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ABSTRACT Both uniform quarantine and isolation measures, due to the COVID-19 pandemic, have
brought forth unprecedented and severe socio-economic impacts. For the global post-COVID economic
recovery, it is of great significance to explore scientific ways to reopen the borders with consideration of
both risk and efficiency. With the development of international travel health certificate or digital travel
pass, differentiated inspection and quarantine measures can be implemented to accelerate the recovery of
international travel. In this paper, we study a multi-tier inspection queueing systemwith finite capacity based
on a differentiated level of risk classification. A queueing analysis is conducted for the stochastic process
of inspecting cross-border travelers under differentiated service for inspection and quarantine. Besides, we
develop a computing method to determine the steady-state probability and several performance indices of
the proposed queueing system, and an illustrative example is also set to introduce a step-by-step process
for the method. Furthermore, we figure out the relationship between the model parameters and system
performance of interest by means of a series of numerical experiments. In the data analysis, we also illustrate
the monotonic and concave effects on the system performance, which can provide a visualized understanding
of the trade-off between safety and efficiency in the studied multi-server queueing system with hierarchical
inspection channels and finite capacity. Our findings can reveal some managerial insight into the border
control problems, which could reconcile the efficiency with safety in the current epidemic prevention and
control tasks.

INDEX TERMS Queueing model, multi-server queue, operations management, data analysis, risk-based
strategy, system analysis and design, performance evaluation, border control, inspection and quarantine
measures, COVID-19 pandemic.

I. INTRODUCTION
The ongoing novel coronavirus (COVID-19) epidemic
has already caused a global pandemic [1]–[3]. As of
March 14, 2021, there are 223 countries and regions with
confirmed cases, while the cumulative numbers of COVID-19
infected cases and confirmed deaths increasingly mount to
119,030,459 and 2,640,349 according to the statistical data
from World Health Organization (WHO) [4]. In order to
avoid the spread of epidemic, most countries and regions
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have invested resources to carry out epidemic prevention and
control tasks related to border control measures [5].

The advent of COVID-19 pandemic has brought forth
unprecedented and severe socio-economic impacts, taking
cross-border transportation cancelation as an example. The
number of travelers at security checkpoints in Year 2020 was
over 70% lower than the statistics in the prior year [6].
The transportation and tourism industries account for a large
proportion of Gross Domestic Product (GDP), and the losses
of these two due to the epidemic have a great impact on the
national economy. Thus, governments worldwide are strug-
gling to find ingenious ways to somewhat restore the flow
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streams associated with cross-border movement of people
and goods.

Some countries and organizations have begun to study
reopening their borders without isolation measures. For
example, the International Air Transport Association (IATA)
announced in December 2020 that it was going to create an
‘‘IATA Travel Pass’’, allowing travelers to store and manage
personal health information or certifications for COVID-19
tests/vaccines [7]. The IATA Travel Pass is a mobile applica-
tion, which aims to help travelers check the entry quarantine
requirements for all destinations before their departure and
make response, according to the border control regulations.
Besides, Air France has started testing a health passport sys-
tem fromMarch 2021, for passengers on selected flights, who
obligate to show proof of vaccination or negative COVID-19
test results. The passport will work through an app called ICC
AOKpass, which will be presented on the plane.

For reopening international travel, China has launched the
Chinese version of travel health certificate. OnMarch 8,2021,
China made an available digital passport for citizens, ‘‘Inter-
national Travel Health Certificate’’, certifying the health
status of travelers. The official data in the Chinese version
of International Travel Health Certificate is provided by the
National Health Commission of the People’s Republic of
China, including Nationality, Passport No., Name, Result of
Nucleic Acid Test, Nucleic Acid Testing Institution, Date
of Nucleic Acid Test, Result of Serum IgG Antibody Test,
Serum IgG Antibody Testing Institution, Date of Serum IgG
Antibody Test, and some data related to COVID-19 vaccina-
tion, etc. Meanwhile, in the European Union, the idea of a
‘‘Green Passport’’ is going to be presented by the European
Commission in March 2021. Besides that, the Unite States
of America is considering the launch of similar travel health
certificate/passport.

With the development of all kinds of COVID-19 health
certificates or digital health passports, there will be an
opportunity to accelerate the recovery of international trav-
elling. We can carry out the risk assessment by classification
or stratification for different types of international travelers
with different risk levels [8]–[15]. Cross-border travelers
can upload personal health information to those databases,
which could label differentiated risk classes and accurately
notify border control personnel whether they are qualified
for cross-border travel or not [16]–[21]. During the post-
COVID economic recovery, these international travel health
certificates/passports could help reopen borders further.

Queueing theory has been applied extensively to esti-
mate the performance of stochastic systems [22]–[25]. In the
present work, we have applied queueing analysis to a multi-
tier inspection system based on differentiated levels of risk
classification. A multi-server queueing model with finite
capacity will be developed in this paper in order to investigate
the stochastic process of differentiated service for inspec-
tion and quarantine measures. Furthermore, we are going
to derive a computing method for the studied multi-server
queueing system with hierarchical inspection channels and

finite capacity, and determine the system performance of
interest. Besides, the proposed queueing model and com-
puting method will be demonstrated by means of a series
of numerical examples. We will also conduct a sensitivity
analysis of the system performance as the model parameters
are varied.

In this paper, we are going to investigate amanagerial prob-
lem for the border-crossing queueing process with hierarchi-
cal inspection channels. The proposed queueing analysis is of
great significance to clarify the risk management goals that
aim to effectively and efficiently optimize the tight resource
for border control [26]–[28]. Our findings can provide some
managerial insight into the border control problems that
reconcile the efficiency with safety in the current epidemic
prevention and control tasks, especially when attempting to
implement the strategy of accurately classified or differen-
tiated prevention and control, and dredging the bottleneck
points at borders for passenger flow or container logistics.
Our research work could help the decision makers improve
the customs clearance inspection and quarantine mechanism,
under consideration of both strengthening supervision and
optimizing service.

The structure of the present paper is organized as follows.
In Section II, we will introduce the problem definitions and
a multi-tier inspection queueing system. A queueing analysis
will be demonstrated in Section III. Besides, we are going to
derive the computing formulas for the steady-state probability
and performance indices of the proposed queueing system.
In Section IV, wewill give an illustrative example to show and
explain a step-by-step process for the presented computing
method in a practical application. In Section V, we will con-
duct a series of case studies on the proposed queueing system.
Through a series of numerical experiments, we figure out the
effects on the system performance when the model param-
eters are varied, and reveal the managerial insights into the
multi-tier inspection queueing system. Finally, the conclud-
ing remarks and suggestions are summarized in Section VI.

II. A MULTI-TIER QUEUEING MODEL WITH FINITE
APPROVED CAPACITY
In this section, as shown in Fig. 1, we introduce a queue-
ing system with multi-tier inspection channels, each with a
multiple number of inspectors (with equipment). In order to
understand the queueing impacts on inspecting the approved
cross-border travelers, we will formulate a multi-tier queue-
ing model with limited capacity (namely, pre-approval
quantity) based on a health risk screening mechanism, and
determine the performance measures of interests for the pro-
posed multi-tier queueing system. In the studied multi-tier
inspection queueing system, multiple risk thresholds are to be
used to distinguish those approved cross-border travelers for
going through differentiated tier of inspection channel. Based
on the initial perceived risk level (assessed in the prescreening
stage), we assign each approved traveler to a risk group,
and then calibrates the inspection and quarantine measures
to mitigate the risk associated with each risk group.
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FIGURE 1. A multi-tier inspection queueing system with finite capacity.

We assume that the population of potential cross-border
travelers is infinite, and the applications of travelers arrive to
the border-crossing inspection and quarantine system accord-
ing to a Poisson process with rate λ. In this study, we assume
that the arriving travelers must be assigned to m approved
risk classes, and we denote the index set I ={1, 2, . . . ,m} for
the multiple risk classes. The queueing process for inspecting
those approved cross-border travelers is divided into multiple
levels of risk classification with probability pi, for each class
i ∈ I.
Every cross-border traveler can be marked a risk value

α (provided by a health risk pre-screening information sys-
tem), and then will be inspected at the corresponding tier of
inspection queue at the border checkpoints, where the risk
value α is a real number and lies between 0% and 100%.
We assume that the risk value α of cross-border travelers to
be inspected follows a probability density function f (α), and
the risk value of each traveler is independent of each other.
In practice, the actual value of α could be estimated from
the collected data sets, including the cumulative infectious
cases, the number of close contacts, the number of quaran-
tined individuals, geographic location, and so on. Besides,
according to the historical data, the mathematical formulation
of probability function f (α) could be derived by several sta-
tistical techniques, such as regression analysis, curve fitting,
machine learning methods [29], etc.

We use the risk thresholds τi, for each i ∈ I, to distinguish
the adjacent levels of risk for those approved cross-border
travelers. The values of risk thresholds τi for all i ∈ I are
real numbers between zero and one, and the value range is
set as 0 = τ0 < τ1 < . . .< τm−1 < τm = 1. According to
the assigned risk value α, the inspection officers will guide
the approved cross-border travelers to be inspected in the
corresponding tier of inspection channel.

Given the risk thresholds 0 = τ0 < τ1 <

. . .< τm−1 < τm = 1, the probability that the travelers are
assigned to the i-th tier inspection channel can be derived as:

pi =
∫ τi

τi−1

f (α)dα, (1)

for each i ∈ I. Note that, by the law of total probability, it is
obvious that the following condition holds:∑m

i=1
pi = 1. (2)

Suppose that the service times (including inspection and
quarantine) for approved travelers follow the exponential
distributions, and the expected service time for the i-th tier
of inspection channel is denoted as 1/µi, for each class i ∈ I.
Note that the m-th tiered inspection channel for the highest
level of risk has the longest inspection time and strictest
quarantine, whereas the first tiered inspection channel for the
lowest level of risk has the shortest inspection time and the
highest service efficiency. Meanwhile, for each class i ∈ I,
we represent si as the number of inspectors (with inspection
and quarantine equipments) assigned to the i-th tier of inspec-
tion channel, where these numbers si are positive integers.
Besides, it is also assumed that cross-border travelers are
screened and inspected on a First-Come-First-Served basis
within each tier of inspection channel.

In the considered queueing system as shown in Fig. 1,
we have a finite capacity denoted as Ki for approved travelers
assigned to the i-th risk class such that the total number of
cross-border travelers in the i-th tiered inspection channel
(queueing plus those in service) is no more than Ki. Note that
these numbers Ki are positive integers, and it is realistic to
assume Ki ≥ si, for all i ∈ I.
Meanwhile, for each risk class i ∈ I, the recognition

rate (for inspection and quarantine) at the i-th tier inspection
channel is denoted as βi, which is a constant number between
0% and 100%. It is worth noting that, for the sake of screening
cost and efficiency, we may use more expensive screening
equipment and quarantine materials for higher tier of inspec-
tion channel. In such case, βm is the highest recognition rate,
and β1 is the lowest recognition rate.
The above-mentioned model assumptions are reasonable

because the formulation of our queueing model comes from
a new phenomenon in border control during the implemen-
tation of Travel Health Certificate/Passport for reopening
international travel. In this scenario, before departure, trav-
elers need to apply for the finite entry approval and then
present their Travel Health Certificate (or COVID-19 vaccine
certificate). Several countries, such as China, Japan and the
European Union, have carried out such tests for innova-
tive border control measures with finite capacity planning.
Besides, the Travel Bubble between Taiwan and Palau is
another practical example with the consideration of finite
capacity planning under the current epidemic prevention and
control.

In Table 1, we summarize the mathematical notations and
definitions of the presented queueing model.

In the next subsection, we are going to formulate a multi-
tier queueing model based on a multi-level inspection and
quarantine procedure, which can be applied to evaluate trade-
offs across multiple criteria in the checkpoints at borders,
such as safety level, average number of travelers to be
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TABLE 1. Notations for the multi-tier inspection queueing system.

inspected, average sojourn time, and utilization level of the
system.

III. A QUEUEING ANALYSIS
A. COMPUTATION FOR STEADY-STATE PROBABILITY
We denote qi(t) as the total number of cross-border travelers
(in service or waiting) in the i-th tier of inspection chan-
nel at time t , for each class i ∈ I. Since the arrival
process of cross-border travelers to the inspection system
is Poisson and the service times of multi-tier inspec-
tion channel are exponential, it can be observed that the
stochastic process {(q1 (t) , q2 (t) , . . . , qm(t)) , t ≥ 0} is a
continuous time Markov chain. Besides, the state space
of {(q1 (t) , q2 (t) , . . . , qm(t)) , t ≥ 0} is finite because the
queue lengths, q1 (t) ≤ K1, q2 (t) ≤ K2, . . . , and qm(t) ≤ Km
are finite.

Since the independence of arrivals and the memory-
less property of the exponential service time distribution,
it implies that the counting number of cross-border travelers
to be inspected at the i-th tier of inspection channel forms a
birth and death process with finite states {0, 1, . . . ,Ki}, for

each class i ∈ I. That is, for each class i ∈ I, the stochas-
tic process {qi (t) |t ≥ 0} is a birth-death process with birth
parameters

λi,j =

{
pi · λ, for j = 0, 1, . . . ,Ki − 1,
0, otherwise,

(3)

and death parameters

µi,j =

{
j·µi, for j = 1, 2, . . . , si,
si · µi, for j > si + 1, . . . ,Ki,

(4)

when a fixed number si of inspectors (with equipment) are
available in the i-th tier of inspection channel. It is easy to see
that the number undergoing the inspection service at the i-th
tier of inspection channel is min {qi (t) , si}, and the number
waiting for service is max {qi (t)− si, 0}.

Next, for each class i ∈ I, we assume that there exists
the steady-state occupancy probabilities of n (0 ≤ n ≤ Ki)
approved travelers, πi,n. Let

πi,n = limt→∞ Pr{qi (t) = n}, for n = 0, 1, . . . ,Ki, (5)

be the equilibrium distribution of queue length in the i-th tier
of inspection channel. Besides, for the simplicity of deriva-
tion, we can use a notation ρi to represent the traffic intensity
of the i-th tier of inspection channel for each class i ∈ I.
Definition 1: The traffic intensity of the i-th tier of inspec-

tion channel is defined as the fraction of the time in which
this tier of inspection channel is occupied, for all class i ∈ I.
That is, the average occupancy of the i-th tier of inspection
channel is formulated as

ρi =
pi · λ
si · µi

, (6)

where λ is the average arrival rate, pi is the probability of
travelers assigned to the i-th tier inspection channel, si is a
fixed number of inspectors, andµi is the average service rate,
for each class i ∈ I.
For the i-th tier of inspection channel, for all i ∈ I,

the unique steady-state probability can be determined by the
following iterative relation

πi,n =


(Si·ρi)n
n! · πi,0, for n = 1, . . . , Si,

S
Si
i ·ρi

n

Si!
· πi,0, for n = Si + 1, . . . ,Ki,

(7)

Solving for πi,0 in the equation
∑Ki

n=0 πi,n = 1, we can derive
that

πi,0 =

(∑si−1

j=0

(si · ρi)j

j!
+

∑Ki

j=si

ssii · ρ
j
i

si!

)−1
, ∀i ∈ I.

(8)

Therefore, with the help of probability πi,0, we can recur-
sively determine the remainder probability πi,n, for n =
1, . . . ,Ki, by means of the equation (7).
The steady-state probabilities πi,n, for n = 0, . . . ,Ki, and

for all i ∈ I, can demonstrate the limiting behavior of the
studied multi-tier queueing system. In the following, we are
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going to determine the performance indices of interest by
using the obtained steady-state probabilities, that is, the rejec-
tion rate Di for each class i ∈ I, the average sojourn time W ,
the average number L, and the safety level R of the studied
multi-tier queueing system.

B. PERFORMANCE INDEX OF THE QUEUEING SYSTEM
For each class i ∈ I, when the queue of the i-th tier of
inspection channel is full, all new applications of travelers for
entry in the i-th risk class will be blocked. As a result, in the
case of occupancy n = Ki, we can derive the rejection rate

Di =
ssii · ρ

Ki
i

si!
·

{∑si−1

j=0

(si · ρi)j

j!
+

∑Ki

j=si

ssii · ρ
j
i

si!

}−1
,

(9)

for each risk class i ∈ I, by using the equations (7) and (8).
Proposition 1: For all class i ∈ I , it holds that the rejection

rate of the i-th tier of inspection channel is decreasing with
respect to the finite capacity for approved travelers at the i-th
tier inspection channel. Namely, as we increase the capacity
Ki, the rejection rate Di will be decreased, for each class
i ∈ I .
Proposition 2: Given that the finite capacity Ki and the

number of inspectors si are fixed, it holds that the rejection
rate of the i-th tier of inspection channel is increasing with
respect to the traffic intensity at the i-th tier inspection chan-
nel, for all class i ∈ I . That is, the rejection rate Di is an
increasing function of the traffic intensity ρi, for each class
i ∈ I .
Next, we can evaluate the average queue length in the i-th

tier of inspection channel, Li, and the average number of
approved travelers in the overall queueing system, L, by using
the obtained steady-state probabilities. In the long term, the
average queue length of the i-th tier of inspection channel can
be derived as

Li =
∑Ki

n=0
n·πi,n

=

(∑si

n=1

(si · ρi)n

(n− 1)!
+

∑Ki

n=si+1

n · ssii · ρ
n
i

si!

)
· πi,0

=

(∑si

n=1

(si · ρi)n

(n− 1)!
+

∑Ki

n=si+1

n · ssii · ρ
n
i

si!

)
·

(∑si−1

j=0

(si · ρi)j

j!
+

∑Ki

j=si

ssii · ρ
j
i

si!

)−1
(10)

for all risk class i ∈ I. Using the explicit expression of the
average queue length Li, we can define the percentage of the
average occupancy with respect to the maximum occupancy
as follows.
Definition 2: Given the finite capacity Ki and the average

queue length Li, the utilization level of the i-th tier of inspec-
tion channel is defined as

Ui =
Li
Ki
, (11)

for all class i ∈ I.

Proposition 3: For all class i ∈ I , it holds that the average
queue length of the i-th tier of inspection channel is increas-
ing with respect to the finite capacity for approved travelers at
the i-th tier inspection channel. Namely, if the traffic intensity
ρi and the number of inspectors si are fixed, then the average
queue length Li is an increasing function of the capacity Ki,
for each class i ∈ I .
Proposition 4: The average queue length Li is increasing

in the traffic intensity ρi, and the upper bound of the average
queue length Li is the finite capacity Ki, given that the number
of inspectors si and the capacity Ki are fixed, for each class
i ∈ I .
After determining the average queue length Li, we can

derive the expected number of approved travelers to be
inspected in the whole system. Therefore, in the long run,
the average number of approved travelers in the overall multi-
tier queueing system can be determined as

L =
∑m

i=1
pi · Li =

∑m

i=1
pi · πi,0

·

(∑si

n=1

(si · ρi)n

(n− 1)!
+

∑Ki

n=si+1

n · ssii · ρ
n
i

si!

)
, (12)

where pi is the predetermined probability that the incoming
travelers are assigned to the i-th tier inspection channel, and
the values of steady-state probability πi,0 for all risk class
i ∈ I can be computed by using the equation (8).
Due to the limited capacity for approved travelers assigned

to every differentiated risk class, the effective arrival rate
to each tier of inspection channel can be obtained via the
rejection rate Di derived in the equation (9) as follows:

λeffectivei = λ · pi · (1− Di) , (13)

for all risk class i ∈ I. Next, with the help of Little’s
formula, we can determine the average sojourn time spent
by an approved traveler assigned to the i-th tier inspection
channel via the following formula:

Wi =
Li

λeffectivei

=
Li

λ · pi · (1− Di)
, (14)

for all risk class i ∈ I. Therefore, in the long term, the average
sojourn time spent for passing through the overall multi-tier
queueing system can be determined as follows:

W =
∑m

i=1
pi ·Wi =

∑m

i=1
pi ·

Li
λ · pi · (1− Di)

, (15)

where pi is the predetermined probability that the incoming
travelers are assigned to the i-th tier inspection channel for all
risk class i ∈ I.
Furthermore, under the given risk thresholds 0 = τ0 <

τ1 < . . .< τm−1 < τm = 1, we can derive the risk ratio of
the cross-border travelers assigned to the i-th tier inspection
channel, for each risk class i ∈ I, as follows:

Ri =

∫ τi
τi−1

α · f (α)dα∫ 1
0 α · f (α)dα

, (16)

where f (α) is a probability density function of the risk value
α for those approved travelers to be inspected. Therefore,
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from the condition (2), we can determine the safety level of
the overall multi-tier inspection system as follows:

R =
∑m

i=1
βi · Ri, (17)

where βi is the recognition rate for inspection and quarantine
at the corresponding i-th tier inspection channel, which is
a constant number between 0% and 100%. For the highest
risk class,m, we use the most expensive screening equipment
and quarantine materials with the highest recognition rate βm.
However, in consideration of shortage of inspection and quar-
antine resources, we may use the cheaper screening equip-
ment and quarantine materials in the lower tier of inspection
channel, which results in the lower recognition rate. In such
case, β1 is the lowest recognition rate due to the use of the
cheapest screening equipment and quarantine materials for
the lowest tier of inspection channel.

In summary, from the equation (9), we obtain the first
performance index for the overall multi-tier inspection queue-
ing system, that is, the rejection rate Di of travelers’ appli-
cations to the i-th tier inspection channel, for each class
i ∈ I. Next, through the calculation of formula (12), we can
determine the second performance index, L, which represents
the average number of approved travelers inspected at the
overall multi-tier queueing system. Thirdly, by using the
equation (15), we calculate the average sojourn time spent for
passing through the overall multi-tier queueing system, W .
Finally, we can determine the fourth performance index for
the overall multi-tier inspection queueing system, the safety
level R, by means of the formula (17).

IV. AN ILLUSTRATIVE EXAMPLE
In this section, we introduce a step-by-step process for the
proposed computing method through solving an illustrative
example. In practical applications, we can input the model
parameters and probability density functions according to
the real-time statistical data for solving the studied multi-tier
inspection queueing model.

As an illustrative example taken from [2], it is given that the
risk valueα of the travelers to be inspected follows a truncated
exponential distribution, and each risk value is independent
of each other. The probability density function of a truncated
exponential distribution is given as follows:

f (α|θ) =
e−α/θ

θ (1− e−1/θ )
, 0 < α ≤ 1, (18)

where θ is the parameter of the truncated exponential distri-
bution. Therefore, the average risk value E[α] of travelers to
be inspected can be expressed as follows:

E [α] =
∫ 1

0
α · f (α|θ) dα = θ −

e−1/θ

1− e−1/θ
≈ θ. (19)

That is, the average risk value E[α] is approximately the
parameter θ of the truncated exponential distribution.

From equation (1), given the risk thresholds 0 = τ0 <

τ1 < . . .< τm−1 < τm = 1, we can derive the probability

that those cross-border travelers are to be assigned to the i-th
tier of inspection channel as follows:

pi =
∫ τi

τi−1

f (α|θ) dα =
e−τi−1/θ − e−τi/θ

1− e−1/θ
, (20)

for each class i ∈ I. In addition, with the help of equation (6),
we can easily determine the traffic intensity of the i-th tier
of inspection channel, ρi, for all i ∈ I. Thus, by means
of equations (7) and (8), we can recursively determine the
steady-state probabilities πi,n, for n = 0, . . . ,Ki, and for all
i ∈ I.
After obtaining the above steady-state probabilities, we can

calculate the performance indices of interest by using equa-
tions (9), (12), and (15). For example, the average rejection
rate D for the whole multi-tier queueing system is computed
as follows:

D =
∑m

i=1
pi · Di, (21)

where Di is the rejection rate determined by means of equa-
tion (9) for each class i ∈ I. Next, the average number
L for the whole queueing system can be estimated from
the equation (12), and the average sojourn time W for the
whole multi-tier queueing system can be determined with the
formula (15).

Furthermore, from the equation (16), we can derive the
risk ratio of the cross-border travelers assigned to the i-th tier
inspection channel as follows:

Ri =

∫ τi
τi−1

α · f (α)dα∫ 1
0 α · f (α)dα

=
τi · e−τi/θ + θ · e−τi/θ − τi−1 · e−τi−1/θ − θ · e−τi−1/θ

e−1/θ + θ · e−1/θ − θ
,

for each risk class i ∈ I. Hence, by using the equation (17),
we can estimate the average safety level R =

∑m
i=1 βi · Ri for

the studied multi-tier queueing system.

V. SENSITIVITY ANALYSIS
In this section, we conduct a sensitivity analysis on the
studied queueing system through a series of numerical exper-
iments to figure out the effects of varying model parame-
ters on the system performance. Besides, those study cases
in the following subsections could be potential applications
for the differentiated service for inspection and quarantine
during the global post-COVID economic recovery.

Our computational experiments are conducted with the
software MATLAB R2014b on Windows 10 Professional
64-bit with the processor Intel (R) Core (TM) i7-6500U
CPU@2.50GHz dual-core and 8 GB memory.

A. A UNIFORM INSPECTION QUEUEING SYSTEM
In this study case as m = 1, we show that our multi-tier
inspection queueing model can be simplified to a uniform
inspection system with only one type of inspection chan-
nels, where everyone is treated with identical inspection and
quarantine procedures. For most countries/areas, the current
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FIGURE 2. A 3D diagram for the average rejection rate D versus total
arrival rate λ and finite capacity K , when implementing the uniform
inspection procedure (a case as m = 1).

epidemic prevention and control tasks are to uniformly apply
the same inspection, quarantine and isolation procedures to
all travelers, and hence, subject all travelers to the same level
of risk and cost.

The parameter settings of this uniform inspection queueing
system are given as follows. The average arrival rate can be
observed from λ = 1 (traveler per day) to λ = 300 (travelers
per day). The number of inspectors (with equipments) set is
given as s = 5 (inspectors), and the finite capacity in this
uniform inspection system can be set from K = 5 (travelers)
to K = 200 (travelers). Meanwhile, the average service rate
for each inspector is set as µ = 20 (travelers/day).

When we vary the total arrival rate λ and finite capac-
ity K , the numerical results are visualized in several three-
dimensional diagrams in Figures 2-5 to show the impact on
those performance indices of interest, such as the average
rejection rate D, the average sojourn time W , the average
number L, the average utilization level U . In Fig. 2, it illus-
trates that the average rejection rate is increasing in accor-
dance to the total arrival rate, whereas the average rejection
rate is decreasing to a stable value when increasing the finite
capacity. In Fig. 3, it shows that the average number is
increasing whether we increase the total arrival rate or the
limited capacity. From the calculation of (14), we obtain
the similar phenomenon for the average sojourn time when
varying the total arrival rate and the finite capacity, as shown
in Fig. 4. In Fig. 5, it indicates that the average utilization
level is increasing in accordance to the total arrival rate,
whereas there is no obvious monotone relationship between
the average utilization level and the finite capacity.

Due to the shortages in medical capacity and resources to
inspect the whole potential travelers, the uniform inspection
has inevitably put isolation hotels or hospitals in vulnerable
positions. Therefore, in the following subsections, we study
a differentiated inspection strategy, that is, some travelers
receive expedited inspectingwhereas others receive enhanced
inspecting.

FIGURE 3. A 3D diagram for the average number L versus total arrival
rate λ and finite capacity K , when implementing the uniform inspection
procedure (a case as m = 1).

FIGURE 4. A 3D diagram for the average sojourn time W versus total
arrival rate λ and finite capacity K , when implementing the uniform
inspection procedure (a case as m = 1).

FIGURE 5. A 3D diagram for the average utilization level U versus total
arrival rate λ and finite capacity K , when implementing the uniform
inspection procedure (a case as m = 1).

B. A TWO-TIER INSPECTION QUEUEING SYSTEM
In this study case as m = 2, we show that our multi-tier
inspection queueing model can be simplified to an inspection
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FIGURE 6. A 3D diagram for the average rejection rate D versus total
arrival rate λ and assignment probability p1, when the number of risk
classes is set as m = 2.

queue with only two types of inspection channels and one
risk threshold 0 ≤ τ1 ≤ 1. In such a case, the proposed
queueing model is reduced to a two-tier inspection queueing
model consists of high-risk inspection channels (the second
tier) and low-risk inspection channels (the first tier).

The parameter settings of this study case are given as fol-
lows: The total arrival rate is varied from λ = 1 (traveler per
day) to λ = 200 (travelers per day). The numbers of inspec-
tors with equipments set in this two-tier inspection system are
given as s1 = 2 (inspectors) and s2 = 5 (inspectors), and the
finite capacity for each tier of inspection channels is set as
K1 = 50 (travelers) and K2 = 60 (travelers). Meanwhile,
the recognition rates are given as β1 = 80% and β2 = 99%.
The average service rate for each tier of inspection channel is
set as µ1 = 26 (travelers/day) and µ2 = 10 (travelers/day).

Besides, we also vary the assignment probability p1 within
the range of input values between 0 and 1. Here, the assign-
ment probability p1 represents the ratio of approved travelers
to be assigned to the first tier inspection channel, and the
ratio of approved travelers to be assigned to the other tier
inspection channel is (1−p1). In this study case, we conduct
several data analysis to understand the effects of varying
the assignment probability because the assignment proba-
bility is one of the important factors affecting the system
performance.

When we vary the total arrival rate 1 ≤ λ ≤ 200
and assignment probability 0 ≤ p1 ≤ 1, the numerical
results are visualized in the three-dimensional diagrams from
Fig. 6 to Fig. 9. It can be observed in Fig. 6 that the average
rejection rate is increasing when increasing the total arrival
rate, whereas the average rejection rate is concave up in
accordance to the finite capacity. In Fig. 7, it illustrates that
the average number is increasing in accordance to the total
arrival rate, whereas there is no obvious monotone rela-
tionship between the average number and the assignment
probability. Similarly, in Fig. 8 and Fig. 9, we observe the
same phenomenon for both the average sojourn time and the
average utilization level.

FIGURE 7. A 3D diagram for the average number L versus total arrival
rate λ and assignment probability p1, when the number of risk classes is
set as m = 2.

FIGURE 8. A 3D diagram for the average sojourn time W versus total
arrival rate λ and assignment probability p1, when the number of risk
classes is set as m = 2.

FIGURE 9. A 3D diagram for the average utilization level U versus total
arrival rate λ and assignment probability p1, when the number of risk
classes is set as m = 2.

Next, we also investigate the effects of varying the input
value of risk threshold τ1. Because there is only one risk
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FIGURE 10. A 3D diagram for the average rejection rate D versus the risk
threshold τ1 and total arrival rate λ, when the number of risk classes is
set as m = 2 and the probability density function f (α) for the risk value α

of cross-border travelers is given as (18).

FIGURE 11. A 3D diagram for the average number L versus the risk
threshold τ1 and total arrival rate λ, when the number of risk classes is
set as m = 2 and the probability density function f (α) for the risk value α

of cross-border travelers is given as (18).

threshold used in this two-tier inspection queueing system,
it is easier to provide a visualized illustration of the relation-
ship between risk threshold and those performance indices
of interest. Here, we assume that the probability density
function f (α) for the risk value α of cross-border travelers
is given as (18), and the risk threshold τ1 is varied within the
interval [0%, 100%], i.e., 0 ≤ τ1 ≤ 1. In addition, we take
θ = 0.0625 as the input parameter of truncated exponential
distribution in the following numerical experiments. Hence,
when a value of risk threshold τ1 is given, we can compute the
assignment probabilities p1 and p2 through the equation (20).
Those numerical results are depicted in the three-dimensional
diagrams from Fig. 10 to Fig. 14.

In Fig. 10, it illustrates that the average rejection rate is
increasing in accordance to the total arrival rate. However,
the average rejection rate could be decreasing within a certain

FIGURE 12. A 3D diagram for the average sojourn time W versus the risk
threshold τ1 and total arrival rate λ, when the number of risk classes is
set as m = 2 and the probability density function f (α) for the risk value α

of cross-border travelers is given as (18).

FIGURE 13. A 3D diagram for the average safety level R versus the risk
threshold τ1 and total arrival rate λ, when the number of risk classes is
set as m = 2 and the probability density function f (α) for the risk value α

of cross-border travelers is given as (18).

range of risk threshold values, and then the average rejection
rate would increase to a stable value when increasing the
risk threshold. In Fig. 11, it shows that the average number
is increasing in accordance to the total arrival rate, whereas
there is a complex relationship between the average num-
ber and the risk threshold within a certain range of risk
threshold values. Besides, in Fig. 12 and Fig. 14, we also
observe that both the average sojourn time and the aver-
age utilization level increase monotonically with the total
arrival rate, whereas neither the average sojourn time nor
the average utilization level do not change monotonically
with increasing risk threshold values. However, it can be
found in Fig. 13 that the average safety level is decreasing
monotonically in accordance to the risk threshold, and there
is no relationship between the average safety level and the
total arrival rate.
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FIGURE 14. A 3D diagram for the average utilization level U versus the
risk threshold τ1 and total arrival rate λ, when the number of risk classes
is set as m = 2 and the probability density function f (α) for the risk value
α of cross-border travelers is given as (18).

C. A THREE-TIER INSPECTION QUEUEING SYSTEM
In this study case as m = 3, it represents a three-tier
inspection queueing system consists of low-risk inspection
channel (the first tier), medium-risk inspection channel (the
second tier), and high-risk inspection channel (the third tier).
Meanwhile, there are two risk thresholds 0 ≤ τ1 < τ2 ≤ 1
in the studied model, which are used to distinguish those
cross-border travelers for going through differentiated tier of
inspection channels.

Here, the parameter settings are given as follows. The
total arrival rate is varied from λ = 1 (traveler per day) to
λ = 600 (travelers per day). The numbers of inspectors with
equipments are set as s1 = 2 (inspectors), s2 = 3 (inspectors),
and s3 = 4 (inspectors), and the finite capacity for each
tier of inspection channels is set as K1 = 40 (travelers),
K2 = 30 (travelers), and K3 = 20 (travelers). Meanwhile,
the recognition rates are given as β1 = 80%, β2 = 90%,
and β3 = 99%. The average service rates are set as µ1 =

26 (travelers/day), µ2 = 10 (travelers/day), and µ3 = 4
(travelers/day). Here, we assume that the probability density
function f (α) for the risk value α of cross-border travelers
is given as (18), and two risk thresholds τ1 = 0.05 and
τ2 = 0.1 are fixed. Meanwhile, we take θ = 0.0625 as the
input parameter of truncated exponential distribution in the
following numerical experiments.

When we vary the total arrival rate λ, the sensitivity anal-
ysis for those performance indices are illustrated as follows.
In Fig. 15, it illustrates that the average rejection rates D and
Di, for all classes i = 1, 2, 3, are increasing monotonically
with increasing arrival rate. Similarly, when increasing the
total arrival rate, we find that the average number, the average
sojourn time and the average utilization level are increasing
monotonically for the whole system and all risk classes,
which can be observed in Fig. 16, Fig. 17 and Fig. 19.

In Fig. 18, it shows that the average safety level R and
three risk ratios Ri, for i = 1, 2, 3, do not change with

FIGURE 15. A diagram for the average rejection rate D versus total arrival
rate λ, when the number of risk classes is set as m = 3.

FIGURE 16. A diagram for the average number L versus total arrival rate
λ, when the number of risk classes is set as m = 3.

FIGURE 17. A diagram for the average sojourn time W versus total arrival
rate λ, when the number of risk classes is set as m = 3.

increasing arrival rate. The reason why the average safety
level and three risk ratios remain constant values is that those
two risk thresholds are fixed in this example. In practice,
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FIGURE 18. A diagram for the average safety level R and the risk ratio Ri
versus total arrival rate λ, when the number of risk classes is set as m = 3.

FIGURE 19. A diagram for the average utilization level U versus total
arrival rate λ, when the number of risk classes is set as m = 3.

when inputting different values of those two risk thresholds,
we can easily determine the average safety level and three
risk ratios by using the equations (1) and (16). For example,
when two risk thresholds τ1 = 0.05 and τ2 = 0.1 are given,
we can determine the assignment probabilities p1 = 55.07%,
p2 = 24.74%, and p3 = 20.19% by means of equation (1).
Besides, we can estimate three risk ratiosR1 = 19.12%,R2 =
28.39% and R3 = 52.49% by using equation (16). Therefore,
the average safety level is computed as R =

∑3
i=1 βi · Ri =

92.81%.

D. A FOUR-TIER INSPECTION QUEUEING SYSTEM
In this study case asm = 4, it represents a four-tier inspection
queueing system consists of three risk thresholds 0 ≤ τ1 <
τ2 < τ3 ≤ 1. Here, the probability density function f (α) is
given as (18) with a parameter θ = 0.0625, and three risk
thresholds τ1 = 0.01, τ2 = 0.05 and τ3 = 0.1 are fixed.
Besides, the numbers of inspectors with equipments are set as
s1 = 2 (inspectors), s2 = 3 (inspectors), s3 = 4 (inspectors),
and s4 = 6 (inspectors), and the finite capacity for each

FIGURE 20. A diagram for the average rejection rate D versus total arrival
rate λ, when the number of risk classes is set as m = 4.

FIGURE 21. A diagram for the average number L versus total arrival rate
λ, when the number of risk classes is set as m = 4.

tier of inspection channels is set as K1 = 40 (travelers),
K2 = 30 (travelers), K3 = 25 (travelers), and K4 = 20
(travelers). Meanwhile, the recognition rates are given as
β1 = 80%, β2 = 90%, β3 = 97%, and β4 = 99%. The
average service rates are set as µ1 = 26 (travelers/day),
µ2 = 10 (travelers/day), µ3 = 6 (travelers/day), and µ4 = 4
(travelers/day).

When we vary the total arrival rate from λ = 1 (traveler
per day) to λ = 600 (travelers per day), those performance
indices of the studied queueing system are depicted from
Fig. 20 to Fig. 24. Firstly, in Fig. 20, it illustrates that the
average rejection rates for the whole system and four risk
classes are increasing monotonically with increasing arrival
rate. Next, in Fig. 21, Fig. 22 and Fig. 24, it can be observed
that the average number, the average sojourn time and the
average utilization level are increasing monotonically when
we increase the total arrival rate.

In Fig. 23, it shows that the average safety level and four
risk ratios do not change when we vary the total arrival rate.
The reason is that those risk thresholds are fixed in this
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FIGURE 22. A diagram for the average sojourn time W versus total arrival
rate λ, when the number of risk classes is set as m = 4.

FIGURE 23. A diagram for the average safety level R and the risk ratio Ri
versus total arrival rate λ, when the number of risk classes is set as m = 4.

FIGURE 24. A diagram for the average utilization level U versus total
arrival rate λ, when the number of risk classes is set as m = 4.

illustrative example. If the decision makers input different
values of those three risk thresholds in their scenarios, we still

can determine the corresponding values of the average safety
level and four risk ratios by using the equations (1) and
(16). From equation (1), we can determine the assignment
probabilities p1 = 14.79%, p2 = 40.28%, p3 = 24.74%,
and p4 = 20.19%, when three risk thresholds τ1 = 0.01,
τ2 = 0.05 and τ3 = 0.1 are given. Besides, we can estimate
three risk ratios R1 = 1.15%, R2 = 17.97%, R3 = 28.39%,
and R4 = 52.49% by using the equation (16). Therefore,
we can obtain the average safety level R =

∑4
i=1 βi · Ri =

96.60%.

VI. CONCLUSION
With the global strengthening of epidemic management and
the continuous increase of the proportion of COVID-19
vaccination, we have stepped into the post epidemic era.
Differentiated inspection and quarantinemeasures can reduce
the risk of infected travelers entering the border without
uniform isolation measures. In order to meet the needs
of all kinds of travel bubbles and public health corridors,
our work can be applied in formulating feasible inspec-
tion measures for hierarchical diversion in the cross-border
flow of travelers. The computing method and plenty of data
analysis presented in this paper can help the governments
improve the operational efficiency of inspection and quar-
antine service while reducing the risk of virus entering their
borders.

Based on a differentiated risk classification mechanism,
we studied a multi-tier inspection queueing systemwith finite
capacity for inspecting cross-border travelers, and demon-
strated a computational method to evaluate the system perfor-
mance. The steady-state probability of the proposed queueing
model was derived in the paper to demonstrate the long-
term behavior of the system. Besides, several mathematical
formulas were also obtained for the performance indices of
interest by means of the determined steady-state probability,
such as the rejection rate of approved travelers, the average
number of travelers to be inspected, the average sojourn time
spent by each traveler, the utilization level and the safety level
for the whole queueing system.

A series of numerical experiments were conducted in this
work for the data analysis of the studied system. In the sensi-
tivity analysis, we figured out the relationship between model
parameters and system performance. Meanwhile, it provided
a more detailed understanding of the derived formulas and
the trade-off between safety and efficiency in the oper-
ational process of the queueing system. The contribution
of data analysis is to provide the visualization for man-
agerial insight into the structure and characteristics of the
proposed queueing model, which can help decision makers
update the existing inspection process or develop a new
scheme dynamically according to the change of statistical
data.

In the future works, it would be possible to supple-
ment our queueing model with the additional waiting pool
having an infinite buffer, where all rejected travelers could
be re-addressed (once or many times) for service. In this
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potential application, the healthy traveler rejected due to
full capacity can be re-assigned to another tier of inspection
channels if the original inspection channel is full. Besides,
it would also be possible to derive mathematical analysis for
such extension of our model by applying the matrix analytical
methods.

During the global economic recovery, our findings in this
paper could help the decision makers improve the current
inspection and quarantine mechanism, under consideration
of both strengthening supervision and optimizing service for
inspection and quarantine. For different types of interna-
tional travelers with hierarchical risk levels, we can carry
out the risk assessment by classification or stratification.
The queueing analysis in our research could be a use-
ful reference for decision makers to scientifically evaluate
and analyze the system performance and safety level. With
the implementation of open and secure COVID-19 detec-
tion or vaccine information flow, we can verify the authen-
ticity of the tests/vaccines and the identity of the person
who presents the health certificate/passport. Therefore, the
presented queueing model would be widely used in practical
applications when providing differentiated service that take
both risk and efficiency into account, such as the relaxation
of access restrictions on theme parks, stadiums, and rail
stations, etc.
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