IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 18, 2021, accepted April 9, 2021, date of publication April 15, 2021, date of current version April 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073598

Towards the Automatic and Schedule-Aware
Alerting of Internetwork Time Series

DANIEL PERDICES !, JOSE LUIS GARCIA-DORADO"“'1, JAVIER RAMOS 1,

RODRIGO DE POOL 2, AND JAVIER ARACIL":2

! Department of Electronics and Communications Technology, Escuela Politécnica Superior, Universidad Auténoma de Madrid, 28049 Madrid, Spain

2Naudit High Performance Computing and Networking, S. L., 28049 Madrid, Spain

Corresponding author: José Luis Garcia-Dorado (jl.garcia@uam.es)

This work was supported in part by the Ministry of Science and Innovation of Spain through Project AGILEMON under Grant AEI
PID2019-104451RB-C21, and in part by the Predoctoral Fellowship of the Program for the Training of University Lecturers of the
Ministry of Science, Innovation and Universities of Spain, under Grant FPU19/05678.

ABSTRACT A common factor of every network monitoring system is an alerting module for time series. This
module aims at triggering a warning when any type of abnormal behavior is detected in the patterns of a time
series. Such a search for anomalies can be carried out by network managers as a supervised task such that the
thresholds for considering a measurement as an anomaly are set following a manual process. Alternatively,
we focus on how to translate such a task to an unsupervised one, thus alleviating network managers’
dedication. To this end, we have developed, based on the experience of monitoring dozens of networks,
aplayer of real anomalies. Thus, by recreating real issues, the alerting systems’ parametrization can be carried
out without supervision. Additionally, as a novelty, we propose to consider the network managers’ workforce
as a significant parameter to configure the thresholds of the alerting module—essentially, avoiding triggering
alarms that will hardly receive attention. Then, we propose to measure and rank alarms by relevance, and
relate them to the time to be solved for constructing, eventually, automatic schedules for the members of the
staff—according to their time availability. Finally, all these proposals have been put into practice in various
deployments of monitoring systems on networks in operation, which gives us evidence of its usefulness and
low demand for resources.

INDEX TERMS Monitoring systems, alerting module, Internetwork time series, LSTM networks, network

managers schedule.

I. INTRODUCTION

Modern monitoring systems provide network managers with
thousands of time series of diverse measurements on beau-
tiful dashboard environments such as Grafana, Kibana,
or Tableau [1]. Such time series may represent internet-
work Key Performance Indicators (KPI) such as the band-
width, round trip times (RTT), TCP-window sizes, or the
number of retransmissions [2]. However, it is the duty of
network managers to inspect the time series to both assess
good performance and find any evidence of anomalies in
the network [3]. Unfortunately, network managers’ time is
limited which calls for systems that help them in such a task.
Therefore, monitoring systems provide alerting mechanisms
so that network managers only need to inspect time series
after an alarm is triggered, so alleviating their burden. Typ-

The associate editor coordinating the review of this manuscript and

approving it for publication was Chakchai So-In

61346

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ically, such alarms are triggered if a time series exceeds or
drops over/below some given threshold from a baseline [4].
However, from our experience in monitoring large-enterprise
networks, we noticed soon that the parametrization of such
thresholds engenders a conflict. If thresholds are too narrow,
there would be a large number of alarms [5] that exceed
network managers’ dedication, and they will not be analyzed.
In the opposite case, if thresholds are too wide, there would
be real anomalies missing.

In this scenario, in our view, the keys to set efficient
thresholds are: (i) the probability of a real anomaly not
to be detected—i.e., a false negative—is marginal; (ii) the
matching of the number of alarms to the analysis capacity
of network managers. We emphasize that this last aspect is
novel albeit the fact that triggering alarms with no time to be
analyzed lacks sense.

To address the first design line—avoiding false negatives—,
we noticed that typically setting and updating thresholds used

VOLUME 9, 2021

https://orcid.org/0000-0002-3421-7633
https://orcid.org/0000-0002-7606-7311
https://orcid.org/0000-0003-2972-0370
https://orcid.org/0000-0002-2321-8120
https://orcid.org/0000-0001-8030-1062
https://orcid.org/0000-0003-1026-191X

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

IEEE Access

to be a manual process based on previous experience without
any automatic support. The research community noticed soon
that such an approach, named Fixed Threshold Anomaly
Detector [6], was not very useful. For example, a period of
high activity, in the case of periodic time series, may not
represent an anomaly at all but, simply, the typical busy
hour of the network [7]. Even more, given that the task of
updating parameters is usually tedious, some thresholds may
not be adapted to regular network changes (e.g., more users
or different services) over time [8].

From this scenario arose the natural idea of defining
dynamics thresholds that the modern anomaly detection sys-
tems apply nowadays. The answer to this need for dynamic
thresholds has been following a stochastic approach. For
example, Prometheus [9] suggests considering time series as
Gaussian processes and sets thresholds according to excur-
sions over a certain number of standard deviations over/below
the average. The authors in [10] refine that approach by defin-
ing the width according to the standard deviation of the noise
of the time series—the difference between real and predicted
values. Interestingly, the prediction is carried out through a
trained Long Short-Term Memory (LSTM) neural network,
similar to other works such as [11], [12]. We share their view
of how the current trends of transferring machine-learning
mechanisms to network problems are a good direction and,
then, we embrace the approach of predicting traffic through
neural networks.

However, we believe that the way of defining thresholds
must be related to real-world anomalies and not to statistical
variations of a signal. That is, an anomaly may pass unde-
tected in such approaches, simply, because anomalies do not
exceed one or more standard deviations of the time series
but, in fact, it may entail a problem for the users of the net-
works. Fortunately, we have characterized a large number of
anomalies in real networks which has allowed us to reproduce
the impact of anomalies in regular operation. That is, after
replaying anomalies on time series, we can set thresholds
in such a way that anomalies are detected. The point of
this is that we can define thresholds to maximize/minimize
true/false positives ratios of alerting for anomalies. In other
words, we are translating a supervised task, where network
managers must perform the threshold definition manually,
to an unsupervised one, where this is totally automatic and
requires minimal validation from them.

In the second line of design—a balanced number of
alarms—we note that the alarms must be triggered if an
anomaly is detected regardless of whether the number of
alarms is excessive. That is, making wider the threshold
intervals to reduce the number of alarms is not the point,
the key is that alarms can be ranked. Ranked by relevance and
dedication time—that time a network manager would require
solving it. With this data, dedication and relevance, the set of
alarms effectively triggered would be those that are the most
relevant for the network management and fit the availability
of the management staff. Note that triggering few alarms may
render the network managers’ workday unproductive, and

VOLUME 9, 2021

alarms over the workforce will be, simply, ignored. Needless
to say, in the event of a significant number of unattended
alarms, the total working capacity should be increased.

To the best of our knowledge, this line of design has
received no attention from the Internet community despite its
direct relationship with the labor of network managers. As a
first approach, we propose to formally define a metric for the
relevance of the anomaly. Thus, network managers may order
anomalies and take care of the top N anomalies according to
their availability. Importantly, note that this avoids defining a
hard threshold for what is normal or abnormal behavior of a
network which has been an open question since the network
monitoring was born [13].

As a further step, we propose to re-adapt such threshold
values as a balance between the labor force and the historical
time the analysis of an alarm requires. That is, the number of
alarms and the time they require must be balanced with the
available time of the technical staff. In other words, alarms
should be parameterized according to the number and rele-
vance of the resulting anomalies in such a way that managers
may pay attention to them. From the network managers’ per-
spective, they simply receive an activity schedule according
to relevance and time-dedication functions.

In practice, we have added these two novel design lines in
an operational monitoring tool that meets the needs of most of
the commercial networks. Throughout the paper, we illustrate
the system’s operation with examples and evaluate the perfor-
mance in a real scenario with data from a large network with
hundreds of servers for months. In this way, the contributions
of the paper can be summarized as:

o Automatic alerting of internetwork time series.
We explain and illustrate the methodologies and novel
mechanisms proposed to set alerting thresholds auto-
matically. Threshold setting is based on the replay of
abnormal variations from diverse sets of real incidents
and the search for those values that optimize classifica-
tion metrics. That is, given a trained time series regressor
(for example, an LSTM network), we compare its output
prediction to the original time series after adding the
controlled anomalies. Those thresholds that maximize
the identification of the anomalies according to some
classification metric (e.g., F-score [14]) are chosen as
parameters for the system. This process is completely
automated and not based on arbitrary figures.

o Schedule-aware alerting of internetwork time series.
As a distinguishing characteristic, we have introduced
the workforce of the network-manager staff as a relevant
element to consider in network monitoring:

— Rankings. We rank anomalies by formally defining
their relevance as a function of the deviation of a
vector of KPI measurements and the number of trig-
gered alarms. By doing so, it allows network man-
agers to pay attention to the most relevant alarms
first.

— Schedules. As a further refinement, we propose a
novel schedule-aware alerting approach. We relate

61347

IEEE Access

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

the workforce, relevance, and type of alarm to con-
struct, automatically, schedule proposals for analy-
sis to the network-manager staff.

« Data and modules availability. Finally, we share a
player of network anomalies together with examples
for the reproduction of real-world anomalies fruit of
the monitoring of dozens of networks. Besides, a set
of anonymized time series used throughout the paper is
made available so that the results are reproducible.

In the rest of the paper, we first describe the architecture of
the monitoring system and the data under study. Then, we pay
attention to the methodologies we have needed to carry out
the design lines, and we explain how we have put into practice
our proposal. Finally, we study some execution examples and
the system’s performance in a real scenario, and some future
lines of work conclude the paper.

Il. MONITORING SYSTEM

As a first step, we describe the architecture and environ-
ment of the monitoring system that we have deployed in a
diverse set of real-world networks. Such networks include
those of banking data centers, oil and gas company infrastruc-
tures, and postal and package delivery services. Then, over
such deployments, we detail our proposals to promote the
automatic and schedule-aware alerting of internetwork time
series.

A. ARCHITECTURE
The monitoring system is a probe or set of probes that receive
traffic from both SPAN ports of routers and taps that replicate
and forward traffic to the capture module on several network
interfaces. These interfaces run a tuned high-performance
network driver such as HPCAP or Intel’s DPDK [15]. These
drivers accelerate packet processing workloads running on
a wide variety of CPU architectures, especially, multi-core.
As a result, they can capture packets and process them at
ratios of dozens of Gb/s, even, in commodity hardware.
Once packets are in memory, the monitoring system stores
data at three levels [16]:

« Packet level. This is the most demanding data set as it

requires storing as much volume as the traffic aggregate.
Consequently, the system only stores data for a config-
urable number of days—e.g., one week is the default in
our system.
Alternatively, the system allows capping packets to
headers—ruling out payloads—or applying selective
capping depending on the application-level relevance.
That is, the system stores packet headers in all cases and,
additionally, non-encrypted payloads are also stored.
Note that encrypted ones do not provide any possible
forensic study but still require storage capacity [17].
Packet traces are stored in PCAP format [18] in files that
comprise traffic for 5 minutes, after that time, a new file
is created. Then, PCAP traces are indexed by name in an
InfluxDB database [19].

61348

TABLE 1. Network time-series metrics estimated by default.

Metrics]

Incoming bandwidth (b/s)
Incoming bandwidth in packets/s
Number of MAC addresses
Server unanswered packets
TCP zero windows

Outgoing bandwidth (b/s)
Outgoing bandwidth in packets/s
Number of IP addresses
Client unanswered packets
Number of Flows

Server TCP RST packets Client TCP RST packets
TCP retransmissions TCP SYN packets
Duplicate ACK packets Average RTT per connection (s)

TABLE 2. Examples of records of network metrics of a given IP.

Date Outgoing | Incoming | ... RTT
(dd-mm-yyyy hh:mm) (b/s) (b/s) (s)
08-07-2019 19:35 49918 256093 0.0271
08-07-2019 19:40 588324 80718 0.0003
25-09-2019 01:50 31479 89977 0.0300

o Time series. The data represent a sequence of network
measurements over time at different granularities—e.g.,
1 second, 5 minutes, 1 week, or 1 month. By default,
the time series are constructed by IP address. Under
demand, IP addresses can be grouped by ranges or
services—hereinafter, a network element. The set of
network metrics that the monitoring system measures,
by default, are shown in Table 1. Time series’ storage
needs are far below packet traces. However, we note that
storing them at the finest granularity—e.g., 1 second—
in networks with a high diversity of IP addresses may
be challenging. By default, we store the finest-grained
ones for a month, weekly for the last year, and monthly
for longer periods. All the time series data is indexed in
an Elasticsearch database [20], Table 2 exemplifies this
data.

« Flow-level. In-between packet traces and time series,
network flows summarize traffic by aggregating pack-
ets by quintuple (4-layer protocol, IP addresses, and
port numbers) so alleviating storage demands [21]. By
default, we store traffic measurements as Netflows for
one year indexing each of their fields in an Elasticsearch
database [22].

B. DATA UNDER ANALYSIS
To illustrate the monitoring system and proposal with numer-
ical examples, we are showing real measurements from the
network of an international oil and gas company. The network
provides workers, offices, gas stations, and refineries with
Internet connectivity and other services such as teleconfer-
ence, telephony, distribution/sharing files, manage business
operations (e.g., Enterprise Resource Planning (ERP) [23])
and customer relations (e.g., SAP [24]), DNS, monitoring
protocols, and payment gateways among other services.

In particular, we are analyzing an interval of three months
of measurements (March, April, and May, 2020) from more

VOLUME 9, 2021

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series I E E E ACC@SS

Service Network Ad-hoc Date intervals picker W1
picker picker filters P Element and
data pickers
E Download trace E Trace availability dates w2
e ' Packet &
E Generate report Flows availability dates Flow data
Time series
metric picker W3
- Time-series
Normality visualizations
thresholds

Value
Alarms
Statistics Time, Network, Severity, Duration, TTS, Description
12:55:38, Network 1, 9.1, 5Sm, 25m, Flows (50); Incoming band...
12:56:09, Network ii, 9.8, 6m, 25m, RTT (25); SYN (25), ... W4
Alarms

visualization,

Delete
alarm

] [Update][Alarm] scheduling

handling and

alarm feedback

Go to
schedule

B =

FIGURE 1. Main dashboard of the monitoring system.

than 300 servers and thousands of users. From now on,
we will make direct reference to this set for the proposed
examples. A sample piece of this data has been anonymized
for privacy reasons and is freely available at [25], [26]. We
remark that similar deployments are in operation in net-
works such as international banks, postal and package deliv-
ery services, and electric utility companies. Thanks to these
deployments, we have both real data of a large number of
internetwork time series and, importantly, we have labeled
anomalies. That is, while monitoring commercial networks,
we have received dozens of notices of abnormal behavior
and how they were solved. That has allowed us to create a
generator of anomalies following real issues.

C. ACCESS, VISUALIZATION AND ALERTING SYSTEMS
Users can access the different levels of data and inspect them
through standard and custom-made modules of Grafana [27].
Grafana is open software to query—with an extensive set of
filters—, visualize—at the desired time interval—, alert—
based on thresholds—on any kind of time series stored in a
diverse set of databases—including InfluxDB, Elasticsearch,
MongoDB or SQL-based ones.

This way, Figure 1 provides a conceptual view of the com-
ponents of our monitoring system’s main dashboard. Let us
review the four components, or windows, that the dashboard
comprises, namely W1... W4.

VOLUME 9, 2021

Y

2)

On the left side of the first window (W 1), the service,
network, or set of networks are introduced as a filter
or set of filters based on IP addresses, port numbers
or blocks of them—depending on the type of network
being monitored. Other more specific filters can be also
introduced at this point.

On the right part, we can choose the date interval for
analysis. This operation is the Grafana equivalent of a
network filter, it will perform a search over the field that
was defined as the timestamp in the database, and only
data in the desired interval are considered. In this way,
any subsequent query in the databases would be related
to the service/network and specific time of interest.
Below the first window, we have the Packet and Flow
Data Window (W2). As an own module for Grafana,
we have created a plugin to download a PCAP trace for
the selected networks and dates. As standard Grafana
modules do, we have developed a back-end service
that, after receiving the search parameters, retrieves the
PCAP file or files from the Influx database and con-
catenates them. Finally, the system serves the filtered
trace using HTTP for its download.

Also in this part, we can download Netflow records
for the selected period or, more interesting, creating
an automatic report [28]. This functionality extracts
from Netflow records an extensive set of KPIs and

61349

IEEE Access

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

depicts them in a formal report. Such indicators include
response times of both HTTP and DNS protocols,
extended TCP performance metrics, and topology dis-
covery among others.

3) Then, we have a Time-Series Window (W3) for

the metrics under measurement. Metrics that can be
selected through drop-down menus. By default, the set
of available time series are those shown in Table 1, any
other measurements that can be extracted from Netflow
records or packets can be added on demand.
For each time series, the interface also depicts the
baseline and normality thresholds. The former is an
estimation for the behavior of the time series and the
latter permits to visually examine the limits for normal
behavior. We have developed it as a background pro-
cess that automatically calculates both values, which
are inserted in the time series databases as an additional
field and it is shown together with the measured values
in the time series windows.

4) Finally, the fourth window (W4) is dedicated to the
alerting and task scheduling. When a gathered mea-
surement breaks thresholds, an alarm is raised. Each
alarm is detailed with its duration, severity/relevance,
and estimated time to solve. There is a specific database
for alarms deployed in InfluxDB. Such a database per-
mits to view the triggered alarms and some statistics
related to the alerting. At the bottom of the figure,
the alarm handling interface is depicted. Here a net-
work manager may delete, modify, or mark as solved an
alarm as well as, once resolved, add feedback. In addi-
tion, at the left of these buttons, it is possible to view the
proposed schedule for the network-management staff.

At this point, it emerges the novel goals of this paper:
how to determine automatic and better thresholds, how to
define alarm relevance, and how to schedule alarms’ atten-
tion according to the availability of staff of managers. Our
proposal to face these aspects is detailed in the following
sections.

Ill. METHODOLOGIES

Let us review both how neural networks may help us to
implement precise time series regressors and some concepts
about the classification metrics used in our proposal.

A. LONG SHORT-TERM MEMORY NETWORKS
LSTM is an artificial recurrent neural network (RNN) that
allows information from previous processing steps to persist
and be part of the prediction of new inputs. Thanks to the
property of identifying interdependencies in inputs, recurrent
networks have been successfully applied in time series pre-
diction [10], [29], [30], speech recognition [31], translation
and language modeling [32], areas where context information
is necessary to achieve the best results.

Figure 2 illustrates the structure of the recurrent cells of an
LSTM network [33]. The vectors X;, C; and h;, respectively,

61350

(<)

FIGURE 2. LSTM cell diagram. h;_; and C;_, are the cell state
propagated from the previous time step. h; acts both as the hidden state
and as the output of the cell.

represent the input of the network, its state, and its output at
time ¢.

The C; state of the network is responsible for storing the
context information that will be used in future predictions.
For its part, the network is made up of three ‘gates’:

1) The forget gate is responsible for determining which
state information will persist in the next state.

2) The input gate is responsible for updating the state of
the network to include new information regarding the
current entry.

3) The output gate determines the network output based
on the state values (Cy), the input (X;), and the output
of the previous step (h;—1).

Each of the gates of the cell works as a common network
feed-forward, while the circles in the figure represent the
multiplication and sum operations bit by bit. Using gradi-
ent descent learning in recurrent networks (Backpropagation
through time), each gate learns to determine its output to
optimize prediction, that is: the forget gate will learn what
is relevant that persists in the state of the network based on X;
and h,_1; the input gate will learn what information should
be included in the state based on the same parameters; and,
then, the output gate will learn how to compose the network
output based on the input, the state, and the previous output.
Finally, following the cyclical structure of the recurrent net-
works, the output and its status will be fed into the network
along with the next input. LSTM networks are effective time
series estimators, even being robust against noisy data, with
long-term dependencies and with little relevant or random
traits [34].

B. DATA PRE-PROCESSING AND NORMALIZATION

Since neural networks are based on linear regressors, they
require that the input data is normalized to provide satis-
factory results. Normalization can be carried out in many
different ways. The usual standardization is the most common

VOLUME 9, 2021

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

IEEE Access

procedure, and it is defined as:
X—u
U 9

x© — (1)

where p is the mean and o the standard deviation, so that
X(© has 0 mean and standard deviation 1 as well as no units.
Although standard deviation controls the scattering of the
data, it does not necessarily bound it—i.e., we can still have
high values that bias any linear regressor. On the other hand,
min-max scaling is another preprocessing method useful for
neural networks,

X _ X — min(X) .

max(X) — min(X)
This method is particularly useful when min(X) or max(X)
are theoretically bounded—e.g., the minimum measured RTT

or bandwidth equal to 0—and it has the advantage of project-
ing the data to the interval [0, 1] having no units.

@)

C. EVALUATION OF BINARY CLASSIFICATION METRICS
Let us define some metrics widely used in the context of
incident classification.

« Sensitivity: Refers to the percentage of true positives to
the total positives of the problem. In the specific study
case,

incidents correctly detected
s = 3)

total actual incidents

« Precision: Refers to the percentage of true positives out
of the total positives given by the classifier. In our case,

incidents correctly detected

p= 4

incidents detected

e F-score: It is a metric that balances the information of
sensitivity and precision. It is calculated as the harmonic
mean between the aforementioned sensitivity (3) and the
precision (4):

s-p
Cs4p
Alternatively, Fg-score is the weighted harmonic mean
between p and s:

F

&)

U+ Bsep
p-B*+s
where the parameter S is a relevance factor that indicates

how many times sensitivity is considered more impor-
tant than precision.

Fg (6)

Finally, regarding the evaluation of network anomalies, it is
worth noting that incidents tend to occur in bursts. For the
purpose of network management in a real-world context, it is
far more relevant to be able to detect an incident—i.e., when it
begins—than its exact duration. Therefore, when evaluating
classifications, we will give an interval as well classified from
the first moment in which the incidence is detected and it
ends, without considering if during such periods some time
intervals are considered non-incident.

VOLUME 9, 2021

IV. PROPOSAL AND OPERATION

In general terms, the operation of an alerting system is as
follows: A time series regressor, trained with previous values,
predicts the values that would be expected under ‘typical’
circumstances for the time-series under study. If the sys-
tem observes that the expected and measured values deviate
excessively, then it reports that some issue has occurred. The
problem here is to formally define ‘excessively’.

Moreover, some incidents may moderately affect more
than one time series instead of affecting intensely just one.
Actually, a significant hint of a real anomaly is the change
in several metrics at the same time [16]. For example,
an increase in bandwidth may mean, at a certain time, that
there are more users in the network—for example, when
workers arrive at offices, which is not an anomaly. However,
if at the same time, the number of IP/MAC addresses does not
increase, that points to abnormal behavior. This multi-metric
approach will demand a process of normalization of the mea-
surements as the values of the metrics are in different units—
e.g., bandwidth can be in Mb/s or Gb/s and the number of
MAC addresses is in single units.

Moreover, the capacity of handling alerts must be a key
factor for an alerting module. In particular, we propose to
rank alarms according to their relevance, hence network man-
agers may prioritize. And, finally, if possible, to construct
a schedule for them once the time to resolve alarms can be
estimated through alarms’ characteristics. Let us detail how
our proposal copes with these issues.

A. MULTI-METRIC ANALYSIS OF TIME SERIES

Intending to capture time-series covariances, we propose
not to contrast time series individually. Instead, we pro-
pose to construct a vector of prediction values—through
regression—, and, then, to contrast it to the measured
vector—i.e., the measured values for the set of time series
joined as a multidimensional sample. Let us refer to this latter
vector as the vector of network metrics, and any of its single
components, a network metric (e.g., 16 components as in our
case, Table 1). More formally, we will denote the time series
that defines the network metrics by {X;}72 |, where X € R4
is the vector of network metrics in the k-th time interval with
d different types of measurements. First, we need to estimate
the next X; based on previous information, this means that

)?l' = E [XilXifl 5 ooy Xifm] ’ (7)

where m is the number of previous elements we consider to
compute the estimate. The next subsection will cover how to
compute it, but we want to state our method in a way that is
completely agnostic to the method for estimation as long as it
is accurate enough. Because the regressor is primarily trained
with incidence-free data, the estimated network vector X, ; will
resemble server behavior under normal circumstances. Thus,
we define an incidence as a deviation from this expected
behavior.

61351

IEEE Access

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

To calculate such deviation between X; and)?,-, we use the
mean squared error (MSE) and compare it to a threshold T,

d
MSE(X;, X;) = %Z(X{ — X)) > T2 ®)
j=1

If the inequality (8) is satisfied, we will state that the behav-
ior of the network in the i-th time interval is suspected of
incidence. Consequently, the system would trigger a process
to create an alarm in the monitoring system.

Regarding the units of 7', we will assume that X and X have
been pre-processed so that this 7 has no units. Depending
on the normalization procedure, we have different properties.
For the standardization (1), the distance is the mean number
of standard deviations that separates X; from)A(i. For instance,
a difference of T = 25 would mean that all metrics are
separated from the expected vector in an average of 5 standard
deviations. On the other hand, the min-max scaler (2) uses the
amplitude (max(X) — min(X)) as scale—i.e., a distance of
T = 0.8 would mean that, in average, metrics are separated
0.8 times the amplitude. The use of one pre-processing tech-
nique over others depends on the nature of the metric, since
both depend on the accurate estimation of either the standard
deviation or the maximum and minimum of the metric.

B. REGRESSOR IMPLEMENTATION
There are many alternatives for time series forecasting, they
range from simple methodologies based on moving-average
processes [35], through the analysis of complex networks
[36], to the newest deep learning-based regressors as previ-
ously stated. As mentioned before, we intend to be as agnostic
as possible in this regard, therefore our proposal supports any
kind of time series prediction technique.

In general, all forecasting techniques want to find a func-
tion g such that:

o= argfminIE [(Xi i, .. ,Xi_,,,))z])

i.e., g must predict X; only using the previous m time
steps and it must minimize this expectation, which is just
the poblational equivalent of the MSE. This means that

g(X;—1, ..., Xy—m) provides an estimation of the expectation
of the right-hand side of (7),
EXXi—1=X—1, - o, Xt =X1—m] = 8(Xt—1, - .+, Xt—m)
(10)

For the sake of simplicity, we have entrusted LSTM regres-
sors with the task of predicting time series. They are built
with Keras Deep Learning library in Python [37], [38]. The
data under study is detailed in Section II-B and the best
parametrization per metric and network was obtained using
a grid search.

C. THRESHOLD DEFINITION STRATEGY
The threshold T is a parameter that states a trade-off between
sensitivity and precision. A high threshold will improve

61352

model precision at the expense of its sensitivity by reporting
only the most extreme alarms. Conversely, a low threshold
will increase the model’s sensitivity, decreasing its precision
by detecting the finest incidents.

We believe that the alerting thresholds for anomaly devi-
ations must be the result of maximizing classification pre-
cision scores of labeled anomalies. Unfortunately, we do
not believe it is a good practice to charge managers with
the responsibility for labeling incidents. Actually, we believe
that the most convenient approach is the opposite. That is,
we propose an unsupervised approach that helps managers
in their tasks with no more additional burden. To do so,
we are adding synthetic anomalies based on our expertise
over the regular traffic—picking time intervals of normal
operation—and estimate the threshold values that maximize
classification scores. In this way, we can provide automatic
thresholds regardless of the particular shape or behavior of
a network time series. Moreover, we based thresholds on
real anomalies, not in statistical deviations that potentially
may reflect a typical behavior for heterogeneous time series.
Consequently, we have developed an anomaly generator—
or, interchangeably, anomaly player—that is parametrized
according to real issues observed for years in a large number
of networks. It is freely available at [39]. Let us now detail it
more formally.

1) GENERATING INCIDENTS
We will assume that we can find—actually, select—some
time spans free of incidents. Although it may seem like a
strong hypothesis, commercial and industrial networks tend
to work most of the time with no incidents and if not, net-
work managers would receive notifications through ticketing
systems.

Based on this, we design anomalies according to four
parameters:

o Network metric involved.

o The time interval in which the incident occurs.

o The percentage of elements affected—i.e., IP addresses,
port numbers or services (set of IP addresses) affected
by the incident.

« A multiplicative average factor to apply on the values of
the time series. This factor indicates the intensity of the
incidence in the affected time series.

Importantly, the induced anomalies can overlap each other,
thus affecting several network metrics at the same time.
By combining different lists of parameters—fixed according
to previous real incidents—we can replay real issues under
demand. For example, to simulate a denial-of-service attack,
it would suffice to increase the number of connections and
incoming bandwidth in a specific interval and set of IP
addresses.

In practical terms, our generator receives a JSON file
for the description of one or several anomalies. The file
includes a set of blocks where each of them comprises
four attribute-value pairs describing how the generator has

VOLUME 9, 2021

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

IEEE Access

TABLE 3. Specifications of the set of incident packages.

Incident From Until Metric Elements | Intensity
Package | (hh:mm:ss) | (hh:mm:ss) affected factor
#1 00:00:00 03:00:00 Incoming bandwidth 80% X3
04:00:00 23:00:00 Incoming bandwidth 90% X2
00:00:00 03:00:00 RTT 90% X3
12:00:00 16:00:00 RTT 60% x4
04:00:00 12:00:00 Retransmissions 100% x1.5
08:00:00 12:00:00 .
® + 1 day + 1 day Retransmissions 90% X2
03:00:00 23:00:00 Retransmissions 70% x3
+ 2 days + 2 day
#4 00:00:00 03:00:00 Flows 100% x3
12:00:00 23:00:00 Flows 100% x10
06:30:00 15:30:00 Flows 100% x4
#5 07:00:00 16:00:00 RTT 90% x4
07:00:00 16:00:00 Retransmissions 70% X6
07:00:00 15:00:00 Incoming bandwidth 80% X3
To illustrate some of the set of incidents we have con-
60 - structed, the available code includes five examples of Incident
< Packages [39]. Such examples consist of significant incidents
§ 50 we found in the networks on monitoring. Leveraging on such
% a set, we provide the evaluation of our proposal in the next
8401 section.
L“wg While Table 3 summarizes such examples, let us provide
§ 304 more details:
[aW)
o The Incident Package 1 represents an incident whereby
204 several SAP servers started to carry out data replications
5 200 450 660 860 unnecessarily. . o
Samples o The Incident Package 2 arises from a satellite link that

FIGURE 3. Incidence induced the incoming packets-per-second time
series.

to modify the network time series. Interestingly, with this
approach, we have translated a problem that required super-
vision into an unsupervised one. On the one hand, any
record that has not been altered is labeled as incident-free.
Whereas those in which a variation was induced are classified
as anomalies. The classification that this generator induces
allows evaluating the performance of the alerting system
according to how thresholds are parametrized. As an exam-
ple of the incident generator, Figure 3 depicts an incidence
generated on real data. Over the original data, we have an
interval of 100 seconds in which the incidence was induced,
in particular, an increase in the rate of incoming packets
per second. In this example, we illustrate the incidence of a
single metric, however, as stated before, incidents can alter
several metrics simultaneously.

2) INCIDENT PACKAGES' PARAMETRIZATION

We have translated many of the issues that we have reported
in the process of monitoring commercial networks to JSON
anomaly-description files. In this way, real issues can be
replayed in a controlled environment. Let us refer to them
such as Incident Packages.

VOLUME 9, 2021

began to exceed its regular values of propagation delay.

« For its part, the Incident Package 3 was the result of the
saturation of a VoIP gateway.

o Then, in the Incident Package 4, a payment gateway
collapsed. Multiple errors on charging clients occurred
which generated numerous re-connections, and, eventu-
ally, the number of concurrent flows peaked.

« Finally, the Incident Package 5 emerged from visualiza-
tion problems of multimedia services at end clients. The
problem was a saturated link and, consequently, several
network metrics varied.

3) SETTING THRESHOLDS
We apply the following process to finally set thresholds per
element, i.e., IP address, set of them, or service:

o We feed the LSTM network-based regressor to obtain
the estimated time series.

« We apply an extensive set of incident packages to the full
set of measured time series. Additionally, to add some
extra variety, we randomly vary the number of elements
affected—IP address, port number or services as stated
before—, intensity factors and times, and reapply them
to the time series.

o We contrast estimated and modified time series val-
ues. For all possible threshold values in the range, e.g.,
[1, 50]—in terms of standard deviations—we calculate

61353

IEEE Access

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

the F>-score. That is, if given a certain threshold, those
periods of time that we know that are anomalous are
detected as so—i.e., being over/below the threshold.

« Finally, we select the specific threshold with the best
F>-score and analyze its suitability—therefore, skewing
relevance towards the sensitivity.

As an example of the output of the above process, Table 4
shows the resulting thresholds and classification metrics per
Incident Package for a representative server under monitor-
ing of the available data set (Section II-B). In particular,
the server with the highest volume of traffic generated (Top
1). By default, we use a random proportion of 70% of the
server’s data for training the LSTM models and the remaining
30% as the validation set—to set the thresholds injecting
anomalies. The table depicts the best thresholds according to
the F,-score, while precision and sensitivity measurements
are also shown. We remark that, especially, the two first
metrics reach significant figures. Moreover, we note that in
the example the thresholds for the element under study are
estimated per Incident Package—or, in other words, per type
of incident.

By the time the monitoring system is in real operation,
a single threshold per element must be set. Typically, the low-
est figure is a good approach so that minimizing false nega-
tives. This will lead to more alarms per item, but note that,
thanks to our approach, we can rank alarms and distribute
only the most relevant according to the staff’s capacity. The
real problem would be the opposite, i.e., real anomalies
missed. Alternatively, thresholds may vary over time on an
intra-day basis, being stricter when more analysis capacity is
available, and relaxing them otherwise.

Finally, for the sake of completeness, Table 4 also includes
the results for the 10 and 100 most active servers, as well
as for the full set of 300 servers under study. In particular,
the averages of the classification metrics are shown. Note
that, in operation, each server would have its own threshold
depending on the optimization process. It becomes apparent
that the resulting metrics reach significant figures in these
scenarios.

D. ALARMS RANKING
A data center or a large deployment can be made up of
thousands of servers or networks to be monitored. There-
fore, prioritizing incidents allows managers to focus on those
alarms that are more urgent or show more unusual behavior.
This calls for a mechanism to compare alarms from differ-
ent networked elements that were triggered with different
thresholds—those that optimized F;-score for each element
in the period under study as the previous section explained.
To make alarms from different elements and times compa-
rable, we propose to relativize the relevance of an anomaly to
the particular threshold used by the given element to consider
a measurement as an anomaly. This way, we consider devia-
tions in terms of how many thresholds instead of deviations
in absolute terms. We define the relevance at time i, R;, of an

61354

TABLE 4. Examples of optimal threshold selection and classification
metrics.

Incident Sensitivity | Precision
‘ Server H Package ‘ Threshold ‘ Fa-score (%) ‘ (%)
#1 2.55 0.873 88.37 83.21
#2 5.03 0.953 94.69 97.64
Top 1 #3 3.33 0.933 99.58 74.45
#4 5.01 0.930 99.24 74.43
#5 2.57 0.848 88.55 72.41
[Top10 [Avg.] - [0897 [9201 [8134 |
[Top100 | Ave. || - [0904 | 9266 | 8223 |
[300 [Ave || - [0889 | 9017 | 8421 |
alarm observed for a given element as
MSE(X;, X;)
Ri=—5—. (an

T2

where the metric R; defines how many thresholds (7') the
observed values (X;) has deviated from the expected ones (Xi)
for the n metrics under consideration. Note that T value is
individually computed for each element.

Finally, we consider, R, as the relevance of an observed
alarm for a given element during its whole lifetime—as an
alarm may be active during several consecutive time intervals
t=1,...,1I:

R = _maxIRi, (12)

Clearly, the greater the factor R is, the more radical the
behavior of the incidence comparatively is, and then the alarm
is more relevant.

Additionally, we are interested in a measure to summarize
the relevance of each metric in a given anomaly. We believe
that such a measure can be a good descriptor for types of
anomalies. For this, it is enough to consider the percentage
that each component of the vector ()A(,' — X;) contributes to its
module. The contribution of the j-th metric would be:

% 72
mi = K= XD

_ (13)
EEDYETC RS b

The factor M{ allows us to order the network metrics
according to how much they have deviated from their
expected value. Then, we have that those metrics with a
higher factor M will have more unusual behaviors and, prob-
ably, they will be more descriptive regarding the nature of
the incidence. By doing so, the model will not only allow
us to indicate if a network exhibits abnormal behavior but,
both ordering the anomalies by relevance and estimating the
weight of each component.

The first measure, R, will be useful to prioritize one
incident over others. The second one, M, will be useful to
describe an incident and eventually relate such a description
to the time to solve incidents. As a conclusion, we propose
using both metrics to plan network managers’ schedules.

VOLUME 9, 2021

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

IEEE Access

E. SCHEDULING MODULE

After an alarm is triggered, the monitoring system gets its rel-
evance (R) and the contribution of each metric (M). As time
passes, we will also have information about the time each
alarm needs to be solved and some statistics of how many
alarms are triggered per element. These pieces of information
are useful to construct schedules for network managers.

In particular, we note that the frequency that the pair ele-
ment and metric generates an alarm may be a natural indicator
of a heterogeneous behavior. In this way, we propose to
give extra relevance to those elements that triggered fewer
alarms than those that frequently are requiring inspection.
Consequently, the metric R is weighted, according to the
number of alarms per element and period of measurement,
namely R. While there are multiple weight functions (e.g.,
[40], [41]), in particular, we define the weighted metric as:

R=RIl N 14
= Rlog, (Ns) , (14)
where N and N, stand for the total number of alarms and the
number of alarms raised by element or system s. We note
that this normalization keeps the original relevance if the
percentage of total alarms raised by s is low and reduces the
relevance when elements are raising a large number of alarms.

Regarding M, it has so many dimensions as network met-
rics, now let us consider the value of each dimension as a point
in a hyperplane. Then, we propose to relate times to solve
(hereinafter, TTS) to such points by applying a multivariate
linear regression [42], which will give the estimation we pur-
sue. In other words, metric M provides us with a description
of the types of network issues, and then, we relate it to 77S—
as more and more issues are solved. Such a relationship will
allow regressing dedication times for present alarms. Finally,
to associate alarms under inspection to a network manager,
the simplest way is to rank alarms according to both R and
TTS, and managers should go picking alarms sequentially
during their workday.

Alternatively, the monitoring system has a module to
automatically schedule their tasks. This module considers,
in addition to R and TTS, the availability of the staff. Once
staff availability is introduced to the system, the scheduling
module will provide a proposal that minimizes the completion
time of the most relevant incidents. The module also allows
manual modifications by network managers when unex-
pected issues occur. Similarly, managers can update sched-
ules when they finish a task earlier or later than expected.

To conclude and provide a global view of our proposal,
all the previously described processes and parameters of our
proposed system are depicted in Figure 4 together with a table
that explains the notation. As a summary, in a first stage,
alarm thresholds for each network element are calculated
using real traffic modified with a wide set of tailored inci-
dent packages—shown as dashed boxes in the figure. Next,
such thresholds are used in normal operation to trigger and
rank alarms—shown as continuous boxes. Finally, the most
relevant alarms are scheduled and assigned to managers to

VOLUME 9, 2021

Real
traffic

|
Calculate
time series

For each network element

/

X
For T in
Add incident range
packages calculate F3-score
Current
X' samples
X Get T with
best F3-score
Previous LSTM
Samples network
Previous T
Samples ! Alarms
X Ranking
Calculate
Current max R
X S 1
ampyes Calculate
M
Calculate Number of
time series R M alarms
| |
v v
Trafﬁc. mn Staff Scheduler
operation
L Staff j L —_T L\
availability R s
’ Notation \ Description ‘
X Measured time series
X Predicted time series
X' Measured time series with anomalies
Threshold
R Alarm relevance
M Alarm description
R Weighted relevance
TTS Time to solve

FIGURE 4. Workflow diagram of the proposed scheduling system. Dashed
boxes represent the threshold-setting process and continuous boxes
represent the system’s operation.

be addressed depending on the number of alarms, relevance,
time to solve, and workforce (i.e., the set of network managers
and their availability)—shown at the bottom of the figure.

61355

IEEE Access

D. Perdices et al.:

Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

le6

1.754

1504

1.254

1.004

0.751 I}

Bits per second
B

0.50 1

0.25 1
L

6 10‘00 ZObO 3600 40‘00
Samples

0.00 q

0.025 A

0.020

0.015 A

Seconds

0.010 -

0.005 -

0.000 -

10‘00 ZObO 3600 40‘00
Samples

oA

FIGURE 5. Example of anomalies in a given server (outgoing bandwidth and average RTT time series, respectively).

FIGURE 6. Example of the schedule module output and inputs.

V. MONITOR SYSTEM IN OPERATION

This section exemplifies the system operation and evaluates
its computational load in a real context. In particular, we show
how the system has worked for measurements of the first
two weeks of June, 2020 once parametrized as Section IV-C3
detailed with three months worth of data, March-May, 2020
(Section II-B).

A. EXECUTION EXAMPLE

In this part, we visually inspect the alarms the system trig-
gered and show how the system provides schedules to the
network managers. In the set of 300 servers under measure-
ment, we found an average of 10 incidents per server for the
14 days under evaluation. The server with the fewest incidents
had only 3 incidents, and the server with the highest number
reported 29 anomalies.

Through manual inspection, we assess that all detected
alarms match abnormal behaviors. As an example, we depict
the server with the highest number of incidents in Fig-
ure 5, where the incidents detected in one of the days under

61356

as . : = ®
& schedule i B Incident _ | TS
Element | R .
Num. (min.)
Schedule (all) 1 i 8.1 25
2 i 4.1 20
Managerl 3 ii 9.8 25
4 ii 8.1 40
5 ii 2.9 40
IIIII II O T T R
7 iii 8.5 40
Managers 8 iii 5.5 20
9 v 0.8 40
10 iv 9.0 35
II IIII i V75|10
12 v 6.9 10
01:00 01:15 01:30 01:45 02:00 02:15 02:30 13 v 33 50
| I [D] L | L | L}
i1 2 i3 ii4 {5 ii6 iii7 ii8 ivd ivl0 ivll vi2 vi3 vld 14 \% 04 10

inspection are marked. In circles, we mark the incidents
detected by the model, which clearly constitute circum-
stances worthy of attention by a manager. With a square,
we highlight an example of apparently abnormal behavior
that was not spotted by the system as such. Digging into
this, we noticed that very short drops in the profile of the
metric were not infrequent, and they should not be especially
treated.

Finally, to illustrate the output that network-management
staff would receive, Figure 6 depicts how the scheduling
module of the monitoring system provides a proposal. In par-
ticular, it has been developed as a custom-made plugin for
Grafana (Section II-C). Given the number of elements and
days under study, we show, as an example, the system’s output
for November 1st, 2020 between 1 p.m. and 2:30 p.m. In such
an interval, four managers (Managerl ... Manager4) were
active with full availability except for Managerl with some
free intervals as well as a shared established 10-minute break
time. At that moment, 14 alarms (il ... v14) were active on
five network elements (i...v). Next to the figure, the inputs

VOLUME 9, 2021

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

IEEE Access

that the system uses to create schedules are shown (77S and
R (Eq. 14)).

B. COMPUTATION TIME

The number of elements that a data center may com-
prise can range from a few hundred to hundreds of thou-
sands of servers, links, or other devices [43]. Therefore,
we have estimated the time to both modeling and apply-
ing the model per element which, consequently, allows the
extrapolation to different scenarios. In the same vein of
generalizing results, all the benchmark was carried out on a
single desktop PC, thus encompassing a worst-case hardware
scenario.

The modeling using LSTM networks required, on average,
less than 30 seconds to model a time series. Then, the eval-
uation of the possible thresholds took less than 1 second
per time series assuming a range from O to 50 standard
deviations with a step of 0.01. As the modeling of the full
set of servers and time series can be an offline process that
may require a weekly or monthly update, this should not be a
challenge. Once the model is constructed, the evaluation of a
potential anomaly of each multi-metric sample requires less
than 200 us on average with marginal variance. Given that
the records are typically collected every minute [44], or even
every 5 minutes [45], we conclude that the monitoring system
may be integrated into the most demanding data centers or
networks.

VI. CONCLUSION

Throughout this paper we have presented some novel design
lines for the development and deployment of modern mon-
itoring systems in large networks. The design key that con-
ducts all this proposal is to make network managers’ work
easier by alleviating the dedication that some of their tasks
usually require.

In particular, over an already-in-operation monitoring sys-
tem, we have explained the set of methodologies and mecha-
nisms used to implement novel features such as the automatic
and schedule-aware setting of network thresholds for alerting
internetwork time series. The full monitoring system has been
in operation for months providing us with illustrative numeri-
cal examples, evidence of its usefulness, and low demand for
resources. Consequently, we believe that our approach may
fit in the most demanding scenarios.

As future work, we plan to work on mechanisms that allow
network managers to provide richer feedback in comparison
with the couple of numbers—the alarm relevance and the
time required to solve—that they currently provide as a report
once an incident is closed. Such feedback must be close
to natural language for the convenience of managers, and,
ideally, it should be automatically and rapidly integrated to
refine the parameters of the system on the fly. This may
be the key to provide the most useful and realistic working
schedules.

VOLUME 9, 2021

REFERENCES

[1] S.K.Peddojuand H. Upadhyay, “Evaluation of IoT data visualizationtools
and techniques,” in Data Visualization: Trends and Challenges Toward
Multidisciplinary Perception. Singapore: Springer, 2020.

[2] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, and D. Rossi, “Expe-
riences of Internet traffic monitoring with Tstat,” IEEE Netw., vol. 25,
no. 3, pp. 8-14, May 2011.

[3] P.Barford and D. Plonka, ““Characteristics of network traffic flow anoma-
lies,” in Proc. 1st ACM SIGCOMM Workshop Internet Meas. (IMW), 2001,
pp. 69-73.

[4] R. Mijumbi, A. Asthana, M. Koivunen, F. Haiyong, and Z. Norman,

“DARN: Dynamic baselines for real-time network monitoring,” in Proc.

4th IEEE Conf. Netw. Softwarization Workshops (NetSoft), Jun. 2018,

pp. 37-45.

J. Viinikka, H. Debar, L. Mé, A. Lehikoinen, and M. Tarvainen, ‘“Process-

ing intrusion detection alert aggregates with time series modeling,” Inf.

Fusion, vol. 10, no. 4, pp. 312-324, Oct. 2009.

[6] M. Mobilio, M. Orru, O. Riganelli, A. Tundo, and L. Mariani, “Anomaly

detection as-a-service,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Work-

shops (ISSREW), Oct. 2019, pp. 193-199.

F. Mata, P. Zuraniewski, M. Mandjes, and M. Mellia, “Anomaly detection

in diurnal data,” Comput. Netw., vol. 60, pp. 187-200, Feb. 2014.

[8] J. L. Garcia-Dorado, J. A. Hernandez, J. Aracil, J. E. Lépez de Vergara,

F. J. Monserrat, E. Robles, and T. P. de Miguel, “On the duration and

spatial characteristics of Internet traffic measurement experiments,” /IEEE

Commun. Mag., vol. 46, no. 11, pp. 148-155, Nov. 2008.

Prometheus. (2020). How to Use Prometheus for Anomaly

Detection in GitLab. [Online]. Available: https://about.gitlab.com/

blog/2019/07/23/anomaly-detection-using-prometheus/

[10] R. Mijumbi, A. Asthana, M. Koivunen, F. Haiyong, and Q. Zhu, “Design,
implementation, and evaluation of learning algorithms for dynamic real-
time network monitoring,” Int. J. Netw. Manage., p. €2108, Mar. 2020.

[11] G. Nguyen, S. Dlugolinsky, V. Tran, and A. L6pez Garcia, “Deep learning
for proactive network monitoring and security protection,” IEEE Access,
vol. 8, pp. 19696-19716, 2020.

[12] C.-T.Yang,J.-C.Liu, E. Kristiani, M.-L. Liu, I. You, and G. Pau, “NetFlow
monitoring and cyberattack detection using deep learning with Ceph,”
IEEE Access, vol. 8, pp. 78427850, 2020.

[13] J. L. Garcia-Dorado, “Bandwidth measurements within the cloud: Char-
acterizing regular behaviors and correlating downtimes,” ACM Trans.
Internet Technol., vol. 17, no. 4, pp. 1-25, Sep. 2017.

[14] J. Lever, M. Krzywinski, and N. Altman, “Classification evaluation,”
Nature Methods, vol. 13, no. 8, pp. 603-604, 2016.

[15] V. Moreno, J. Ramos, P. M. Santiago del Rio, J. L. Garcia-Dorado,
F. J. Gomez-Arribas, and J. Aracil, “Commodity packet capture engines:
Tutorial, cookbook and applicability,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 3, pp. 1364-1390, 3rd Quart., 2015.

[16] V. Moreno, P. M. Santiago del Rio, J. Ramos, D.Muelas,
J. L. Garcfa-Dorado, F. J. Gomez-Arribas, and J. Aracil, “Multi-granular,
multi-purpose and multi-Gb/s monitoring on off-the-shelf systems,” Int.
J. Netw. Manage., vol. 24, no. 4, pp. 221-234, Jul. 2014.

[17] V. Uceda, M. Rodriguez, J. Ramos, J. L. Garcia-Dorado, and J. Aracil,
“Selective capping of packet payloads at multi-Gb/s rates,” IEEE J. Sel.
Areas Commun., vol. 34, no. 6, pp. 1807-1818, Jun. 2016.

[18] Tepdump & Libpcap. (2020). Library for Network Traffic Capture: Libp-
Cap. [Online]. Available: http://www.tcpdump.org

[19] S. N. Z. Naqvi, S. Yfantidou, and E. Zimanyi, “Time series databases
and InfluxDB,” Advanced Databases Studienarbeit, Université Libre de
Bruxelles, Brussels, Belgium, 2017.

[20] N.Shah, D. Willick, and V. Mago, “A framework for social media data ana-
Iytics using Elasticsearch and Kibana,” Wireless Netw., pp. 1-9, Dec. 2018.

[21] R. Hofstede, P. Celeda, B. Trammell, 1. Drago, R. Sadre, A. Sperotto, and
A. Pras, “Flow monitoring explained: From packet capture to data analysis
with NetFlow and IPFIX,” IEEE Commun. Surveys Tuts., vol. 16, no. 4,
pp. 2037-2064, 4th Quart., 2014.

[22] Y. Yang, Q. Cao, and H. Jiang, “EdgeDB: An efficient time-series database
for edge computing,” IEEE Access, vol. 7, pp. 142295-142307, 2019.

[23] K. Shafi, U. S. Ahmad, S. Nawab, W. K. Bhatti, S. A. Shad,
Z.Hameed, T. Asif, and F. Shoaib, “Measuring performance through
enterprise resource planning system implementation,” /EEE Access, vol. 7,
pp. 6691-6702, 2019.

[24] SAP. (2020). SAP Business Suite. [Online]. Available: https://www.sap.
com/products/business-one.html

[5

—

[7

—

9

—

61357

IEEE Access

D. Perdices et al.: Towards the Automatic and Schedule-Aware Alerting of Internetwork Time Series

[25] HPCN. (2020). Measurement Campaigns. [Online]. Available: https:/
github.com/hpcn-uam/deepfda-experiments/tree/master/dataset

[26] D. Perdices, J. E. Lépez de Vergara, and J. Ramos, “‘Deep-FDA: Using
functional data analysis and neural networks to characterize network ser-
vices time series,” IEEE Trans. Netw. Service Manage., vol. 18, no. 1,
pp. 986-999, Mar. 2021.

[27] Grafana. (2020). Beautiful Metric & Analytic Dashboards. [Online]. Avail-
able: http://grafana.org/

[28] C. Vega, E. Miravalls-Sierra, G. Julian-Moreno, J. E. Lépez de Vergara,
E. Magaiia, and J. Aracil, “On the design and performance evaluation of
automatic traffic report generation systems with huge data volumes,” Int.
J. Netw. Manage., vol. 28, no. 6, p. €2044, Nov. 2018.

[29] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, “LSTM network:
A deep learning approach for short-term traffic forecast,” IET Intell.
Transp. Syst., vol. 11, no. 2, pp. 68-75, Mar. 2017.

[30] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM fully convo-
lutional networks for time series classification,” IEEE Access, vol. 6,
pp. 1662-1669, 2018.

[31] A. Graves, N. Jaitly, and A.-R. Mohamed, “Hybrid speech recognition
with deep bidirectional LSTM,” in Proc. IEEE Workshop Autom. Speech
Recognit. Understand., Dec. 2013, pp. 273-278.

[32] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic
language model,” J. Mach. Learn. Res., vol. 3, pp. 1137-1155, Feb. 2003.

[33] C. Olah. (2015). Understanding LSTMs. [Online]. Available: https:/
colah.github.io/posts/2015-08-Understanding-LSTMs/

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural,
Comput., vol. 9, no. 8, pp. 80-1735, Dec. 1997.

[35] C. Vega, J. Aracil, and E. Magaiia, “KISS methodologies for network
management and anomaly detection,” in Proc. 26th Int. Conf. Softw.,
Telecommun. Comput. Netw. (SoftCOM), Sep. 2018, pp. 181-186.

[36] S.Mao and F. Xiao, “Time series forecasting based on complex network
analysis,” IEEE Access, vol. 7, pp. 40220-40229, 2019.

[37] Sarkar, R. Bali, and T. Ghosh, Hands-On Transfer Learning With Python:
Implement Advanced Deep Learning and Neural Network Models Using
TensorFlow and Keras. Birmingham, U.K.: Packt Publishing, 2018.

[38] F. Chollet et al. (2020). Keras. [Online]. Available: https://keras.io

[39] HPCN. (2020). Player of Network Anomalies. [Online]. Available:
https://github.com/jlgarciadorado/IncidencesPlayer

[40] J. Grossman, M. Grossman, and R. Katz, The First Systems of Weighted
Differential and Integral Calculus. Rockport, MA, USA: Archimedes
Foundation, 2006.

[41] Y.Ho and S. Wookey, ‘‘The real-world-weight cross-entropy loss function:
Modeling the costs of mislabeling,” IEEE Access, vol. 8, pp. 48064813,
2020.

[42] Z. Xuanxuan, “Multivariate linear regression analysis on online image
study for IoT,” Cognit. Syst. Res., vol. 52, pp. 312-316, Dec. 2018.

[43] W. Zhang, Y. Wen, L. L. Lai, F. Liu, and R. Fan, “Electricity cost min-
imization for interruptible workload in datacenter servers,” IEEE Trans.
Services Comput., vol. 13, no. 6, pp. 1059-1071, Nov./Dec. 2017.

[44] M. H. Lambert, A Model for Common Operational Statistics, document
IETF Request For Comments 1857, Oct. 1995.

[45] T. Oetiker, ‘“Monitoring your IT gear: The MRTG story,” IT Prof., vol. 3,
no. 6, pp. 44-48, 2001.

DANIEL PERDICES received the B.Sc. degree
(Hons.) in mathematics, the B.Sc. degree in com-
puter science, the M.Sc. degree in mathematics
and applications, and the M.Sc. degree in infor-
mation and communications technologies from
the Universidad Auténoma de Madrid (UAM),
Spain, in 2018, 2019, and 2020, respectively,
where he is currently pursuing the Ph.D. degree
with the High Performance Computing and Net-
working (HPCN) Research Group. He is also an

.3

Assistant Researcher with the High Performance Computing and Network-
ing (HPCN) Research Group, UAM, where he has received a four-year
predoctoral fellowship by the Spanish Ministry of Science, Innovation, and
Universities. He was a Research and Development Engineer with Naudit
HPCN, Spain. His research interests include deep learning, statistics, math-
ematical modeling, network traffic analysis, and software defined networks.

61358

JOSE LUIS GARCIA-DORADO received the
M.Sc. and Ph.D. degrees in computer and telecom-
munications engineering from the Universidad
Auténoma de Madrid (UAM), Spain, in 2006 and
2010, respectively. Since 2005, he has been a
member of the High Performance Computing
and Networking (HPCN) Research Group, UAM.
He was awarded a four-year predoctoral fellow-
ship by the Ministry of Education of Spain,
in 2007. He was a Visiting Scholar with the
Telecommunication Networks Group, Politecnico di Torino, Italy, in 2010,
the Internet Systems Laboratory, Purdue University, USA, in 2013, and
the Faculty of Applied Science, Universidad Técnica del Norte, Ecuador,
in 2014 and 2015. He is currently an Associate Professor with UAM.
His research interests include analysis of Internet traffic: its management,
modeling, and evolution.

JAVIER RAMOS received the M.Sc. degree
in computer science and the Ph.D. degree in
computer science and telecommunications from
the Universidad Auténoma de Madrid, Spain,
in 2008 and 2013, respectively. He was a Vis-
iting Researcher with the Fraunhofer Institute
for Open Communication Systems FOKUS, Ger-
many, in 2012. He is currently an Associate Pro-
fessor with the Universidad Auténoma de Madrid.
His research interests include analysis of network
traffic, quality of service, software-defined networks, and network function
virtualization.

RODRIGO DE POOL received the double
degree in mathematics and computer science from
the Universidad Auténoma de Madrid (UAM),
in 2020, where he is currently pursuing the M.Sc.
degree in mathematics and applications. While
studying for his degree, he enjoyed four grants
from the Madrid Local Government for his excel-
lent academic record and collaborated with Naudit
HPCN, Spain. He actively participated in program-
ming competitions reaching international level,
in 2018 and 2020 (SWERC competition). He is holding a Severo Ochoa
grant to do mathematical research at the Institute of Mathematical Sciences
(ICMAT), UAM. His research interests include algebraic geometry and
topology.

JAVIER ARACIL received the M.Sc. and Ph.D.
degrees (Hons.) in telecommunications engineer-
ing from the Technical University of Madrid,
in 1993 and 1995, respectively, and the five-year
degree in mathematics from UNED, in 2009.
He was awarded a Fulbright scholarship to pursue
postdoctoral research at the University of Cali-
fornia at Berkeley, Berkeley, CA, USA, in 1995.
He was a Research Scholar with the Center for
a Advanced Telecommunications, Systems, and Ser-
vices, University of Texas at Dallas, in 1998. He was an Associate Professor
with the University of Cantabria and the Public University of Navarra.
He is currently a Full Professor with UAM and a Founding Partner of the
spin-off company Naudit HPCN. He has authored more than 100 papers in
international conferences and journals. His research interests include optical
networks and performance evaluation of communication networks.

VOLUME 9, 2021

