitted, making it impossible to repro-
duce the results. On the basis of the works published by dif-
ferent authors, the best results are achieved by model-based
Bayesian filtering methods, such as Kalman filtering, com-
bining dynamic models which include creep contact forces
with experimental information from sensors (gyroscopes and
accelerometers). All the published works are based on linear
dynamics models. In this regard, the use of more complex
models [22] does not seem to outperform the simplest ones
[21]. Despite several authors having demonstrated promising
results, there appears to be a lack of profound analysis of
these results. On the one hand, the results obtained should
be thoroughly analysed in the different wavelength ranges,
according to the standards. On the other hand, there is a need
for a systematic analysis to test the accuracy and robustness
of the proposed technique when there is some kind of uncer-
tainty in the system parameters or in the vehicle running con-
ditions. Finally, one remarkable inadequacy of most works in
literature is the lack of rigour in the validation of the proposed
estimation technique. The validation procedure is usually
performed through the use of the same simulation model
used by the estimator, making it unrealistic and lacking in
critical interest. Furthermore, in works in which a simplified
linear model is used by the estimator and a more complex
model is used for validation purposes, the identification of
the parameters of the linear model is not clear. This is an
important issue to deal with, as the accurate identification of
these parameters is essential for the good performance of the
derived filter, especially when very simplified linear models
are used by the estimator.

In this work, a model-based Kalman filtering technique is
proposed for monitoring lateral alignment from the measure-
ments of inertial sensors mounted on an in-service vehicle
running on a straight track segment. The railway vehicle used
in this work consists of four wheelsets, two bogie frames and
a car body. The main contribution of this work is the use of
a highly simplified linear dynamic model of the vehicle to
perform a classical linear Kalman filter for monitoring the
lateral alignment of the track. This simplified dynamic model
is based on the lateral dynamics of a single wheelset with
two generalised coordinates (lateral displacement and yaw
rotation) and a suspended frame with only one generalised
coordinate (lateral displacement). Such a simplified dynamic
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model needs to be precisely validated through an accurate
identification of the equivalent parameters, which is essential
for the good performance of the estimator. A full multibody
model of the vehicle is used to generate virtual measurements.
These synthesised data are used for two different purposes:
firstly, to identify the equivalent parameters of the simplified
dynamic model and secondly, to evaluate the estimation error
and validate the proposed Kalman filter estimator. Finally,
in order to test the robustness of the proposed technique,
a systematic parametric analysis has been performed, evaluat-
ing the influence that the uncertainty of different parameters
and running conditions could have on the estimation error.

The paper is organised as follows: Section II presents
the estimation technique used in this work. In Section III,
the dynamic modelling is presented, as well as the equivalent
parameter identification procedure. Section IV details the
Kalman filter algorithm used in this work. In Section V,
the results of the track alignment estimation are presented and
discussed, and a robustness analysis is performed. Finally,
Section VI provides the conclusions and summary.

Il. ESTIMATION TECHNIQUE

A model-based numeric procedure has been developed for
the estimation of the lateral alignment of the track from the
measurements from inertial sensors mounted on an in-service
vehicle. The estimation procedure has been performed under
the following assumptions: the track to be measured is a
straight segment with no gauge variation, the wheelset has
a conical profile and there is no flange contact. All these
requirements are usually fulfilled. However, the proposed
method should be extended to more general conditions in
future works.

The proposed estimation technique is based on the Kalman
filtering method, using the measurements from an accelerom-
eter and a gyroscope mounted on the axle-box of the wheelset
and an accelerometer mounted in the bogie frame of the vehi-
cle. To develop this method and analyse its performance, two
different models are needed. First, the Complete Simulation
Model (CM), a complete and detailed model of the vehicle
used to generate the synthetic sensor data to be used as an
input in the Kalman filter. This complete and detailed model
will have the function of validating the estimation process.
Second, the Simplified Estimator Design Model (SM) to be
used by the Kalman filter for model equations. This is a
simplified dynamic model of the vehicle that must be able
to properly reproduce the dynamic behaviour of the wheelset
but is simple enough to reduce the computational load of
the model-based observer. In this model, the wheelset-track
relative motion is taken into account assuming creep forces at
the wheel-rail contact, following Kalker’s linear theory [23].

The railway vehicle used in this work, the ML9S5 vehicle
operated by the Lisbon subway and described in [24], consists
of four wheelsets, two bogie frames and a car body. Since the
CM considers arbitrary-geometry tracks including rail centre
line irregularities, these will be generated and included in the
simulations. With the use of the CM, the simulation of the
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FIGURE 1. Definition of track irregularities.

vehicle is carried out and the synthetic data of the virtual
sensors are generated, to be used as input in the Kalman filter
estimator.

The results obtained with the proposed method are
analysed in the different wavelength ranges defined in the
standards. Furthermore, the efficiency of the proposed esti-
mator is proven. Due to the simplicity of the SM, a very
low computational cost is required, making the proposed
method especially appropriate for real-time applications.
Finally, to complete the study and prove the robustness of
the proposed technique, a systematic parametric analysis has
been performed. Therefore, the influence of the uncertainty
of different parameters and running conditions (sensor noise,
vertical irregularity, conicity uncertainty and Kalker’s coeffi-
cients uncertainty) on the estimator results has been analysed.

IIl. DYNAMIC MODELING

With the aim of validating the proposed estimation technique,
the employment of the CM for the generation of synthesised
data is of crucial importance. Only with a detailed and feasi-
ble CM, much more accurate than the SM, will the validation
procedure be realistic. Otherwise, using the same or a very
close simulation model and estimator design model would
make the validation procedure self-referential and it would
have no critical interest. In this section, the definition of
track irregularities according to the standards is presented
first; then the CM of the vehicle used for the generation of
synthesised data will be presented; and finally the SM to be
used in the Kalman filter will be introduced.

A. DEFINITION OF TRACK IRREGULARITIES

The lateral and vertical irregularities of a track are usually
defined in the railway industry by four well-known irregular-
ities variables: track gauge variation, &,, lateral alignment, &,
cross-level, &, and vertical profile, &,,. These variables are
defined as follows:

o=l —u), &= +u))2
Eo = W —ul"), &y =@ +ul))2 (1
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where ué’ ), ué’ and u" are lateral (’y’) and vertical (’z’)
deviation of the left (’/r’) and right (rr’) rail cross-section

from their ideal position, see Fig. 1.

B. COMPLETE SIMULATION MODEL (CM)

The CM was presented by the authors in [25]. A brief descrip-
tion of the model is given next. The CM is a general model for
railway vehicles running on tracks with arbitrary geometry,
including irregularities. Because the CM is developed for
industrial applications, the number of required parameters for
the model is minimised. The CM is general, complete and
computationally efficient due to the following features:

1) It is based on the use of track-relative unconstrained
coordinates. Generalized coordinates are separated into
vertical coordinates and lateral coordinates. Bodies are
separated into wheelsets and non-wheelset bodies.

2) Kinematic linearization (small-angles assumption) and
dynamic linearization of inertia and suspension gener-
alized forces is performed.

3) Itconsiders weakly coupled vertical and lateral dynam-
ics of the vehicle.

4) Wheel-rail contact interaction is based on the equiva-
lent conicity concept, the knife-edge contact assump-
tion and Kalker’s linear creep theory. Flange contact
and two-point contact scenario can be simulated.

5) Equations of motion are obtained using symbolic com-
putations. The computation of generalized forces is
optimized using symbolic computation techniques.

A detailed description of the CM can be found in [25].

C. SIMPLIFIED ESTIMATOR DESIGN MODEL (SM)

With the aim of estimating the lateral irregularities of the
track through the Kalman filter, a very simplified dynamic
model of the vehicle has been used. A schematic plan view
of the SM is presented in Fig. 2: the different bodies and
elements of the SM are presented in the left drawing, while
an arbitrary position of the system is presented in the right
one. The SM only models one wheelset and a suspended
frame, representing the dynamic interaction of the wheelset
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FIGURE 2. Plan view of the simplified model.

with the rest of the vehicle. The SM uses two generalised
coordinates for the wheelset (lateral displacement, y, and
yaw rotation, ¥), and one generalised coordinate for the
suspended frame (lateral displacement, y/). All generalised
coordinates are referred to a Track Frame (X', Y'), that moves
along the irregularity-free track centre line with the same
forward velocity as the vehicle. Both bodies, the wheelset
and the suspended frame, are connected by longitudinal and
lateral primary suspension elements.

The set of generalized coordinates of the simplified vehicle
model is therefore:

a=[y v ] @)

The equations of motion of the lateral dynamics associated
with this model are:

Mg + |G +Ce) g+ K+ K] q=Qc0 (3

where M, C; and K; are the constant mass, suspension
damping and suspension stiffness matrices associated with
the lateral dynamics, respectively; C. and K, are damping
and suspension matrices associated with the contact forces
acting on the wheelset in the lateral direction; and the vec-
tor Q.0 contains the terms that appear in the generalized
contact forces when the lateral coordinates and velocities are
zero. These matrices and vectors are obtained using symbolic
computation: Lagrange Equations are used to find the inertia,
elastic and damping generalised forces, while the principle of
virtual work is used to find the contact tangential generalised
forces. Wheel-rail contact at the treads is modelled with the
knife-edge contact constraints, and tread tangential contact
forces are calculated following the Kalker’s creep linear the-
ory, as in the CM described in [25]. The calculation of the
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flange contact forces is excluded in this study, according to
the assumption of no flange contact.

The complete set of parameters that characterises the SM
is given by the vector:

p=[m I I Iy a ro mg fi1 f2 fo3 f33
ky cx ky cy]T 4

where m, I and [ are the mass, the yaw moment of inertia
and half-width of the wheelset; /; the length to the primary
suspension; « the nominal conicity of the wheel tread; ry the
rolling radius of the wheels when the wheelset is centered
on the track; my the mass of the suspended frame; fj; the
Kalker’s linear creep coefficients (that are assumed to be
constant); and ky, ¢y, ky and ¢, the parameters of the primary
suspension.

The longitudinal position of the vehicle along the track is
defined by the arc-length coordinate s, that is assumed to be
prescribed. Out of the four irregularities defined in Eq. (1),
only the lateral alignment is considered in the SM, hereinafter
referred to as &. Since the gauge variation is assumed to be
zero in this work, the lateral alignment is defined as £ =&, =
u{,’ =uy . This lateral alignment is a function of the arc-length
coordinate, £ = £(s). The considerable simplification of the
vehicle model proposed with the SM should be sufficient to
describe the stability and guidance dynamics of the wheelset
as a function of the lateral track irregularity. This model will
be valid for our purpose only if it can adequately describe the
lateral dynamic response of the wheelset running on a straight
track with irregularities. Therefore, before using the proposed
SM in the Kalman filter, the model has to be identified (see
next section).
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D. IDENTIFICATION OF EQUIVALENT PARAMETERS
The validation of the SM used by the estimator is crucial for
the good performance of the Kalman filter. It is important to
note that there is a significant set of simplifications made
in the SM. First, the vehicle is modelled just by a single
wheelset with two degree of freedom (y and ), connected
to a suspended frame with only one degree of freedom ().
Second, the mass of the suspended frame, which represents
the effect of the rest of the train, has constrained yaw rotation.
Third, only lateral irregularities can be included in the SM.
The values of all the equivalent parameters of the simplified
model, p, given in Eq. (4), must be identified to find similar
dynamic behaviour of both models (CM and SM). Part of
this set of parameters can be directly obtained from the real
train: the first six parameters (m, [, [, I, o, r9) correspond
to inertial and geometrical properties of the wheelset. The
seventh parameter, the mass of the suspended frame (my),
can be approximately calculated as the mass supported by the
wheelset in a static equilibrium position: that is, a quarter of
the mass of the car body plus half the mass of one bogie frame.
The next four parameters (f11, f22, />3, f33) are the creep coef-
ficients, which depend on normal contact force, the size and
shape of the contact patch and the elastic properties of the
bodies in contact. In this work, the creep coefficients are
assumed to be constant and their values have been calcu-
lated following Kalker’s creep linear theory [23], considering
the magnitude of the normal contact force as the weight
supported by each wheel at the static equilibrium position.
Finally, the last four parameters (ky, ¢y, ky and c¢y) correspond
to the properties of the primary suspension of the SM, which
cannot be directly taken from the real suspension elements
of the train. These last parameters are more difficult to obtain
and, consequently, must be identified by optimisation. In con-
clusion, the set of parameters can be divided into two subsets:
the subset of parameters that can be directly obtained from the
real train, pgy, and the subset of parameters to be identified
by optimisation, Pep;:

P=[Pf Pyl
Pin=1Im I 1 Iy a ro me fir fo fo3 f3l”
Popt = [kx Cx ky Cy]T ()

In order to identify p,;, the simulation of the dynamics of
the complete ML95 vehicle [24] has been carried out using
the CM. Previously, track irregularities had been generated
to be included in simulations. For this simulation, the real
parameters of the vehicle have been used, together with the
generated lateral irregularities. Second, the same simulation
by the SM has been carried out, using in this case the equiva-
lent parameters p,,; to be identified, and the generated lateral
irregularities. Note that, in order to reduce the complexity of
the parameter identification problem, only the lateral align-
ment, &, has been included in simulations with both models,
CM and SM, thereby excluding vertical irregularity from the
problem. Therefore, by comparison of the dynamic response
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of the wheelset calculated by both models, the equivalent
parameters pop; can be obtained.

There are several parameter identification methods that can
be used to match the dynamic response of the system. In this
work, the Temporal Structural Model Updating Method [26]
has been used. This is a time domain approach widely used
in different fields, the criterion of which is defined as the dif-
ference between the real and modelled time responses. This
difference has been evaluated by a misfit function defined in
the time domain: the least square error criterion. Using the
square of the L2 norm, the cost function can be written as a
sum over the channels, at the time step &:

1
Jis@op) = 5 D Xreat®) = Xmaa k, Bop)* (6)
k

Xreql and Xpoq being the state vectors of the real and
the modelled system, respectively. In the state vectors, any
representative variable can be included. In this work, the most
relevant variables in the dynamic behaviour of the vehicle
have been chosen: y and . Finally, the equivalent parameters
of the SM, py, are identified by applying a parametric
optimisation method which minimises the distance between
model and real responses.

IV. KALMAN FILTER

The main objective of this work is to estimate the lateral track
irregularities from experimental measurement of the dynamic
response of the wheelset and the bogie frame: acceleration in
the lateral direction (¥) and yaw angular velocity () of the
wheelset, and acceleration in the lateral direction (yf ) of the
suspended frame. This estimation is based on the well-known
Kalman filter algorithm [27].

A. DESIGN OF THE FILTER

The state vector is composed of the generalized coordi-
nates, (, their derivatives, ¢, and the lateral irregularity, &,
as follows:

x=[p v ¥ 59 ¥ ] ™

The measurement vector is composed of the acceleration
and the angular velocity of the wheelset, and the acceleration
of the suspended frame, plus an additional measurement of
the lateral irregularity:

T

Zmeas = I:j}meas 1/./meas j;;gm ’gmeas] (8)

It is important to note that the measurement of the lateral
irregularity, &,e4s, 1S not a real measurement but a virtual
sensor, with zero value, which has been included in the
measurement vector with the aim of avoiding a drift in the
prediction of the lateral irregularity.

With the aim of obtaining the equations of the Kalman
filter, the equation of motion (3) can be rewritten in the
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following state-space representation:

qal 0 I q
i|] | -MT1K+K -M1[Cs+Cel]l|a

0
+ [MIQC,O@, éJ ©)

Additionally, a common assumption is to consider the
additional state & as constant, i.e, its time derivative with a
zero value:

£=0 (10)

Assembling Eqgs. (9) and (10), the system and the measure-
ment equations in the continuous form are given by:

X(t) = Fe x(2) + v(1) Y
z(t) = He x(1) + w(r) 12)

where F. and H, are the constant state transition and the
measurement matrices in the continuous form, respectively,
while v and w are assumed as Gaussian white noises that can
be modelled as: v(r) ~ N(0, Q(¢)) and w(z) ~ N(0, R(2)),
where Q(#) and R(¢) are the covariance matrices.

The state transition matrix, F¢, can be obtained from
Egs. (9) and (10):

0 I 0
Fo=|-M1[Ki+K,] -M1[Ci+C.] MIKq
0 0 0
(13)
being:
200g(m — my)/1
Q.
Ko= 2200 | dafii/ng (14)
95 lizo 0
The measurement matrix, He, is obtained as:
[(Fe(4, 5]
O 0 0 0 1 0 0]
H. = 15
¢ [Fe(6, 9] (13)
O 0 0 0 0 0 1]

In the definition of H, Matlab-like notation has been used.

The estimator can be implemented in a discrete form,
by using a modification of the Euler method in which position
integration is discretised using a second order Taylor expan-
sion instead of the standard first order one, leading to the
following discrete equations:

Xy = F x|+ v (16)
7, = Hx; +wg 17

where the subscript k represents discrete time. In this case,
F and H are the constant state transition and the measurement
matrices in the discrete form, respectively.

The Kalman filter is made up of two fundamental steps:
estimates and updates. Being (e) the estimates, the following
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initial conditions are considered for the state estimates and
the error covariance:

X5 = E[xo] (18)
P} = E[(xo — %])(x0 — %{)"] (19)

with E the expected value.
The state estimates and the estimation of the error covari-

ance are given by:

%, =F& (20)
P, =FP; F' +Q (21)
By the computation of the filter gain, K, and evaluating
the measurement residual, the updates of the state estimates

and of the estimation of the error covariances can be deter-
mined by:

K; = P H'(HP, H +R) (22)
f‘]j = f(]: + Ky [zmeas,k —H Xk] (23)
P = - KiH)P, (24)

The performance of the Kalman filter strongly depends on
the observability of the system: the system is observable if
its behaviour can be determined from output sensors only.
For time-invariant linear systems in the state-space represen-
tation, there is a convenient test to check whether a system
is observable. If the row rank of the following observability
matrix:

H
HF

o— | HF (25)

HF.nf]

is equal to n (the number of state variables), then the system
is observable. This will be the initial test in the process of
estimating the lateral irregularity.

B. ESTIMATION OF COVARIANCE MATRICES

In the Kalman filtering process, a good estimation of the
system and measurement covariance matrices (Q and R) is
essential for the good performance of the filter. Both matrices
can be estimated from the real system state and measure-
ment vectors, obtained through the CM. Being x and z the
real system state and measurement vectors, respectively, the
covariance matrices can be evaluated. Regarding the system
covariance matrix, Q, it depends on how well the system is
modelled through the F matrix. Consequently, for the esti-
mation of Q, it is necessary to first evaluate the system error
vector at each time step k:

e; = [[xclew — F [Xk—1]em] (26)

where [X;]cy and [X;_1]cy are the state vectors evaluated
through the CM, at the time step k and k — 1, respectively.
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FIGURE 3. Lateral and vertical track irregularities.

From this, the system covariance matrix is estimated by com-
puting the covariance of the system error, as follows:

1
Q= v Z el e (27)
k

Regarding the measurement covariance matrix, R,
it depends on how well the measurement is modelled through
the H matrix and sensors. The measurement error or innova-
tion vector at each time step (k) is evaluated as:

¢, = [[zelew — H [xilem] (28)

where [Xi]cy and [zi]cy are the state and measurement
vectors evaluated through the CM, at the time step k.
From this, the measurement covariance matrix is estimated
by computing the covariance of the measurement error,

as follows:
1
= > e e (29)
k

Note that the measurement vector [z;]cy has been eval-
uated through the CM and contaminated with the Gaussian
white noise of the sensors, with a variance o geps0r5. Conse-
quently, the sensor errors are included in the measurement
covariance matrix R.

V. RESULTS

In simulations, the model of the vehicle ML95 operated
by the Lisbon subway [24] has been used. Geometric and
mechanical properties of the vehicle can be found in [24]. The
case of study is the ML95 vehicle running on a straight track
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with irregularities (vertical and lateral), at constant forward
velocity, V = 20 m/s. A total time of 20 s has been sim-
ulated, corresponding to 400 m track length. As previously
explained, the Kalman filter needs an estimation of the sensor
noise variance, o gu50rs- Lhe noise variance has been esti-
mated as 10% of the maximum absolute value of the signals,
which is a reasonably realistic working environment for civil
engineering applications. Therefore, a value of 0.01 /s> for
the accelerometers (Vyeqs and y§,1eus) and 0.0005 rad /s for the
gyroscope (Ymeas), has been taken. For the lateral irregularity
(&meas), a value of 5 mm has been fixed, which is the order of
the expected value of the lateral irregularity.

A. GENERATION OF TRACK IRREGULARITIES

For the generation of vertical and lateral track irregularities
to be included in the models, analytical expressions of the
power spectral density functions (PSD) are used. Using the
method reported in [28], vertical and lateral irregularities for
both the left and right rails have been generated for a 400 m
track length, as shown in Fig. 3. Recall that gauge is assumed
to be constant.

B. IDENTIFICATION OF EQUIVALENT PARAMETERS
In this section, the identification of the equivalent parameters
of the SM has been carried out. Table 1 shows the entire set
of parameters for the SM, once the parameter identification
has been achieved.

Figure 4 presents the estimation through both models,
CM and SM, of the variables included in the state vectors
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TABLE 1. Equivalent parameters of the SM. measurements have been contaminated with the Gaussian
. . white noise of the sensors, with a variance o ens0rs. The eval-
Parameter | Description Value | Units uation of the observability matrix, O, in Eq. 25, with equal
m ‘Wheelset mass 1109 Kg X ]
I Wheelset yaw moment of inertia | 606 Kg.m?2 rank to the number of state variables (n = 7), confirms that the
l Half width of the wheelset 0.75 m system is observable. Figure 5 shows the comparison between
loi ;Z‘;Ei‘r}:atl"cg‘;ig&mary suspension 8'?5 m the estimated lateral track irregularity and the reference one.
o Rolling radius of the wheels 0.85 m In the upper subplot, the two irregularity profiles are com-
my Mass of the suspended frame 3781 | Kg pared in the space domain, for the 400 m track-length under
;11 I]:Z;grgl“sr‘él:; if:ﬁc?fftﬁmm ;5;6 g study, whereas the lower subplot shows both profiles in the
22 . .
Fos Spin creep coeficient 93¢3 | Nm frequency domain, obtained by the FFT. It should be noted
f33 Spin creep coeficient 15 N.m? that both profiles, estimated and real, have been filtered with a
ke Longitudinal suspension stiffness | 7.95¢5 | N/m Butterworth bandpass filter in the range of interest, according
Cx Longitudinal damper coefficient 1.47e4 | N.s/m . .
ky Lateral suspension stiffness 4.12¢6 | N/m to the standards [3]: frequencies corresponding to a wave-
cy Lateral damper coefficient 1.41e5 | N.s/m length between 3 and 200 m. In light of the results, a good

for the optimisation procedure: y and 1. As can be observed
in the figure, quite good agreement has been achieved in
the simulated dynamic behaviour of both models, taking into

account the

simplicity of the SM.

C. ESTIMATION OF LATERAL IRREGULARITY

Once the equivalent parameters have been estimated, the pre-
diction of the lateral irregularity has been carried out
through the proposed Kalman filter algorithm. To this end,
the synthetic sensor data have been generated through the
CM, taking into account both vertical and lateral irregu-
larities, presented in Fig. 3. Furthermore, these synthetic
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agreement of the estimated and the real lateral irregularity is
observed across the entire length of the spatial profile. The
results in the frequency domain complement the information
obtained, showing a good prediction of the lateral irregularity
throughout the whole frequency range, which is divided into
three ranges according to the standards: D1 (A = 3-25 m), D2
(A =25-70 m) and D3 (A = 70-200 m).

For a more in-depth analysis, the results obtained have to
be divided into the three different ranges, by filtering them
into the corresponding bandpass limits (i.e. D1, D2 and D3).
Therefore, results have been plotted in Fig. 6, where the
comparison between estimated and real lateral irregularity are
presented in the three different ranges, in the space domain.
Again, very good agreement is obtained in the three wave-
length ranges.
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FIGURE 5. Lateral irregularity estimation filtered in the whole range.

In order to numerically evaluate the results achieved with
the proposed Kalman filter estimator, an accuracy index has
been calculated. In this work, two different accuracy indices
have been used:

J

rms (Eest — &real)
rms (Eest — &real)

rms (Sreal)

The first one is the absolute accuracy index J, calculated
as the root mean square value (rms) of the difference between
the estimated and the real lateral irregularity. This index J
has length units and is particularly useful and intuitive for
measuring the disagreement of the estimation with the real
data. The second one is the relative accuracy index J,
which corresponds to the non-dimensional value of J. This
index has no dimensions and completes the information of
the absolute accuracy index. Therefore, the accuracy indices
for the estimations, according to different wavelength ranges,
are shown in Table 2. It can be seen that values of J =
0.36 mm and J,,; = 0.25 are achieved in the estimation when
the whole spectrum is considered, confirming the accuracy
of the estimator. It is important to note that, in the standard
case analysed in this section, with the aim of being realistic,
the vertical irregularities of the track and the sensor noise
have been included in the synthetic measurement sensor data.
Both factors are a source of errors in the prediction of the lat-
eral irregularities, making the Kalman filter estimator process
more difficult. Nevertheless, very good results are obtained
in the estimations. When analysing the different wavelength

Jrel (30)
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200

TABLE 2. Accuracy indices, J (in mm) / J,o/, in different wavelength
ranges.

Whole range
0.36/0.25

D1 range
0.21/0.48

D2 range
0.22/0.26

D3 range
0.18/0.15

ranges, a considerable reduction of the absolute accuracy
index J is obtained, particularly in the D3 range. It must
be noted that the relative accuracy index J,; is significantly
higher in the D1 range. This fact is explained by the lower
magnitude value of the D1 irregularities (see Fig. 6).

Finally, in order to test the efficiency of the proposed
Kalman filter, the computing time to simulate the case under
study has been calculated. The algorithm has been devel-
oped in Matlab R2016a with a computer with an Intel Core
17 CPU 2600 3.4 GHz processor. Only 5.7 s of computation
time has been required to simulate the total time of the
case under study, 20 s. This number can even be improved
significantly if the Kalman filter is implemented using a
low-level programming language like Fortran or C/C++.
Consequently, the proposed algorithm is particularly appro-
priate for real-time applications.

D. ROBUSTNESS TO PARAMETER UNCERTAINTY

A numerical analysis has been performed, varying the uncer-
tain parameters that could change with the running conditions
to evaluate their effect on the estimation. The summary of
the obtained results can be seen in Table 3, where different
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FIGURE 6. Lateral irregularity estimation filtered in different ranges.

conditions are evaluated and compared with the standard one,
which was previously analysed. For each case, only one effect
is analysed at a time.

First, the effect of the measurement noise on the predic-
tions has been evaluated. To this end, the synthetic mea-
surement generated through the CM to be used in the
Kalman filter has been used without noise. With these
noise-free measurements, the estimation has been per-
formed and the accuracy indices evaluated. It can be seen
that, as expected, there is an increase of the estimation
accuracy. However, the effect of the sensor noise is not
relevant.

Second, the effect of the vertical irregularities on the esti-
mation of the lateral irregularity has been analysed. In this
case, the generation of the synthetic measurement has been
performed through the CM, including only the lateral irregu-
larities shown in Fig. 3, without vertical ones. With these new
synthetic measurements, the estimation has been performed
and the accuracy indices evaluated and included in Table 3.
Obviously, an improvement in the estimation is achieved.
However, it can be concluded that the vertical irregularities
hardly affect the estimations, as could be expected: the ver-
tical irregularities being much smaller than the width of the
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wheelset, it hardly affects the dynamics of the wheelset and,
consequently, the estimation results.

Third, the effect of the uncertainty in the wheel conicity on
the estimations has been studied. This parameter is especially
important for different reasons. First, the wheels of a railway
vehicle are not usually conical, as it has been assumed in
this work. Second, the profile of the wheels can change
throughout their life, due to the wear from contact with the
rails. Consequently, the value of the conicity cannot be accu-
rately found out and therefore has some degree of uncertainty.
In this analysis, a variation in the conicity value of —10% has
been included in the Kalman filter and in the results in the
simulations evaluated through the accuracy indices. A mild
effect on the estimation is observed in the results.

Fourth, the contact conditions between the wheels and the
rails have been considered. In order to evaluate the effect
of the uncertainty in the Kalker’s coefficients, the synthetic
measurements have been generated using the CM, but by
reducing the Kalker’s coefficients to 50%. With these new
synthetic measurements, the estimation has been carried out
and the accuracy indices of the results evaluated. As observed,
the accuracy in the prediction of the lateral irregularity under
this new condition decreases, although slightly.
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TABLE 3. Accuracy indices, J (in mm) / J,¢, in different wavelength ranges, for different conditions.

Condition Whole range | DI range D2 range D3 range
Standard 0.36/0.25 0.21/0.48 | 0.22/0.26 | 0.18/0.15
Without sensor noise 0.34/0.24 | 0.21/0.48 | 0.21/0.26 | 0.13/0.12
With no vertical irreg. 0.34/0.24 | 0.17/0.40 | 0.21/0.26 | 0.18/0.16
Conicity (—10%) 0.38/0.27 0.22/0.51 | 0.23/0.29 | 0.18/0.16
Kalker’s coefficients (—50%) 0.39/0.27 0.22/0.51 | 0.23/0.29 | 0.18/0.16
All conditions together 0.47/0.32 | 0.30/0.68 | 0.27/0.32 | 0.21/0.18

Finally, the worst-case scenarios have been considered,
i.e., all adverse conditions together at the same time (noise,
vertical irregularities, conicity uncertainty and Kalker’s coef-
ficients uncertainty). In this critical case, the results in the
prediction are quite acceptable, with just a moderate increase
of the accuracy indices compared with the standard case.

Consequently, after considering the results obtained in the
numerical analysis, summarised in Table 3, it can be assumed
that among all the parameters that could introduce any kind
of uncertainty into the Kalman filter, none has a significant
impact in the predictions, even in a critical case in which all
conditions are considered.

E. ROBUSTNESS UNDER RESONANCE CONDITIONS

In order to verify the robustness of the estimator, it has to be
checked under very critical, although not likely, conditions.
Since the railway vehicle is a mechanical system with its
own modes of vibrations, if one of those modes were excited
during the ride by track irregularities, the natural movement
of the wheelsets would be amplified due to resonance. This
amplification leads to higher levels of acceleration and angu-
lar velocities in the wheelset and the suspended frame, which
are inputs in the Kalman filter estimator, thereby compli-
cating the efficient performance of the estimator. Resonance
should not be interpreted as higher levels of lateral irregular-
ities. Due to the fact that the estimator is based on a dynamic
model (the SM), it should be able to estimate the real value
of irregularities from the lateral motion of the wheelset, even
if this movement is amplified by excitation of any mode of
vibration.

First, the modes of vibration of the vehicle are calculated
using modal analysis, performed through the eigenanalysis of
the system. The first mode of vibration corresponds to a fre-
quency of 1.277 Hz, which, at a constant velocity of 20 m/s,
leads to a wavelength of 15.66 m. In order to validate the
Kalman filter, three different cases have been analysed, all
of them corresponding to the same vehicle and conditions
previously studied. In all cases, the synthetic sensor data have
been generated through the CM and contaminated with sensor
noise, including vertical irregularities presented in Fig. 3, but
using different lateral irregularities as inputs (see Fig. 7). The
first case (Case 1) is the standard case previously analysed
in Section V-C. The second one (Case 2) corresponds to the
critical case in which the lateral irregularity is a harmonic
signal of 1 mm of amplitude and a wavelength A = 15.66 m
which, for a constant velocity of 20 m/s, corresponds to a
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TABLE 4. Accuracy indices, J (in mm) / J,/, in different wavelength
ranges, for different cases under study.

Condition | Whole range D1 range D2 range D3 range
Case 1 0.36/0.25 0.21/0.48 | 0.22/0.26 | 0.18/0.15
Case 2 0.21/0.29 0.17/0.27 | 0.04/0.99 | 0.08/59
Case 3 0.38/0.24 0.24/0.32 | 0.21/0.27 | 0.17/0.15

frequency of 1.277 Hz (first natural frequency of the vehicle).
This is the critical case in which the harmonic irregularity
excites the first mode of vibration. Finally, in the third case
of study (Case 3), the lateral irregularity is the sum of the
irregularities of cases 1 and 2.

By using the irregularity corresponding to each case,
the Kalman filter has been used following the same procedure
explained in previous sections. The results of estimations are
presented in Fig. 8, for the three cases under study. Addition-
ally, with the aim of analysing the performance of the Kalman
filter, the lateral displacement of the wheelset has also been
plotted. To complete the information, the accuracy indices,
J and J,.;, have been calculated in each case and presented
in Table 4.

In the first case, the standard case has been studied. From
the results presented in the first plot of Fig. 8, it can be
appreciated that the wheelset follows the lateral irregularities
quite faithfully: the lateral displacement of the wheelset, y,
is quite similar to the real irregularity, &,.4;, but with a certain
phase delay and some kind of over-oscillations around the
peaks of the signal. However, the Kalman filter estimation,
&.st, corrects both the phase delay and the over-oscillations,
verifying the good performance of the Kalman filter.

In the second scenario (Case 2), the vehicle is excited by
the harmonic irregularity at the first natural frequency, ampli-
fying in this case the lateral displacement of the wheelset.
The second plot of Fig. 8 shows the lateral displacement of
the wheelset, y, to be out of phase and the resulting significant
amplification with regard to the input irregularity. In this case,
the amplitude ratio (relationship y/&) is around 2. Again,
the Kalman filter makes a very good prediction of the lateral
irregularity in this critical case, as can be observed in the
figure. These results are corroborated by the accuracy indices
obtained in this case (see Table 4): J = 0.21 mm and J,,; =
0.29. Note that, in Case 2, almost the entire absolute error is
contained in D1 range, due to the fact that the irregularity is a
harmonic signal with a wavelength A = 15.66 m, belonging to
the D1 range (A = 3-25 m). In ranges D2 and D3, the absolute
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FIGURE 7. Lateral irregularity for the different cases under study.

error (J) is very low, although obviously the relative error
(Jyer) 1s significant.

Finally, in the last case study (Case 3), a combination of
the irregularities of the two previous cases has been taken as
input in the Kalman filter. The third plot of Fig. 8 shows the
results in Case 3: similarly to the previous case, the lateral
displacement of the wheelset, y, is out of phase and has
significant amplification with regard to the input irregularity.
This result could be expected, since lateral irregularity in this
case has a frequency content corresponding to the first natural
frequency of the vehicle, amplifying the lateral motion of the
vehicle. Regarding the estimation of the lateral irregularity
in this third case, very good results are shown in Fig. 8 and
in Table 4.

In conclusion, the results obtained in the different cases
studied in this section prove that the Kalman filter estimator
is quite efficient and robust even in the critical case in which
irregularities produce vehicle resonance.

F. COMPARATIVE STUDY WITH OTHER METHODS

Finally, in order to verify the good performance of the
proposed method, it will be compared with other existing
method. Even though there are several works in literature
dealing with the estimation of the lateral track irregularities
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[19]-[22], most of them are not easily comparable with the
present work. Only the work presented by De Rosa er al. [22]
has been carried out in the same conditions to the present
work: the methods were validated through the use of virtual
sensor synthesised data and the performance numerically
evaluated with the relative accuracy index, J,.;. In the afore-
mentioned work [22], the authors presented three different
methods to estimate lateral track alignment. The first one
(Frequency domain method, FD) is defined in the frequency
domain and is based on the pseudo-inversion of the vehicle’s
frequency response function (FRF) matrix. The second one
(Unknown input observer method, UIO) is a deterministic
observer method defined in the time domain that can esti-
mate both the state and the unknown inputs. And the third
one (Discrete Kalman method, DKM) is defined in the time
domain and based on the use of a linear Kalman filter as
a stochastic observer. In Table 5, the method proposed in
the present work is compared with the different methods
proposed by De Rosa et al., through the relative accuracy
index. The results have been filtered in the whole wavelength
range (A = 3-200 m). As a result, it can be concluded that
better results in the estimation of the lateral track irregularity
are obtained by the proposed method, compared with the
other three methods. As conclusion, the results obtained by

VOLUME 9, 2021



S. Murioz et al.: Estimation of Lateral Track Irregularity Through Kalman Filtering Techniques

IEEE Access

Amplitude (mm)

200 250 300 350 400

Distance (m)

Amplitude (mm)

Amplitude (mm)

0 50 100 150

200 250 300 350 400

Distance (m)

FIGURE 8. Lateral irregularity estimation for the different cases under study.

TABLE 5. Relative accuracy index, J,¢/, in the whole range, for different
methods.

Method Index J,.¢;
Present method 0.25
De Rosa et al. FD method [22] 0.32
De Rosa et al. UIO method [22] 0.29
De Rosa et al. DKF method [22] 0.36

the proposed method are quite promising, showing a good
efficiency and robustness. However, it must note that the
validation performed in the present work has been carried out
through virtual measurements. Consequently, as future work,
the proposed estimation technique must be experimentally
validated, using measurements performed on real railway
vehicles.

VI. CONCLUSION AND FUTURE WORKS

In this work, a simple and robust measuring system combined
with a dynamic model-based Kalman filter estimator has
been proposed to be used on in-service vehicles for contin-
uous monitoring of track geometry and estimation of lateral
alignment. The proposed numeric technique is based on the
Kalman filtering method, using the measurement from only
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three inertial sensors (two accelerometers and one gyroscope)
mounted on an in-service vehicle, running on a straight track
with irregularities.

The Kalman filtering method used is based on a Simplified
Model (SM) that adequately reproduces the lateral dynamic
behaviour of the vehicle, the simplicity of which drastically
reduces the computational load of the estimator. The main
contribution of the presented work is the use of such a simpli-
fied linear dynamic model to be used to perform a classical
linear Kalman filter. Consequently, in order to obtain good
performance in the proposed estimator, accurate identifica-
tion of the equivalent parameters for the SM is essential.
Otherwise, without a well-characterised SM, the proposed
estimator will not be able to provide a good estimation of
the lateral alignment. To this end, a parametric optimization
method has been used, with very good results, taking into
account the simplicity of the SM. To validate the proposed
method, virtual experimental data to be used as an input in
the Kalman filter have been generated through the Complete
Model (CM), a detailed dynamic model previously proposed
by the authors.

Through use of the proposed method, the result obtained
has been analysed in the different wavelength ranges defined
in the standards, showing very good agreement in all of them,
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with maximum errors around 0.3 — 0.4 mm. Additionally,
the efficiency of the proposed estimator has been checked,
showing a very low computational cost, which makes it espe-
cially appropriate for real-time applications. Finally, the work
has been completed by performing a systematic parametric
analysis of the Kalman filter, analysing the influence that the
uncertainty of different parameters and running conditions
(sensor noise, vertical irregularity, conicity uncertainty and
Kalker’s coefficients uncertainty) can have on the results of
the estimation. In light of the results obtained, the estima-
tor has shown great robustness and reliability. Furthermore,
the robustness of the method has been tested in a very critical
case in which irregularities produce vehicle resonance.

Based on the results presented, it can be concluded
that the proposed methodology (measuring system and
model-based Kalman filter estimator) achieves a good com-
promise between simplicity and precision. Consequently, it is
suitable for use on in-service vehicles for continuous monitor-
ing of track condition and for the identification of the lateral
alignment of the tracks, and it can also be used in real-time
applications. In future work, the assessment of the proposed
technique should be experimentally validated, using measure-
ments performed on real in-service vehicles and verifying the
accuracy and reliability of the estimator.
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