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ABSTRACT In smart manufacturing, engineers typically analyze unexpected real-time problems using
digitally cloned discrete-event (DE) models for wafer fabrication. To achieve a faster response to problems,
it is essential to increase the speed of DE simulations because making optimal decisions for addressing the
issues requires repeated simulations. This paper presents a hierarchical aggregation/disaggregation (A/D)
method that substitutes complex event-driven operations with two-layered abstracted models—single-group
mean-delay models (SMDMs) and multi-group MDMs (MMDMs)—to gain simulation speedup. The
SMDM dynamically abstracts a DE machine group’s behaviors into observed mean-delay constants when
the group converges into a steady state. The MMDM fast-forwards the input lots by bypassing the chained
processing steps in multiple steady-state groups until it schedules the lots for delivery to subsequent unsteady
groups after corresponding multi-step mean delays. The key component, the abstraction-level converter
(ALC), has the roles of MMDM allocation, deallocation, extension, splitting, and controls the flow of each
group’s input lot by deciding the destination DE model, SMDM, and MMDMs. To maximize the reuse
of previously computed multi-step delays for the dynamically changing MMDMs, we propose an efficient
method to manage the delays using two-level caches. Each steady-state group’s ALC performs statistical
testing to detect the lot-arrival change to reactivate the DE model. However, fast-forwarding (FF) results
in incorrect test results of the bypassed group’s ALCs due to the missed observations of the bypassed lots.
Thus, we propose a method for test-sample reinitialization that considers the bypassing. Moreover, since a
bypassed group’s unexpected divergence can change the multi-step delays of previously scheduled events,
a method for examination of FF history is designed to trace the highly influenced events. This proposed
method has been applied in various case studies, and it has achieved speedups of up to about 5.9 times, with
2.5 to 8.3% degradation in accuracy.

INDEX TERMS Abstraction-level conversion, aggregation/disaggregation, wafer fabrication, discrete-event
modeling, smart manufacturing.

I. INTRODUCTION
Semiconductor manufacturers have applied industry
4.0-based smart manufacturing concepts to their wafer-
fabrication plants (commonly called fabs) for efficient
manufacturing management [1]–[3]. The smart fab con-
cept is an approach to integrate manufacturing execution

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunith Bandaru .

systems (MESs) with monitoring and controlling facilities
(MCFs). They support automated data collection and instan-
taneous response to the MESs in real time based on anaysis
of the collected data.

TheMCFsmaintain their fabmodels with high accuracy by
calibrating parameters based on the collected data. The online
parameter calibration results in reliable performance expecta-
tions in terms of throughput, cycle times, etc. When an unex-
pected situation occurs (i.e., machine breakdowns and any
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production requirement change caused by a new demand),
the MCFs attempt to find an optimal solution derived through
simulation-based optimization (SBO) considering various
decision candidates dispatching rules, lot-release rates, and
other operating parameters [4]–[8]. As a result, the MCFs are
effectively able to control the MESs based on the optimal
solution, though it requires a large simulation time cost.
To reduce the response time of the MCFs’ feedback controls,
accelerated simulation of fab models under multiple design
candidates is essential.

Discrete-event models (DEMs) and their simulation
methodologies have been widely used to describe large-scale
fab systems’ complex functions [13]–[16]. The DEM of a
fab is designed to reflect the fab’s specific details to reach
the desired accuracy and examine the decision parameters.
The details include complicated manufacturing processing
steps, detailed routings, dispatching rules, tool specifica-
tions, etc. A DEM consists of composable subcomponents,
which operate in an event-drivenmanner and exchange events
to influence others. The composability leads to efficient
model maintenance by revising only relevant subcomponents
according to the changes in the production scenario or MES.
However, the DEM simulation requires a large amount of exe-
cution time due to iterative event processing. The shortcom-
ing hinders enough traverse of decision candidates and results
in a slow control response to MES. Thus, the speedup of the
DEM simulation of a target fab is mandatory to consider a
sufficiently large number of design candidates

Several techniques to speed up the DEM simulation have
been proposed. The methods are classified into parallel DEM
simulation, queueing modeling, and surrogate modeling. The
parallel simulation using multiple cores can be a speedup
solution for a single simulation instance [17], [18]. However,
when traversing the decision candidate space in SBO or
replicating multiple simulation instances to meet statistical
confidence, multiple simulation instances can run indepen-
dently. When executing the independent instances in parallel,
the parallel simulation approach can be inefficient due to the
synchronization overhead in terms of simulation clock and
data among models running on different CPUs [19], [20].

The existing acceleration approaches, such as queuing
and surrogate modelings, are known as alternative solutions
that abstract the production dynamics of target fab systems
into analytic equilibrium equations to achieve reasonable
accuracy. The queueing modeling constructs a queueing net-
work, consisting of queuing nodes of each machine group
(also called workstation); the machine group is the set of
machines performing the same or similar operations and
sharing a queue [9]–[11]. Each queueing node is modeled
using derived arrival and service processes to predict the
average waiting time in steady states. However, as J. George
discussed in [12], a particular assumption of queuing the-
ory, which is a sequence of inter-arrival times and services
times are independent and identically distributed (i.i.d), are
not acceptable in a common scenario. The scenario includes
(1) dynamic changes of wafer-lot release or dispatching

schedules (that can unexpectedly cause an arrival-pattern
variation of high-mix lots) and (2) machine groups with
batching and cascading machines. Moreover, most existing
models are restricted to the FIFO dispatching rule.

Surrogate modeling is an approach describing the analytic
closed-form solutions for each machine group with empirical
approximations [21]–[24]. Surrogate model evolve in various
forms: a constant delay, probability distributions, or exponen-
tial/quantile functions. Surrogate models’ parameter values
are trained on DEM simulation results of multiple scenar-
ios for a specific design of experiments (DOE). Similar to
queueing models, surrogate models are limited to certain
production scenarios with consistent product-mix, process
flow, and volume due to the static and analytic representation.
In the smart fab case, if new operational parameter values
vary outside the bound of the DoE coverages, caused by
a production demand for new products, a deadline/priority
change, or unexpected machine downs, surrogate models
cannot guarantee satisfactory results.

To resolve these static abstraction problems for various
complex scenarios, we previously presented the conducted
studies to adjust machine groups’ abstraction level in runtime
adaptively [25], [26]. The key components introduced in
the studies, abstraction-level converters (ALCs), dynamically
choose their group’s active models from between DEMs
and mean-delay models (MDMs), depending on whether
their groups run in a steady or transient state. An MDM
is an aggregated model of corresponding DEMs formed by
abstracting the DEM’s subcomponents’ complex behaviors
into observed mean delays. The adaptive abstraction con-
version was applied and evaluated in various scenarios with
dynamically changing lot release and multiple dispatching
rules and showed meaningful speedups and accuracy. The
dynamic abstraction reduces MCFs’ engineering costs for
preparing the intermediate queueing and surrogate models in
advance. Moreover, it is possible to analyze various real-time
circumstances by adjusting related DEM parameters for the
MES controls, not limited to a few intermediate models’
parameters and their DoE bounds.

The previously proposed method abstracts each
steady-state discrete-event (DE) group model into a
single-group mean-delay model (SMDM), which abstracts
the group’s complex DE operation into a mean-delay con-
stant. This paper proposes a new abstraction layer for
better speedup. The abstraction layer consists of multi-
ple multi-group MDM (MMDM) that manage expected
multi-step delays of input lots in consecutive steady-state
groups, as shown in Fig. 1. Based on the multi-step delays,
the MMDM fast-forwards input lots through bypassing inter-
mediate steady-state machine groups until the subsequent
machine group is in an unsteady state. After fast-forwarding
(FF), the lots are scheduled to wait in an event list of the
simulation engine before being delivered after the multi-step
delay. The simulation engine processes stored events in the
event list one by one in chronological order, which guarantees
the causal relationships of the DEM’s multiple input events
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FIGURE 1. Conceptual framework of the proposed hierarchical A/D
approach.

from different sources. However, the event-scheduling is the
main overhead in the DEM simulation. The FF technique
reduces the number of event scheduling.

In previous studies, ALCs’ primary roles were switch-
ing active models of machine groups according to the
group’s steady-state convergence (or divergence). For the FF,
we extend the previous ALC to support the A/D pro-
cesses by communicating with neighboring ALCs (whose
groups handle previous and subsequent processing steps)
or with MMDMs to allocate/deallocate and extend/split the
MMDMs. The MMDM manages the lot’s multi-step mean
delays by a defined lot type. Considering the MMDM’s
dynamic aggregation through absorbing other MMDMs,
we proposed a delay-management method using two-level
cache tables.

However, FF can prevent the ALC’s proper behavior of the
lot-arrival-change detection, which is one of the conditions
to reactive the group’s active model from SMDM to DEM.
For the ALC’s correct detection, we proposed a method
to reinitialize the arrival-change-testing samples according
to the bypassing capability. Moreover, the FF assumes that
a forwarded lot’s bypassed groups remain in steady states
before being delivered to the next unsteady group. Still,
a steady-state group can diverge at any point in runtime.
To handle the problem, we proposed an event-rescheduling
method to cancel the previously forwarded events and make
new forwarded events based on the new steady-state situa-
tions, using FF history tables (managed by the SMDM and
MMDM).

Overall, the contributions of our proposed method can be
summarized as follows.
• We propose a new abstraction layer using MMDMs for
the FF of lots across successive steady-state groups. The
new layer supporting the group bypassing reduces the
number of events scheduled at the wafer-lot exchanges
between steady-state groups, which results in more
speed than the single-group A/D approach (that employs
only SMDMs) does.

• To reduce the redundant calculation of multi-step delays
under the dynamic MMDM extension, we proposed
an efficient delay-management method using two-level
caches.

• We resolved the problems caused by bypassing some
intermediate groups. The problems were (1) the

lot-arrival changes when detecting a divergence condi-
tion and (2) the influence of bypassed groups’ diver-
gences on previously forwarded lots. To address these
problems, we proposed a sample reinitialization tech-
nique and FF-history management methods.

The rest of the paper is organized as follows. Section II
describes the background of previous single-group abstrac-
tion and the proposed hierarchical A/D framework.
Section III details the multi-step delay management method
for the FF using two-level caches. Section IV shows the
detailed procedures to resolved the problems caused by the
FF. Section V presents the experimental results of the pro-
posed approach, and Section VI concludes the paper.

II. HIERARCHICAL AGGREGATION AND
DISAGGREGATION APPROACH
In this section, we introduce an overview of the previously
proposed A/D method for each individual machine group.
Then, we propose an overall framework and the operational
mechanism of hierarchical A/D for the FF.

A. BACKGROUND OF THE ADAPTIVE A/D APPROACH FOR
INDIVIDUAL MACHINE GROUPS
In the original A/D method, the ALC dynamically switches
each individual machine group’s active model between the
DEM and its corresponding SMDM. The SMDM is an aggre-
gated model of its DEM, which abstracts the complicated
event-driven operations and event exchanges of a steady-state
DEM’s subcomponents into observed mean delays.

FIGURE 2. A machine group’s event flow-path change depending on a
steady state.

A machine group’s active model switches between the
DEM and SMDM when the group’s ALC detects a conver-
gence into or divergence from the steady state. To detect
a steady-state convergence, the ALC monitors the queuing
parameters of processed wafer-lot events (e`), leaving the
ALC’s machine group (see Fig. 2(a)). The observed parame-
ters are the inter-arrival time (1/λ),waiting time in a queue
(tw), and time spent before reaching the next machine
group (td ). The 1/λ is the arrival-time distance between lots
of the same type.
After constructing two consecutive samples of 1/λ and tw,

if both two samples of 1/λ and tw are statistically indistin-
guishable, then the ALC confirms that the machine group
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converges into a steady state in terms of work-in-progress
(WIP) level, according to Little’s law. The statistical indis-
tinguishability is determined by measuring the difference
between the two samples’ cumulative distribution functions
based on the Kolmogorov–Smirnov test [30], [31].

Depending on each lot’s product, due date, or processing
recipe, tw or td can vary considerably. We defined the param-
eter composition that affects the priority decision among
waiting lots and processing time by lot type. The 1/λ, tw,
and td samples consist of multiple types of lots’ 1/λ, tw, and
td observations. In a steady-state machine group, the average
number of WIP is

∑
l λ̂

l
· t̂ ld , where l is a lot type, λ̂

l is the
mean 1/λ between the l-type lots, and t̂ ld is the mean delay of
the l-type lot.

When a group consists of batch machines or employs a
lot of non-batch equipment, a sharp increase of observations
occurs within a short-time range. In this case, the building of
a sample by observation number can lead to a hasty decision,
leading in turn to many imprudent DEM-SMDM switches.
For a reliable decision, the ALC manages multiple local 1/λ
groups after partitioning individual 1/λ values based on a
defined time window. For example, if the window is 30 min-
utes and an e`’s 1/λ triggers a new local-group generation at a
simulation time of 1 : 00 PM, the following 1/λ observations
occurring by 1 : 30 PM belong to the same local 1/λ group.
Each 1/λ, tw, and tw sample consists of the mean 1/λ, tw, and
tw of a defined number of local parameter groups.
At the convergence detection, the ALC derives a delay

table that contains the lot types and their corresponding mean
delays (see Fig. 2(b)), and then passes the table over to the
SMDM. The ALC initializes the 1/λ sample or other data
to detect an input-arrival change or to generate dummy lots
(for aworkload consistency between theDEMand SMDM) at
the DEM reactivation. Lastly, as shown in Fig. 2(b), the ALC
requests the flow-path changes of lot events (e`) to the simu-
lation engine.

In a steady state, the ALC monitors any divergence condi-
tion and forwards input lot events to its SMDM. The moni-
toring divergence conditions are classified as follows.

1) Arrival of an unobserved lot type (based on the
steady-state 1/λ sample),

2) A statistical 1/λ deviation of input lots from the
steady-state 1/λ sample, and

3) Any event arrival that influences processing time (e.g.,
machine breakdown, preventive maintenance, etc.).

During the simulation, the event exchanges between
model components are performed in two different ways:
scheduling-based delivery and direct forwarding.

The scheduling-based event delivery enables the receiver to
collect input events in the order of the event time (te), which
allows the receiver to preserve a causal relationship between
multiple types of events from numerous sources. Before the
delivery, events are stored in the simulation engine’s event
list chronologically. Direct forwarding means an e` source
directly sends events to their destination model, without the
engine’s intervention; thus, the receiver instantly handles the

input events that arrive in the committing order. An example
of scheduling-based delivery is e` delivery between machine
groups, and an example of direct forwarding is e` delivery
from the ALC to the SMDM.

B. OVERVIEW OF PROPOSED HIERARCHICAL A/D
APPROACH
We extend a previous method by introducing a new abstrac-
tion layer to support the lot’s FF across consecutive
steady-state groups based on the accumulated mean delays.
FF can reduce the number of lots visiting steady-state groups,
which alleviates the e` scheduling overhead of the simulation
engine. The overall framework of the proposed approach is
illustrated in Fig. 3.

When detecting a steady-state convergence, the ALC per-
forms the primary operations to reactivate the SMDM and to
prepare for the further 1/λ divergence test, as described in
Sec. II-A. Then, the ALC attempts to allocate new or extend
existing MMDMs based on neighboring groups’ steadiness;
the neighboring groups consist of previous groups that sent
lot events to the current group and the next groups that will
handle the subsequent processing steps of lot events. The lot’s
production route (r) is a sequence of machine groups for a
specific chain of processing steps. In this paper, we simply
represent each processing step as an integer according to the
execution order.

FIGURE 3. The overall framework for hierarchical A/D.

The MMDM manages accumulated mean delays for spe-
cific processing steps of a particular production route as
an aggregated SMDM. The SMDM enables aggregation of
different types of machine groups based on the homogeneity
and merging capability in terms of the constant delay accu-
mulation. The MMDM asks the corresponding SMDM for
the t̂d of a specific processing step.
If a machine group serves lots whose routes are differ-

ent, or if it has any reentrant lot flows, then the group’s
steady-state convergence leads the multiple MMDM gener-
ations by the group’s ALC, as shown in Fig. 4(a). In the
example, groups B and C are reentrant groups and serve lots
whose routing paths are r1, r2, and so on. A reentrant group’s
convergence can aggregate multiple MMDMs into a single
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FIGURE 4. Examples of the multiple MMDM generation, aggregation, and
splitting.

MMDM, as shown in Fig. 4(b). Similarly, the group’s diver-
gence can split an existing MMDM into multiple MMDMs.

Depending on the production scenario, some routes can
have a step whose next step is decided stochastically. Some-
times, a lot’s next step for a wafer inspection can be skipped
(i.e., Pr(sn+1 = j + 1|sn = j) < 1, where n is the step order
and j is a step among a specific route’s successive steps).
Alternatively, a lot can return to a previous step due to an
incorrect overlay or defect control (i.e., Pr(sn+1 = k|sn =
j) > 0, where a step k is less than j).
To manage static multi-step delays for input e`s without

concerning the stochastic step-to-step transition, we defined
a step aggregation rule for a new MMDM allocation below.
Definition 1: If two groups that serve a route’s succes-

sive steps of j and k(= j + 1) converge into steady states,
then an MMDM for the two steps cannot be allocated when
Pr(sn+1 = k | sn = i) < j.

When a departing e`’s next step varies stochastically and
a subsequent group for a selected next step is in a steady
state, the e` from an SMDM/MMDM is directly forwarded
to the subsequent MDM, one of either SMDM or MMDM.
When we denote the FF function as δf and an MDM’s FF
as δf (e`), we can describe the mechanism of the FF across
multiple MDMs below.
• δf ◦ δf ◦ δf · · · : e`→ e`
Until an output e` of δf (e`) meets a scheduling condition,

the e` traverse across MDMs without being sent to the sim-
ulation engine through the δf composition. The scheduling
condition is defined below.
Definition 2: The e` is scheduled to be delivered to the

receiver after a multi-step mean delay without a further FF
under a situations, where
• the subsequent group runs in a steady state,
• the last step is the final step of the e`’s route, and
• the subsequent group’s SMDM does not include the e`’s
delay information.

During the multiple executions of δf , multi-step delays are
iteratively accumulated. We denote the previously accumu-
lated delay up to the current MDM as t̂pd and the accu-
mulation of multiple mean delay in the current MMDM
as t̂md (=

∑
t̂d ). We assume that the e` contains t̂pd inter-

nally. When a source MDM forwards an e` to another MDM

through the receiver’s δf , the source should revise the e`’s
t̂pd by considering the newly derived t̂md . Otherwise, t̂pd is
always 0.

When we denote a lot’s intermediate processing step as i,
departing e`’s t̂pd (t̂+pd , for the further FF) is derived as
follows.

t̂+pd =

{
t̂−pd + t̂d , if source is SMDM or

t̂−pd + t̂md (=
∑
t̂d ) otherwise.

(1)

The t̂−pd is the input e`’s t̂pd . If an input e`’s next group is
unsteady, a source MDM schedules the e` using the derived
event time te; the te is the sum of the current simulation time
tc, t̂−pd , and the expected delay in the MDM (that is one of
t̂d (for SMDM) or t̂md (for MMDM)) (i.e., te = tc + t̂+pd ).
Before scheduling, the MDM should manipulate the output
e` based on the last step so that the destination model can
receive the same event regardless of the source types (i.e.,
DEM, SMDM, and MMDM). The following section deals
with the t̂md management to reduce the overhead of the t̂d
accumulation considering the dynamic MMDM extension.

III. MULTI-STEP MEAN-DELAY MANAGEMENT
We previously defined the lot type as a combination of
group-specific parameters that consist of a processing recipe
(that affects the processing time) and other parameters related
to the dispatching rule (that influences the waiting time),
as described in Sec. II-A). However, if the target fab changes
the dispatching rule and employs multiple dispatching rules
for different groups, then the sub-parameters of lot type can
vary depending on the time and group’s dispatching policy.
In the proposed work, we aim at managing the t̂md by type
for the MMDM. For that, a comprehensive lot type should be
redefined regardless of the specific time or individual group,
so we redefine a new lot type as follows.
Definition 3: The lot type is the tuple of a lot header

(h) and required processing step (sa) at the current-group
arrival with the following assumption: If wafer lots’ headers
are the same, then they share the same production parameter
values in each group.

We denote the lot type as (h, sa). Examples of production
parameters are the production route, the chain of processing
steps, each step’s required processing recipe, user-predefined
priority, due date, etc. The header symbolizes the compre-
hensive static values or dynamic value changes of parameters
involved in the dispatching and processing. The type’s sa
is utilized to choose the step-dependent parameters, such as
recipe. Moreover, the sa can be used for the priority decision
at particular dispatching rules, such as the shortest remaining
process time and the least slack time. The lot’s dispatching
priority may vary according to the change of dispatching rule,
but the new type guarantees that the lots whose type is the
same have the same priority during the dispatching in each
group.

All components in the proposed framework operate based
on the newly defined type, even for the ALC’s primary
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operations: observing the queuing parameters, testing the
steady-state convergence (or divergence), etc.

A. THE DELAY MANAGEMENT OF MMDM USING TWO
CACHE TABLES
In the proposed approach, the SMDM manages t̂d for a
single step of all group-related routes, and theMMDM super-
vises t̂md for multiple successive steps of a specific route.
We denote the MMDM’s minimum and maximum of the
successive steps as smin and smax, respectively. The lots
having different headers but following the same route can
share the same MMDM for FF.

The MMDM receives an e` whose sa is larger than smin
(i.e. smin < sa ≤ smax) under two conditions: (1) the e` was
previously scheduled before the sa-handling group converged
into a steady state or (2) the sa has multiple precedent steps
because of the route’s stochastic step transition. Regarding
the second condition, for example, if a step j’s subsequent
step is one of j + 1 and j + 2, and j + 1’s subsequent step is
always j+2, then anMMDMcan be generated for the merged
steps of j + 1 and j + 2 (i.e., [smin : smax] = [j + 1 : j + 2])
when their groups are in steady states. Then, the MMDM can
receive an e` whose last step was j and sa is j + 2, which is
larger than smin.

An input e`’s last step in an MMDM can also be less than
the MMDM’s smax if an SMDM for an intermediate step,
i (i < smax), did not observe the delay for the type of (h, i)
during the td -sample constitution (utilized for the steady-state
convergence detection). In this case, the e` is scheduled to be
delivered to the SMDM’s group after an accumulated delay
up to the i − 1. The e` arrival reactivates the group’s DEM
because the unobserved lot-type arrival is one of the pre-
viously defined DEM activation conditions (see Sec. II-A).
Likewise, the relationship between an e`’s required step at
the arrival and last step sl and the e`-handling MMDM can
be represented as smin ≤ sa ≤ sl ≤ smax.

The SMDM manages t̂d by the lot type, so the lots having
the same header shares the same t̂d for a specific processing
step in a steady-state group. In aMMDM, the t̂d accumulation
for an input e`’s t̂md proceeds until an SMDM does not have
the delay for the type of (h, i). Thus, the lots having the same
type have the same sl and t̂md (=

∑sl
i=sa t̂d (h, i), where t̂d (h, i)

is the t̂d for the i-step processing of the h-header lots).
Depending on the target fab, the number of processing

steps in a route can be more than 600. Using the deterministic
FF in the MMDM, we propose a delay management method
using two-level cache tables defined below to remove the iter-
ative delay computations by reusing the previous calculation
results considering adaptive MMDM revision.
Definition 4: The cache tables consist of cache1 and

cache2, where
• cache1 is a hash table that maps the lot type h (as a key)
to (sl, t̂md ); and

• cache2 is the secondary cache that maps h to the list
of the record (sa, sl, t̂md ), sorted in the increasing order
of sa.

The lot type can be converted to a unique integer consider-
ing the maximum values of h and steps of routes; therefore,
cache1 can be built as a hash map that utilizes integer keys to
search the t̂md . If an e`’s (sl, t̂md ) is not found in cache1, then
the proposed scheme attempts to derive the (sl, t̂md ) using a
(sa, sl, t̂md ) record in cache2, whose sa is close to the e`’s sa.
The closeness is determined by whether sa and sa have the
same step class id (cid). The step cid is simply defined below.
Definition 5: A step (i)’s cid is b(i− smin)/dc, where d is

a user-defined range of each class.
In the cache2, each h’s record list L2 has the previously

calculated t̂md values for each step class. When we denote a
record (sa, sl, t̂md ) as (s◦a, s

◦
l , t̂
◦
md ), depending on the sa of an

input e`’s type, the following relationship can be derived.
Lemma 3.1: Let s◦a < sa and sa ≤ s◦l . Then, e`’s sl is the

same as s◦l .
Proof: The record guarantees that all t̂(h, i), where

s◦a ≤ i ≤ s◦l , are observed. The s◦l always satisfies one
of two properties: (1) s◦l = smax or (2) t̂d (h, s◦l + 1) was
not observed, so the e`’s t̂md accumulation cannot proceed
over s◦l . Since each t̂d (h, j), where s◦a < sa ≤ j ≤ s◦l ,
is prepared, the accumulation is safely possible up to s◦l . �

From a similar point of view, the following two properties
are easily derived.
Property 1: If s◦a > sa, then the record is always helpful

because it reduces the inspection range for the accumulation
from [sa : smax] to [sa : s◦a−1]. If each t̂(h, i), where sa ≤ i ≤
s◦a − 1, is observed, then the e`’s sl and s◦l are the same.
Property 2: If s◦l < sa, then the record is not relevant

because e`’s accumulation range starting from sa does not
overlap with the record’s ([s◦a : s

◦
l ]).

Using the two cache tables, the overall procedures of the
MMDM to derive an input e`’s (sl, t̂md ) are described in
Alg. 1. If cache1 does not include the (sl, t̂md ) value for an
input e`, the method starts the node traverse of the h’s L2.
If the e`’s sa and the node’s sa have the same cid value, then
the final (sl, t̂md ) is derived as in Lines 23-33. If no data
matches the e`’s cid , then the proposed scheme attempts to
find a record whose s◦a is higher than the e`’s sa because of
the record’s usefulness (based on Prop. 1). After checking the
record’s range intersection (based on Prop. 2) and comparing
the inspection distance between the previous and next record,
the final record is chosen, as in Lines 11-16. Alternatively,
a remaining record whose cid is less than the e`’s cid is
chosen if the range is overlapped and the inspection range
decreases. If not, the record value is revised as Line 19 for the
further accumulation in Lines 32-33. Then, the result is saved
to cache1 and cache2 as in Lines 34-35. If a relevant (sl, t̂md )
cannot be found in either cache, then the regular accumulation
is performed and the results are saved to the two caches.

B. CACHE UPDATE FOR EXTENDED/SPLIT MMDMs
The steady-state convergence of a machine group can lead
to two or more MMDMs’ aggregation into a single MMDM.
For the new extended MMDM, the converging group’s ALC
attempts to construct the new extended MMDM’s cache2

71150 VOLUME 9, 2021



M. G. Seok et al.: Hierarchical A/D for Adaptive Abstraction-Level Conversion

Algorithm 1: The MMDM’s (sl, t̂md ) Derivation for an
Input e`
1 (h, sa): e`’s type
2 cid, cid−, node, s−a , s

−

l , t̂
−

d , s
◦
a, s
◦
l , t̂
◦
d : temporary variables

3 if cache1 has (sl , t̂md ) of e`’s type then // check cache1
4 update (sl , t̂md ) using the row
5 else if cache2 has L2 of h then// check cache2
6 cid ← b(sa − smin)/dc, node← first(L2)
7 while true do
8 (s◦a, s

◦
l , t̂
◦
md )← node, cid◦ ← b(s◦a − smin)/dc

9 if cid = cid◦ then
10 break
11 else if cid < cid◦ then
12 if prev(node) is valid then
13 (s−a , s

−

l , t̂
−

md )← prev(node)
14 if s−l ≥ sa and (sa − s

−
a ) < (s◦a − sa) then

15 (s◦a, s
◦
l , t̂
◦
md )← (s−a , s

−

l , t̂
−

md )

16 break
17 else if node = tail(L2) then
18 if s◦l < sa or (sa − s◦a) > (s◦l − sa) then

// for inspection from sa to
smax

19 (s◦a, t̂
◦
md )← (s◦max + 1, 0)

20 break
21 else
22 node← next(node)

23 sl ← s◦l , t̂md ← t̂◦md // initialize var.
24 if s◦a > sa then
25 for i = sa; i < s◦a; i = i+ 1 do
26 if t̂d (h, i) is unobserved then
27 sl ← i’s prev. step, t̂md ← t̂md − t̂◦md
28 break
29 else
30 t̂md ← t̂md + t̂d (h, i)

31 else
32 for i = s◦a; i < sa; i = i+ 1 do
33 t̂md ← t̂md − t̂d (h, i)

34 if cid 6= cid◦ then insert (sa, sl , t̂md ) to cache2
35 insert (sl , t̂md ) to cache1
36 else // regular accumulation

37 sl ← smax, t̂md ← 0
38 for i← sa; i < smax; i = i+ 1 do
39 repeat the procedures in Lines 26-30

40 insert (sl , t̂md ) to cache1
41 if sl ≥ sa then insert (sa, sl , t̂md ) to cache2
42

43 return (sl , t̂md )

based on the previous nodes’ cache1, considering the new
steps of [smin : smax]. After identifying all headers from
the multiple cache1s in the previous MMDMs, the ALC asks
each previous MMDM for each h-related representative data
of (s∗a, s

∗
l , t̂
∗

md , s
∗
max), where s

∗
a is the minimum among the

saved sa values in the MMDM’s cache1 for the header h and
other sub-parameters also come from the MMDM’s cache1
and smax, as shown in Fig. 5(a). Then, a temporary list L∗ is

FIGURE 5. Example of the L∗ initialization and cache1 data distribution at
the MMDM A/D.

constructed using the (s∗a, s
∗
l , t̂
∗
md , s

∗
max) nodes in the order of

s∗a. The new MMDM’s cache2 is calculated through the L∗

revision.
For the revision, we define a cumulative relationship

between the L∗’s nodes below.
Definition 6: For the successive two nodes in the L∗, if the

s∗l and s
∗
max of the current node are the same, and all t̂d of the

intermediate steps between the current node’s s∗l and the next
node’s s∗a are observed, then two nodes are in the cumulative
relationship.

Based on the defined cumulative relationship, we can
derive the following property.
Property 3: After the next node in a h-related L∗ is

updated for the new MMDM’s smax and the current and next
nodes are in the cumulative relationship, then the current
node’s s∗l is set to the next node’s s

∗
l . The current node’s t̂

∗
md

is updated as the sum of t̂◦md , t̂
+

md , and
∑s+a −1

i=s◦l +1
t̂(h, i), where

(s◦l , t̂
◦
md ) is the current node’s (s

∗
l , t̂
∗
md ) and (s+a , t̂

+

md ) is the
next node’s (s∗a, t̂

∗
md ).

Based on the property, the overall procedures to derive
the L2 for the new MMDM’s cache2 is described in Alg. 2.
At first, the last node of L∗ (for an h) is updated based on a
new smax if the smax is extended and t̂d (h, smax) is observed,
as in Lines 15-10. The converging group’s ALC attempts
to check the cumulative relationship of each node (in the
L∗) with its previous node in reverse order from the last.
If two consecutive nodes are in the cumulative relationship,
the previous node’s (s∗l , t̂

∗
md ) is updated according to Prop. 3,

as in Lines 15-22. The ALC creates a new L2 using the
nonempty nodes of L∗ after checking the cid duplication, then
passes the L2 to the new MMDM.
When a machine group diverges, the group’s ALC can

deallocate an existing MMDM or reduce the length of an
MMDM’s merged steps. Sometimes, the ALC can split an
MMDM into multiple MMDMs when the diverging group
handles numerous steps of the existing MMDM. Before
processing the MMDMs, the ALC derives the set of new
merged-step ranges ({[smin : smax]}) for the segmented
MMDMs. Each merged step range should meet the property
of smax > smin because theMMDM’s minimum step size is 2.

For each record in the existing MMDM’s cache1, the ALC
transforms the record into (sa, sl, h, t̂md ). Based on the
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Algorithm 2: The Derivation Method for a New L2 of
a Specific h
1 smax: the extended MMDM’s smax
2 cid, cid∗, node, s∗a, s

∗
l , t̂
∗
md , s

∗
max, s

+
a , s
+

l , t̂
+

md : tmp. vars
// revise tail node in Lp

3 node← tail(L∗), (s∗a, s
∗
l , t̂
∗
md , s

∗
max)← node

4 if s∗l = s∗max and s
∗
max < smax then

5 for i = s∗max + 1; i ≤ smax; i = i+ 1 do
6 if t̂(h, i) is unobserved then
7 i← i− 1 break
8 else
9 t̂∗md ← t̂∗md + t̂(h, i)

10 node← (s∗a, i, t̂
∗
md , smax)

11 while prev(node) is valid do
12 (s+a , s

+

l , t̂
+

md , s
+
max)← node

13 node← prev(node), (s∗a, s
∗
l , t̂
∗
md , s

∗
max)← node

14 if s∗l = s∗max then
15 for i = s∗l + 1; i < s+a ; i = i+ 1 do
16 if t̂(h, i) is unobserved then
17 i← i− 1 break
18 else
19 t̂∗md ← t̂∗md + t̂(h, i)

20 if i = s+a then
21 i← s+l , t̂

∗
md ← t̂∗md + t̂

+

md // Prop. 3

22 s∗l ← i

23 node← (s∗a, s
∗
l , t̂
∗,s∗max
md )

24 L2 ← {}, cid ←−1
25 foreach (s∗a, s

∗
l , s
∗
max, t̂

∗
md ) in L

∗ do
26 cid∗ ← b(s∗a − smin)/dc
27 if cid∗ > cid then
28 append (s∗a, s

∗
l , t̂
∗
md ) to L2

29 Save L2 in new MMDM’s cache2 using h

record’s [sa : sl], if the record and a segmented MMDM
has the relationship of [s∗a : s

∗
l ] ⊂ [smin : smax], then the

record is move to the MMDM’s cache2 after checking the
cid duplication, as shown in Fig. 5(b).

IV. 1/λ-CHANGE DETECTION AND FF-HISTORY
MANAGEMENT
FF through the new abstraction layer reduces e` scheduling
when delivering events to the destination groups. However,
FF leads to problems in detecting the change in e`-arrival
due to the bypassed lots. Moreover, the divergence of a group
can influence a previously fast-forwarded e` because the t̂md
derivation expects that all groups involved with the bypassed
steps remain in steady states before the scheduled e` is deliv-
ered to its destination. The following section describes the
methods to resolve these two problems.

A. REFRESHMENT OF 1/λ-TESTING SAMPLE
The ALC of a steady-state group routes an input e` to a
destination MDM (one of the SMDM or MMDMs). Before
routing, the ALC monitors the input e`’s 1/λ to update a
recent time-varying 1/λ sample, which is utilized to detect

an e`-arrival change through statistical testing with a coun-
terpart sample, a steady-state 1/λ sample. The steady-state
sample is static and derived at the detection of a steady-state
convergence. If two samples are statistically distinguish-
able, the group’s DEM is reactivated instead of the SMDM.
We denote the steady-state and recent 1/λ samples and Ss
and Sr, respectively. Both samples consist of the mean 1/λ
observations of each local 1/λ group (described in Sec. II-A).

Due to the missed 1/λ observation of the bypassing e`s,
the Sr is highly likely to deviate from the Ss. Considering
the lot bypassing, we propose an Ss refreshment method fol-
lowing this perspective: the ALC does not check the arrivals
of the e` outputs from a steady-state group because the
steady-state system’s outputs are already stable. Thus, if a
previous group runs in a steady state, the Ss is reinitialized
after filtering the 1/λ observations from the group-departing
e`s. Conversely, if a group diverges, then the previous filter-
ing is reverted.

FIGURE 6. The sample data management and 1/λ sample derivation.

For the convenient refreshment of Ss, the ALCmanages the
set of ta lists by each previous machine groups and by local
ta groups, as shown in Fig. 6. We denote each local ta group’s
id as lid . For the construction of the Ss, the ALC maintains
the set of intermediate lists that consist of the (ta, 1/λ) nodes
by the lot type. Each node’s 1/λ in the intermediate lists is
calculated using the previous node’s ta. To derive the first
node’s 1/λ, the ALC manages the last ta values by each
previous machine group before the first lid observation. Each
lid’s 1/λ̂l of the Ss is derived from the (ta, 1/λ) nodes of the
l-type intermediate list.

If a previous group converges or diverges, the ALC tra-
verses the (ta, 1/λ) lists to delete or add the corresponding
nodes that are collected from the previous group’s e` outputs.
For example, in Fig. 6, if the group g1 converges, the spe-
cific nodes of the (h1, 3)-type intermediate list, which are
(1 : 20, 0 : 15), (1 : 40, 0 : 03), and (2 : 31, 0 : 51),
are removed based on the g1’s ta lists in each lid . Since the
insertion or removal of a (ta, 1/λ) node influences the next
node’s 1/λ, the next node should be revised based on the
changed previous node’s ta. If a previous group’s conver-
gence (or divergence) changes the last ta of a type before the
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first lid collection, the first node’s 1/λ of the intermediate list
should be revised accordingly. If any (ta, 1/λ) node of an lid
is inserted, deleted, or revised, the lid’s 1/λ̂ is recalculated
using the new nodes’ 1/λ values.
Whenever the Ss is refreshed, the Sr is also initialized to Ss,

which makes the sample distance between Ss and Sr zero by
ignoring the previous sample distance based on the optimistic
expectation: the group operates in a steady state without start-
ing a divergence. After the refreshment of Ss, if the number of
the remaining lids is less than a defined minimum bound for
the KS test, the ALC collects the ta values of new lids using
incoming e`s from previous unsteady groups. The collection
proceeds until the number of lid is over the minimum bound.
The frequent Sr initialization and additional ta collection
for a small-size sample can lead to the late detection of the
e`-arrival change at the group’s divergence, which decreases
the accuracy.

The ALC sometimes can receive a scheduled e` whose
last step undergoes a steady-state group if the receiver group
turns into a steady state after the departure of the event.
Then, the ALC directly forwards the e` to a destinationMDM
without monitoring the 1/λ for the recent 1/λ sample.

B. FF-HISTORY MANAGEMENT
When a fast-forwarded e` is scheduled using a multi-step
mean delay, FF assumes that all involved machine groups
remain in steady states before the e` arrives at its desti-
nation on time. However, a group’s unexpected divergence
can violate the assumption. Even in an SMDM without FF,
a current-time divergence can influence a previously sched-
uled e` using a single-step mean-delay (t̂d ) if the event’s te is
later than tc. We embrace this violation within an SMDM as
a marginal error based on the assumption that a divergence
can affect some of the overall WIP lots (whose number is∑

l λ̂
l
· t̂ ld , where l is the lot type). Moreover, the influence

is not exceptionally significant because the WIP lots are in
an early stage before the td changes drastically.
Unlike the violation within the SMDM, FF across multiple

groups enables distant future events (scheduled using the
accumulated mean delays for numerous processing steps)
to bypass many intermediate groups. The FF of remote
forthcoming lots can significantly reduce the simulation
accuracy because a bypassed group’s current-time diver-
gence can change the overall production dynamics sig-
nificantly by affecting other machine groups. The gap in
multi-step delay between the accurate DE simulation result
and MMDM-based estimation can vary seriously as the
number of bypasses increases. Therefore, we define an
e`-rescheduling condition to be actively resolved, below.
Definition 7: If a fast-forwarded e`’s ta for an i-th step at

a diverging group (that is previously bypassed by the lot) is
to the future of tc (i.e., ta[i] > tc), then the event satisfies the
rescheduling condition at that step.

If a previously scheduled e` meets the rescheduling condi-
tion, then the e` is canceled to be discarded after being cloned.
The cloned event is scheduled to be delivered to the diverging

group for the i-th step at the future time of ta[i]. The cancelled
e` in the simulation engine’s event list is abandoned when the
e` is processed as a head event.
Some machine groups can handle multiple processing

steps for {i} for a specific route. If a forwarded e`, which
is previously scheduled, had bypassed one or more steps
among the {i}, then the rescheduling condition should be
checked at each bypassed step. For the efficient examination
of the rescheduling condition, ALCs manage global FF his-
tory tables to save the FF histories by routes, as defined below.
Definition 8: Each FF history table (HT) for a route is

designed to map each fast-forwarded e` to the pair of flaga
and LLb, where
• flaga is the integer that contains all of the bypassed steps
at the bit level; and

• LLb is the list of the (flagp,Lp) nodes, flagp is the inte-
ger that contains the successive and increasing-ordered
bypassed steps at the bit level, Lp is the list that contains
the partial bypassed records of (b, ta[b]), b is a bypassed
step; and ta[b] is the ta at the b-handling group for the
b-th step.

When a group that handles several processing steps
of a route diverges, the flaga helps to check whether
a fast-forwarded e` following the route had previously
bypassed the diverging group. For example, if a lot had
bypassed 2 and 3 steps of a route, then the flaga is set to 11002.
If the diverging group’s processing steps for a route are 3, 7,
and 10, then the static group flag (flagg) is 100100010002.
Through the bit-wise AND operation between the flaga and
flagg (i.e., flaga∧flagg), the bypassed group can be confirmed
if the operation result is not 0.

Whenever a stochastic transition happens during FF,
a fast-forwarded e`’s LLb in the route’s HT inserts a new node
of (flagp,Lp). For example, if the sequence of the bypassed
steps of a lot is 2, 3, 4, 6, 7, and 8, then the flagps of the
lot’s LLb are 111002 and 1110000002. The Lp contains the
records of the minimum and maximum bypassed steps (b◦min
and b◦max(= sl)) in an MDM. In the previous example, if a lot
bypassed steps 2, 3, and 4 in an MMDM, then the (b, ta[b])
nodes for steps 2 and 4 are recorded, which are utilized to find
the ta at the diverging group if flaga ∧ flagg is not zero.

If an MDM receives an e` from an ALC, then the b◦min at
theMDM is (sa+1) because all lot events routed by ALCs are
scheduled events that arrive on time (i.e., te = tc = ta[sa]).
Based on this property, the b◦min record for an MDM can be
summarized as follows:

(b◦min, ta[b
◦

min]) =

{
(sa, tc+t̂pd ), if src. is MDM or
(sa+1, tc+t̂d (h, sa)) otherwise.

(2)

When an MDM attempts to save an e`’s bmin record, if the
LLb for the event does not exist, then the MDM initializes
the LLb whose first node is the pair of 0 and empty Lp and
adds the record to the empty Lp. When the FF occurs over the
successive steps across multiple MDMs, each MDM inserts
the bmin record into the current Lp—that is, tail(LLb)’s Lp.
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When anMDM schedules a forwarded e` or delivers the e`
to anotherMDM, theMDMattempts to insert the b◦max record.
The record’s ta[b◦max] is derived as tc + t̂pd + t̂md − t̂d (h, sl).
During the attempt, the MDM should inspect the sl to see
whether the sl is a bypassed step and sl is larger than the
last node’s b in the current Lp. Because all bypassed steps
of e` at the SMDM have the same sa and sl , the SMDM
should not insert the record for the sl being bypassed. After
inserting the last record of an e` in the current Lp without any
further insertion due to the e` scheduling or a stochastic step
transition, the flagp should be updated as (2

bmax−bmin+1−1)�
bmin, where bmin and bmax are the first and last nodes’ b
elements, respectively. For example, if an Lp’s bmin and bmax
are 2 and 4, then the flagp is 001112 � 2, which is 111002.
If the e`’s FF is over, then the e`-scheduling MDM updates
the flaga through the OR operation of the LLb’s flagp values.
If the scheduled e` is delivered at te(= tc), then the e`’s history
is removed from the HT.

When a group involvedwith specific routes diverges, all FF
histories of e`s in the routes’ HTs are examined. The history
examination of an e` is skipped if the AND operation result
between the e`’s flaga and the group’s flagg becomes 0. If the
result is not 0, the diverging group’s ALC starts to traverse the
nodes in the e`’s LLb in order to check the e`’s rescheduling
condition after identifying the ta(s) at the group.
While traversing each Lp in the e`’s LLb, the ALC removes

the Lp if the ta[bmax] is less than tc, based on the following
two lemmas, which alleviates the future traverse overhead in
another bypassed group’s forthcoming divergence.
Lemma 4.1: Let the set of the group-involved steps be {i}

and i∗ ∈ {i}. Suppose that an Lp’s flagp and ta[bmax] meet
the properties of ((1 � i∗) ∧ flagp) > 0 and ta[bmax] ≤ tc.
Then, ta[i∗] cannot meet the rescheduling condition (that is,
ta[i∗] > tc).

Proof: Let (b1, ta[b1]) and (b2, ta[b2]) be two successive
nodes in Lp. The records have relationships such that b1 < b2,
ta[b1] < ta[b2] because each record was stored sequentially
during FF over the successive steps. Thus, we may notice that
i∗ ≤ bmax, ta[i∗] ≤ ta[bmax] ≤ tc. Therefore, ta[i∗] ≤ tc;
hence, ta[i∗] cannot be larger than tc. �
Lemma 4.2: If ta[bmax] ≤ tc, then no bypassed steps in the

Lp can meet the rescheduling condition in the future.
Proof: Let b ∈ [bmin : bmax] and t+c be a future time for

a group divergence that affects b. For all b, we can notice that
ta[b] ≤ ta[bmax] ≤ tc ≤ t+c . Therefore, no ta[b] can be larger
than any future time. �
If flaga ∧ flagg is not 0, then the overall procedures for

an e`’s FF history examination using the LLb are described
in Alg. 3. After removing the inspection-free Lps based on
Lemma 4.1 and 4.2 (as Line 4), the diverging group’s ALC
checks whether any step in the Lp is involved with the diverg-
ing group using flagp ∧ flagg. If the Lp is involved, then the
ALC removes the inspection-free nodes and checks the Lp’s
emptiness (as in Lines 7-10). If the Lp is not empty, then the
ALC attempts to find specific steps involved with the current
Lp ({i∗}), as in Lines 11-15. If {i∗} is not empty, then the

Algorithm 3: An e`’s History Examination Using the
LLb, If (flaga ∧ flagg) > 0

1 cache: a hash table that maps (h, b−, b+) to
∑b+

j=b−
t̂d (h, j)

2 foreach (flagp,Lp) in LLb do
3 (bmin, ta[bmin])←head(Lp), (bmax, ta[bmax])←tail(Lp)
4 if ta[bmax] ≤ tc then delete (flagp,Lp) and continue
5 flag← flagp ∧ flagg
6 if flag 6= 0 then

// examine Lp’s nodes
7 foreach node in Lp do
8 if node’s ta[b] ≤ tc then delete node
9 else break

10 if Lp is empty then delete (flagp,Lp) and conti.
// derive the group-involved steps

({i∗})
11 flag← flag� bmin, {i∗} ← ∅
12 for i = 0; i ≤ bmax − bmin; i = i+ 1 do
13 if ((1� i) ∧ flag) > 0 then
14 add (i+ bmin) to {i∗}, flag←flag∧(1� i)
15 if flag = 0 then break

// examine ta at each i∗

16 node←head(Lp)
17 {i∗} ← {i∗} − {j | j ∈ {i∗} ∧ j < node’s b}
18 foreach i∗ in {i∗} do
19 while (node’s b) < i∗ do node←next(node)

// derive ta[i∗] using node
20 (b, ta[b])← node
21 if cache has key of (h, i∗, b− 1) then
22 t̂md ← (h, i∗, b− 1)’s value
23 else
24 t̂md←

∑b−1
j=i∗ t̂d (h, j), save t̂md to cache

25 ta[i∗]← ta[b]− t̂md
26 if ta[i∗] > tc then // resch. needs?
27 e′` ← e`.clone(), cancel e`, and resch.

e′`
28 replace the HT’s key as e′`
29 remove the next records in the Lp
30 remove the subsequent Lp(s) in the LLb

// update new last bypassing
step

31 b′ ← i∗ − 1, ta[b′]← ta[i∗]− t̂d (h, l)
32 if prev(node) 6= null then
33 b− ← prev(node)’s b
34 else
35 b− ← bmin

36 if ta[b′] > tc and b′ > b− then
37 change node to (b′, ta[b′])
38 else delete node
39 break

40 if Lp is empty then delete (flagp,Lp)
41 else update flagp using Lp
42 update flaga using the set of flagp

ALC attempts to derive each ta[i∗] to determine whether the
e` meets the rescheduling condition at the i∗.
For each ta[i∗] examination, the ALC traverses the Lp’s

node until it finds a node whose b is larger than or equal to i∗.
After deriving the t̂md for the multiple step of [i∗ : b − 1],
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the ALC calculates the ta[i∗], as in Lines 20-25. Because
the lots following the same route are forwarded through the
same path, there is a high possibility that the t̂md computation
will be duplicated. Thus, the ALC saves the t̂md in cache
to reuse for the other forwarded lots during the current HT
examination. If ta[i∗] is larger than tc, then the ALC performs
the el-rescheduling processes for the new cloned e` (e′`) to
arrive at the diverging group at the time of ta[i∗]. The ALC
replaces the lot’s key in the HT with the e′`. Then, the ALC
removes all of the subsequent records in the current Lp as well
as the following Lps due to the changed final step of i∗.
After checking the bypassing of the new last step b′(=

i∗ − 1) and its recording condition, the ALC updates the
current node to ((b′, ta[b′])) or removes the node, as in Lines
31-39. After the examination, if the last Lp is empty, then the
ALC removes the list. Otherwise, the ALC updates the flagp
using the revised Lp. After the history examination, the ALC
updates the flaga using each flagp in the LLm.

V. EXPERIMENTATION
We first designed a simple test model (denoted as the case-1
model) to manifest the proposed FF mechanism. The struc-
ture of the fab model is illustrated in Fig. 7. There are five
machine groups, each having a wafer-lot queue, a machine,
and an operator. The inventory model supplies wafer lots to
the first machine group, EG_A, for the production of two
different products. For these two products, wafer lots have
two types of headers: ls_1 and ls_2. They require different
routing paths: the order of EG_A, EG_B, EG_C, and EG_D
(for the ls_1 header), or the sequence of EG_A, EG_B, EG_C,
and EG_E (for the ls_2 header). Each group has a single
machine. The machine for EG_C is a batch-processing unit
representing a furnace and has a relatively long processing
time.

FIGURE 7. Structure of the case-1 simple factory.

Under certain uniform release rates of these two types of
lots, all machine groups operate in steady states in which their
queue lengths divergewithin some boundaries (See Fig. 8(a)).
Whenever group EG_B receive an em for the periodic inspec-
tion, the group’s DEM becomes reactivated. Before receiving
the first em, when all groups are running in steady states, two
MMDMs for the two different routing paths fast forward the
incoming lots, as shown in Fig. 8(b) and (c). FF bypasses
the four steps in the serial machine groups in each path. The
maintenance of EG_B influences the input arrivals of the fol-
lowing groups so that the following groups become unsteady
in a cascading fashion. When any MMDM is deallocated due
to the absence of sequential steady-state groups, some wafer
lots stored in the history tables can be rescheduled if the lots

meet the cancellation condition (see Def 7). The rescheduling
is performed after nullification of the previously scheduled e`
events; the numbers of the canceled lots are traced, as shown
in Fig. 8(c).

The 40-day simulation results of case 1 are summarized
in Tbl 1. As the aggregation level increases, both the num-
ber of events processed by the simulation engine and the
accuracy of the simulation decrease. The reduced number of
events guarantees lower simulation-execution times.Wemea-
sured execution times using an experimental machine with an
Intelr Xeonr E5-1650 3.6GHz CPU and 32 GB of mem-
ory. We determined the testing parameters for the statistical
convergence/divergence detection; among these parameters,
the number of lid (for each test sample) was set to 20 and
the p-value for the KS-based convergence test was set 0.7.
We defined the simulation accuracy as the mean difference in
the cycle-time distributions of the wafer lots, which results
from the baseline DE-only simulation and the counterpart
A/D simulation. This definition for the accuracy measure-
ment is designed to consider the stochastic step changes of
the lots.

TABLE 1. Summary of case-1 simulation results.

Compared to the single-group A/D (that utilizes only
SMDMs for the abstraction), the proposed FF through the
multi-group A/D (that employs both SMDMs and MMDMs)
does not test the arrivals of the lots from steady-state groups.
In the previous single-group A/D approach, the changes in
the e` outputs of a group caused by the model switching
between the SMDM and DEM can lead to a divergence of
the next steady-state group. The proposed sample reinitial-
ization in the multi-group A/D prevents the extreme reaction
to a previous group’s output change caused by the SMDM
activation by excluding the observation of the e` arrival when
the group is in a steady state. Thus, the reduced number
of divergence detections increases the MDM activity ratio
(MAR). However, the reinitialization of the testing samples
can delay the response to the input-arrival change, resulting
in a degradation in accuracy.

We designed another case (denoted as the case-2 model)
employing a majority of machines to evaluate the speedup
of simulations and the change in accuracy for the proposed
approach. As shown in Fig. 9, the model has four types
of machine groups for general process steps: deposition,
patterning, etching, and chemical-mechanical polishing. The
detailed subprocesses in each machine can differ depending
on a lot’s product recipe. The machines have different pro-
cessing times according to the recipe and their stochastic
properties; we referenced the timing parameters described in
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FIGURE 8. Overview of case-1 simulation scenario and runtime traces.

FIGURE 9. Structure of the case-2 wafer-fab model.

FIGURE 10. The simulation result of case 2.

James’s book [32], [33]. There are five types of products,
each requiring different mask layers (such as 4, 8, 12, 16,
or 20). As the required number of layers increases, the num-
ber of reentrances increases (e.g., deposition → patterning
→ etching→ deposition · · · ). We measured the performance
of the simulation under the proposed FF approach at various
injection rates, and we display the results in Fig. 10. The total
number of injected wafer lots is 5000.

Higher rates for lot release cause the monotonic incre-
ments of the machine groups’ queues; thus, machine
groups are more likely to be in unsteady states. The mean
MAR will decrease accordingly. As the MAR decreases,
the groups’ DEMs mainly operate, which increases accuracy
and decreases speedup. The divergence test, excluding the

FIGURE 11. The simulation result of SMT2020.

output of steady-state groups in the proposed FF approach,
leads to a higher MAR than the single-group A/D. The reini-
tialization of the divergence-test sample for the FF results in
lower accuracy than the single-group A/D, as discussed in the
explanation for case 1. As the input rates become decrease,
the MDMs are mainly active, and we achieved a speedup in
the FF approach by up to 5.9 times.
We also applied the FF approach to existing test scenarios

that contained high-mix production fab models [34]. The
testbed called the SMT2020 dataset consists of four differ-
ent types of production scenarios, whose route lengths are
up to 632 operations for 44 mask layers. The total number
of machines in the production datasets reaches 1054, with
107 machine groups. The overall simulation results for the
two-month production with the existing WIP wafer lots are
displayed in Fig. 11.

Using the proposed multi-group A/D approach, we
obtained a speedup of approximately 20% for the four
production scenarios compared to the DE-only simulation;
the speedup for the single-group A/D was about 10%. This
was a relatively low speedup compared to the case-2 results
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due to frequent interruptions that prevented the MDM preser-
vations, resulting in a low mean MAR of about 0.23. A fre-
quent disruption is induced by various types of machine
breakdowns andmaintenances or by the different release rates
of different types of lots with varying headers.

Except for the detection of a statistical change in lot arrival,
a steady-state group can reactivate the DEMwhen the group’s
ALC receives the em or any new type of lot that has not been
observed in the detection of steady-state convergence. The
SMT2020 dataset scenarios consider various types of planned
machine maintenance or unexpected breakdown that produce
frequent em events. In the production scenarios, lot-release
rates among different lot headers are significantly different.
Some high-priority lots have relatively long release rates and
made interruptions to steady-state group models as new types
of lots because the lots are sometimes not observed during
steady-state detection. In the next study, we will discuss how
to compensate for the SMDM’s steady-state operations under
the interruptions caused by the considerably different release
rates in the high-mix production and frequent arrivals of em,
without reactivating the DEM.

VI. CONCLUSION
To speed up the DE simulation of target fab models, we pro-
posed a hierarchical method for A/D simulation using two
types of MDMs: SMDM and MMDM. The SMDM abstracts
the complex DE operations of individual machine groups into
mean delays. TheMMDM fast-forwards input lots by bypass-
ing intermediate steady-state groups. If the lot’s subsequent
group is in an unsteady state, then the MMDM schedules the
lot to be stored in the event-list before being delivered to the
destination group after a multi-step delay. FF aims at allevi-
ating the event-processing overhead of the simulation engine
by reducing the number of events scheduled. The critical
component, ALC, switches its machine group’s active model
between the DEM and SMDMwhen the machine group con-
verges into or diverges from a steady state. TheALC also allo-
cates, deallocates, extends, or splits the MMDMs according
to the changes in neighboring groups’ steadiness. To consider
the dynamic update of theMMDMandmaximize the reuse of
previous accumulation results, we proposed multi-step delay
management using the two-level cache tables. The bypassed
machine group causes a problem in detecting input-arrival
change; to address this problem, we developed a method for
reinitialization of the 1/λ sample according to changes in
the previous groups’ steadiness. Since a bypassed group’s
divergence can shift the previously derived multi-step delays
of scheduled events, we designed an examination method
using the FF history tables to reschedule the highly affected
events. Compared to the accurate DE simulation, the pro-
posed multi-group A/D shows a higher speedup than the
single-groupA/D approach andwith less degradation in accu-
racy. Speedups vary by up to 5.9 times under various scenar-
ios, with 2.5 to 8.3% reductions in accuracy, and the speedup
enhancement is highly affected by the overall steadiness of
the machine groups.
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