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ABSTRACT For a given pair of pattern and data graphs, the subgraph isomorphism finding problem
locates all instances of the pattern graph into the data graph. For a given subgraph isomorphic image of
the pattern graph in a data graph, the set of all ordered pairs of the pattern graph’s vertices and their
respective images data graph is called an embedding. Many solvers, such as TurboISO, Glasgow, and VF3
exist in the literature for subgraph isomorphism finding problem. Though each solver aims to minimize
computing costs in its ownway, computational efficiency is still a central issue for the subgraph isomorphism
finding problem. In this paper, we present the development of an efficient solver, SubGlw, for subgraph
isomorphism finding which first decomposes data graph into small-size candidate subgraphs using a ranking
function and then searches the embeddings of the pattern graph in each of them separately. The ranking
function is designed in such a way that it minimizes both number and size of the candidate subgraphs.
The performance of SubGlw is empirically evaluated and compared with two state-of-the-art subgraph
isomorphism solvers – SubISO and Glasgow over three benchmark datasets – Yeast, Human, and Hprd.
The experimental findings reveal that SubGlw performs significantly better in terms of both embedding
count and execution time. We have also presented an analysis for identifying saddle point, which is a
timeout at which our solver achieves maximum embeddings in least execution time. This analysis provides
a better understanding for parameter settings. The source codes of SubGlw can be downloaded from
https://github.com/ZubairAliIgraph/SubGlw-master.

INDEX TERMS Graph mining, subgraph isomorphism, subgraph isomorphism solver, eccentricity, embed-
ding, graph decomposition, saddle point.

I. INTRODUCTION
A graph is a well-known non-linear data structure which is
used in many application areas, such as chemistry, biology,
network science, and pattern recognition. Even though the
process of finding subgraph isomorphism is computation-
ally expensive, querying subgraph isomorphism becomes an
inevitable task. Subgraph isomorphism problem has appli-
cations in many growing research areas, such as graph
databases [1], program similarity comparison [2], compiler
design [3], bioinformatics [4], intelligence analysis [5], and
pattern recognition [6]. Theoretically subgraph isomorphism
finding problem is to identify all instances of a pattern
graph in a given data graph, wherein generally the size
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(number of vertices) of the pattern graph is very small in com-
parison to the size of the data graph. There are many variants
of the subgraph isomorphism finding problem, in which iden-
tifying induced and non-induced form of subgraph isomor-
phism is more popular. The induced subgraph isomorphism
solver aims to find the exact isomorphic image of the pattern
graph in the data graph. On the other hand, non-induced sub-
graph isomorphism solver aims to find the isomorphic image
of the pattern graph that can have some extra edges. In this
paper, we consider both forms of the subgraph isomorphism
problem.

SUBGRAPH ISOMORPHISM SOLVER AND DEALING
WITH LARGE GRAPHS
Many subgraph isomorphism solvers exist in the
literature that use different graph theory concepts to solve
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subgraph isomorphism problem. VF2, QuickSI, RI, VF3,
and Glasgow are the examples of some state-of-the-art
subgraph isomorphism solvers. However, most of them are
inefficient when dealing with large data graphs. Moreover,
these solvers also show exponential behavior for some set of
pattern graph and data graph pairs [1]. Therefore, we have
designed an algorithm based on the broader sense of the
divide-and-conquer problem-solving paradigmwhich divides
data graph into several small-size candidate subgraphs, which
may contain one or more embeddings of the pattern graph.
The graph decomposition is done in such a way that the
size and count of the candidate subgraphs are optimal. After
decomposition, the subgraph isomorphism solver identifies
all embeddings of the pattern graph into the candidate sub-
graphs and combines them together to form the solution of
the subgraph isomorphism finding problem.

A. OUR CONTRIBUTIONS
In this paper, we have proposed a subgraph isomorphism
finding solver SubGlw. In line with [7], the proposed solver
decomposes a data graph into several candidate subgraphs
using a ranking function, which optimizes the size and count
of the candidate subgraphs. To decompose data graph into
candidate subgraphs, we first determine the pivot vertex of
the pattern graph. Thereafter, we decompose data graph into
small-size candidate subgraphs. A pivot vertex is a vertex of
the pattern graph which optimizes the ranking function. After
decomposing data graph into candidate subgraphs, the list
of candidate subgraphs is sorted in ascending order of their
size. Thereafter, in line to Glasgow, the proposed SubGlw
locates all embeddings of the pattern graph in the candidate
subgraphs. We have also presented an analysis to determine
saddle point for the proposed subgraph isomorphism solver
which helps in parameter settings.

In short, the contributions of this paper can be summarized
as follows:
• Development of a subgraph isomorphism solver,
SubGlw, to find at most n embeddings of a given pattern
graph into a data graphwithin a specified timeout period.

• Introducing a ranking function to decompose a data
graph into optimal-size candidate subgraphs.

• Imposing ordering on candidate subgraphs (increasing
order of their size) to make SubGlw more efficient.

• An analysis to determine saddle point for the proposed
solver which helps in parameter settings.

The rest of the paper is structured as follows. Section II
presents a detailed review of the research works on sub-
graph isomorphism finding problem. Section III presents
some preliminaries, including definitions, problem statement,
and a lemma. Section IV presents the procedural details and
pseudo-codes of the proposed solver. Section V presents the
experimental setup and results. It also presents a comparative
analysis of SubGlw with SubISO and Glasgow solvers.
Section V-D presents an analysis of the results to determine
saddle points. Finally, section VI concludes the paper with
future directions of research.

II. RELATED WORKS
This section presents a brief review of the existing literature
on subgraph isomorphism problem. Many subgraph isomor-
phism solvers have been proposed in literature to find embed-
dings of a given pattern graph into a data graph. Ullmann [8]
introduced the first algorithm to address the subgraph iso-
morphism problem which was followed by a number of
state-of-the-art subgraph isomorphism solvers viz. VF2 [9],
LAD [10], RI [4], Glasgow [11], L2G [12], and VF3 [13].
Out of these, VF2, L2G, and VF3 are designed for induced
subgraph isomorphism, whereas LAD, RI, and Glasgow
work for both induced and non-induced subgraph isomor-
phisms. The VF2 uses state-space representation (SSR) and
five sets of rules to prune the search space tree [9], and it
uses a special data structure to reduce memory requirements
at the time of exploring search space. In [4], authors proposed
subgraph isomorphism search algorithm RI and reported
that it finds all isomorphic images of pattern graph in the
target graph, and they also compared it with some state-of-
the-art subgraph isomorphism solvers on biochemical graph
datasets. The Glasgow subgraph isomorphism solver sup-
ports both induced and non-induced variants of subgraph
isomorphism problem [11], wherein solution biased search
was introduced as a choice of backtracking search. Glasgow
uses the degree of a vertex to determine the proportion
of effort for solving a subgraph isomorphism problem.
Glasgow is sequential, but it can easily be converted into a
parallel approach to speedup the matching process of the sub-
graph isomorphism problem. The VF3 solver is an improved
version of VF2 which is compared with RI, VF2, LAD, and
L2G, and shows best performance on dense graphs [13].
The SumISO [14] is another approach which uses modular
decomposition for compressing pattern and data graphs. Sim-
ilarly, BoostIso [15] compresses pattern and data graphs
by exploiting vertex-based relationships and then applies sub-
graph isomorphism solver to get an improved performance.

Many researchers proposed indexing-based new frame-
work to solve the subgraph isomorphism finding prob-
lem. Some of the indexing-based existing solvers are
GADDI [16], GraphQL [17], SPath [18], STW [19],
CFL-Match [20],QuickSI [21], and TurboISO [22]. Out of
these, GraphQL, STW, CFL-Match, and TurboISO solvers
work for non-induced subgraph isomorphism. The SND
(Scoring-based Neighborhood Dominance) is a generalized
filtering technique that may be used in subgraph isomor-
phism solvers to improve their performance [23]. It uses two
parameters – score and neighborhood functions. The LAD is
a particular case of SND where filtering operation is based
on local alldifferent constraints [10]. In this work,
the authors modeled the subgraph isomorphism problem into
a constraint satisfaction framework and reported that their
filtering technique improves the performance of the subgraph
isomorphism solvers. In [1], the authors proposed a graph
generating method that generates ‘‘really hard’’ instances of
pattern and data graphs for induced and non-induced sub-
graph isomorphism solvers. The pattern and data graphs have
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a fixed number of vertices, and the pattern graphs of these
instances have tens of edges, while the data graph contains
a couple of hundred edges. They presented the results of
VF2, LAD, and Glasgow on the generated instances of the
pattern and data graph pairs. Authors of [24] extended the
work of [1] and compared subgraph isomorphism solvers RI,
VF3, Glasgow, and LAD on broader datasets.

III. PRELIMINARIES
This section presents a formal definition of some basic con-
cepts and a lemma related to subgraph isomorphism. It also
explains the problem statement and presents a list of notations
and their brief descriptions as given in table 1.

TABLE 1. Notations and their descriptions.

Definition 1 (Labeled Graph): A labeled graph
G = < V , E, �, l > is a four-tuple, whereV is a non-empty
set of vertices representing the entities or objects, E ⊆ V ×V
is the set of edges representing links between vertex pairs,
� is the set of vertex labels, and l : V → � is a surjective
function which assigns each vertex of V a unique label
from �.
Definition 2 (Size of a Graph): The size of a graph

G = < V ,E > is represented by #V , and it is defined as
the number of vertices in G.
Definition 3 (Labeled Subgraph): A labeled graph

Gp = < Vp,Ep, �p, lp > is a subgraph of another labeled
graph Gd = < Vd ,Ed , �d , ld > if Vp ⊆ Vd , Ep ⊆ Ed ,
�p ⊆ �d , and lp(p) = ld (p),∀p ∈ Vp.
Definition 4 (Neighbor Set): The neighbor set of a

vertex p of a graph G is denoted by N (p), and it is the set
of all adjacent vertices of p in G.
Definition 5 (Degree): The degree of a vertex p of a

graph G is denoted by 1(p), and it is the number of vertices
in the neighbor set of p in G.
Definition 6 (Degree Sequence of a Vertex):

The degree sequence of a vertex p of a graph G is denoted

by 1̄(G, p), and it is the ordered sequence of the degree of its
neighboring vertices in G.
Definition 7 (Highest Neighborhood Degree):

The highest neighborhood degree of a vertex p of a graph G
is denoted by 1̃N (p), and it is the highest degree of a vertex
in the neighbor set of p.
Definition 8 (Distance): The distance between two

vertices p and p′ of a graph G is denoted by δ(p, p′), and it
is the length of the shortest path between p and p′.
Definition 9 (ε-Neighborhood): The ε-neighborhood

of a vertex p of graph G is represented by Nε(p), and it is
the set of all vertices of G whose distance from p is less than
or equal to ε.
Definition 10 (Eccentricity): The eccentricity of a

vertex p of graph G is represented by ε(p), and it is the
maximum distance between p and all other vertices of G.
Definition 11 (Supplemental Graph): The supple-

mental graph of a graph G is denoted by G[c,l], and it has the
same vertex set as the graph G, and an edge exists between
any two vertices inG[c,l] if there are at least c paths of length l
between them in G.
Definition 12 (Induced Subgraph Isomorphism):

A graph Gp = < Vp,Ep, �p, lp > is induced subgraph
isomorphic to another graph Gd = < Vd ,Ed , �d , ld > if
there exists an injective function g : Vp→ Vd , along with the
following three conditions:

1) ∀p ∈ Vp, lp(p) = ld (g(p))
2) ∀(p, p′) ∈ Ep ⇒ ∃ (g(p), g(p′)) ∈ Ed
3) ∀(p, p′) /∈ Ep ⇒ ∃ (g(p), g(p′)) /∈ Ed .

Definition 13 (Non-Induced Subgraph Isomor-
Phism): A graph Gp = < Vp,Ep, �p, lp > is subgraph
isomorphic to another graph Gd = < Vd ,Ed , �d , ld > if
there exists an injective function f : Vp→ Vd , along with the
following two conditions:

1) ∀p ∈ Vp, lp(p) = ld (f (p)), and
2) ∀(p, p′) ∈ Ep ⇒ ∃ (f (p), f (p′)) ∈ Ed .

It should be noted that non-induced subgraph isomorphic
image of Gp can have additional edges. In this way, every
induced subgraph isomorphic image is also a non-induced
subgraph isomorphic image, but vice-versa is not always true.
Definition 14: Embedding: For a given pattern graph

Gp and data graph Gd , an embedding M of Gp in Gd is the
set of all ordered pairs < p, f (p) >, where p ∈ Vp is a vertex
in Gp and f (p) ∈ Vd is an isomorphic image of p in Gd .
Definition 15: Subgraph Isomorphism Problem:

For a pair of pattern and data graphs < Gp,Gd >, the sub-
graph isomorphism problem is to determine whether an
embedding of Gp exists in Gd or not.
Problem statement: For a pair of pattern and data

graphs, < Gp,Gd >, enumerate at most n embeddings of Gp
in Gd within a given timeout t .

Our study considers pattern graphs of small size having
tens of vertices, and data graph of large size consisting of
thousands of vertices. We have taken into account simple,
connected, undirected, and vertex labeled graphs. However,
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we have limited the time and embedding count to deal with
the output crisis problem flagged in [25].
Figures 1(a) and 1(b) present a pattern graph Gp and a data

graph Gd in which the embedding {< 0, 6 >,< 1, 7 >,

< 2, 8 >,< 3, 3 >,< 4, 9 >,< 5, 13 >} is an induced
as well as non-induced subgraph isomorphic image of Gp
in Gd . If there exist an edge (3, 6) inGd , then this embedding
becomes non-induced isomorphic image, but it will not be an
induced subgraph isomorphic image of Gp in Gd anymore.

FIGURE 1. An exemplar (a) pattern graph with pivot vertex 4, and (b) data
graph.

As stated earlier, SubGlw first decomposes data graph Gd
into candidate subgraphs and then searches the embeddings
of the pattern graph in each of them separately. For each
vertex p of the pattern graph Gp, there exists |C(p)| candidate
subgraphs, where C(p) is the set of candidate matches of p
in Gd . However, an optimal size of the subgrpahs is deter-
mined by the following lemma.
Lemma 1: For a given vertex p of the pattern graphGp with

eccentricity ε, if q is a match of p in the data graph Gd , then
the maximum size of the respective candidate subgraph ofGd
is at most the number of vertices in the ε-neighborhood of q.

Proof: It is given that ε is the eccentricity of vertex p of
pattern graph Gp.
⇒ For all other vertices p′ of Gp, δ(p, p′) ≤ ε.
∵ The distance between two vertices of the pattern graph Gp
is less than or equal to the distance between respective iso-
morphic images in the data graph Gd .
∴ δ(q, q′) ≤ ε, where the vertices q and q′ of Gd are matches
of p and p′ vertices of Gp, respectively.
⇒ q′ ∈ Nε(q)
Thus, all candidate matches of the pattern graph’s vertices lie
in the corresponding Nε(q). In other words, maximum size

of the candidate subgraph is at most the number of vertices in
ε-neighborhood of vertex q of Gd . �
It should be noted that SubGlw aims to minimize both the

number and size of the candidate subgraphs for efficiency
purpose. To this end, we have defined a ranking function
given in equation 1 that optimizes both the count and size
of the candidate subgraphs.

p̂ = argmin
p∈Vp

{|C(p)| × ε(p)} (1)

It is important to note that the correct choice of starting
vertex or pivot vertex (p̂) in the pattern graph is one of the
critical steps in the subgraph isomorphism finding problem.
In this study, a node which minimizes the ranking function
defined in equation 1 is considered as the pivot vertex (p̂).

IV. PROPOSED METHOD
This section presents a detailed description of our pro-
posed subgraph isomorphism solver, SubGlw, to identify all
embeddings of a pattern graph Gp into the data graph Gd .
Algorithm 1 presents the pseudo-code of the SubGlw
solver. The core functions of SubGlw are GetPivotVertex( ),
CandidateSubgraphFinding( ), BuildSupplementalGraphList
( ), Initialize( ), CountAllDistinct( ), and EmbSearch( ). The
GetPivotVertex( ) function is used to select a pivot ver-
tex p̂ of Gp, and a set of all candidate matches of p̂
in Gd using the ranking function defined in equation 1.
The CandidateSubgraphFinding( ) function returns the sorted
list of candidate subgraphs. BuildSupplementalGraphList( )
builds seven pairs of supplemental graphs for each pair of
pattern graph and candidate subgraph. The Initialize( ) func-
tion initializes candidate set for each vertex of the pattern
graph Gp. CountAllDistinct( ) ensures different constraints,
such as all vertices of pattern graph Gp must have at least
one distinct match in the data graph Gd . The EmbSearch( )
function is used to get an embedding of Gp in the candidate
subgraph S. Procedural details of these functions are further
described in the following sub-sections.

A. PIVOT VERTEX SELECTION
As described earlier, the pivot vertex of the pattern graph Gp
is a vertex which optimizes the ranking function defined in
equation (1). It is used to decompose the data graph Gd into
candidate subgraphs. It is also used as the starting vertex to
initiate the search process of locating subgraph isomorphisms
ofGp in the candidate subgraphs ofGd . Algorithm 2 presents
the functional details of this process formally. In this algo-
rithm, steps 1 to 8 are used to create a candidate set for
each vertex of Gp. We have used label, degree, and highest
neighborhood degree of a vertex to generate its candidate
set. Step 9 orders Vp based on the element counts of the
respective candidate set. This ordering helps to select the first
three vertices in L′. Steps 11 to 20 are used to refine the
candidate sets of the selected three vertices using a list of
labels of the neighboring vertices. Step 21 identifies the pivot
vertex p̂. In figure 1(a), vertex 4 is the pivot vertex of the
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Algorithm 1 SubGlw(Gp,Gd )
Input : Gp: pattern graph, Gd : data graph
Output: A set Mpd of all embeddings of Gp in Gd

1 Gp← RemoveIsolatedVertices(Gp)
2 < p̂, C(p̂) >←GetPivotVertex(Gp,Gd )
3 Mpd ← φ

4 ε ←Eccentricity(p̂)
5 LS ←CandidateSubgraphFinding(Gp,Gd , C(p̂), ε)
6 foreach S ∈ LS do
7 if #Vp > #VS then
8 continue
9 end
10 Lsupp←BuildSupplementalGraphList(Gp,S)
11 while embedding of Gp exist in S do
12 C(Gp)← Initialize(Vp,VS ,Lsupp)
13 if ¬CountAllDistinct(C(Gp)) then
14 continue
15 end
16 M ← φ

17 M ←EmbSearch(Lsupp, C(Gp),M )
18 Mpd ← Mrs ∪ {M }
19 end
20 end
21 return Mpd

pattern graphGp determined by algorithm 2. If we choose any
other vertex to start, then either size or number of candidate
subgraphs may increase.

B. CANDIDATE SUBGRAPHS FINDING
The candidate subgraphs finding process is used to decom-
pose data graph Gd into several small size subgraphs. For
eachmatching vertex of the pivot vertex inGd using lemma 1,
it identifies a candidate subgraph. Algorithm 3 presents the
candidate subgraphs finding process formally. It finds a can-
didate subgraph for each q ∈ C(p̂), and finally it returns the
sorted list of candidate subgraphs LS based on their size.
In the exemplar graphs given in figure 1, the pivot vertex

is 4, the eccentricity of the pivot vertex is 2, and C(p̂) has
only two vertices 4, 9. Therefore by using lemma 1, only
two candidate subgraphs (S1 and S2) exist that are shown
in figure 2. The ordered LS contains S1 followed by S2
because the size of S1 is less than the size of S2.

C. SUPPLEMENTAL GRAPH BUILDING AND EMBEDDING
SEARCH
In order to build supplemental graph and searching
embeddings, we have used BuildSupplementalGraphList( ),
Initialize( ), CountAllDistinct( ), EmbSearch( ) and Assign( )
functions proposed in [26]. In algorithm 4, G[c,l]

p denotes
a supplemental graph having the same vertex set as Gp,
and an edge exists between any two vertices in G[c,l]

p if
there is at least c paths of length l between them in pattern

Algorithm 2 GetPivotVertex(Gp,Gd )
Input : Gp: pattern graph, Gd : data graph
Output: The pivot vertex p̂ and its candidate matches

C(p̂)
1 foreach p ∈ Vp do
2 C̃(p)← φ

3 foreach q ∈ Vd do

4 if l(p) = l(q) & 1(p) ≤ 1(q) &
1̃N (p) ≤ 1̃N (q) then

5 C̃(p)← C̃(p) ∪ {q}
6 end
7 end
8 end
9 L←Ordered(Vp)// based on number of

matches of vertices.
10 L′← Select first three member of (L)
11 foreach p ∈ L′ do
12 C(p)← φ

13 lp← l(N (p))
14 foreach v ∈ C̃(p) do
15 lq← l(N (q))
16 if lp ⊆ lq then
17 C(p)← C(p) ∪ {q}
18 end
19 end
20 end
21 p̂← argmin

p∈L′
{|C(p)| × ε(p)}

// provided #C(p)× ε(p) 6= 0,∀p ∈ L′
22 return < p̂, C(p̂) >

Algorithm3CandidateSubgraphFinding(Gp,Gd , C(p̂), ε)
Input : Gp: pattern graph, Gd : data graph, C(p̂):

candidate match of p̂, ε: eccentricity of p̂
Output: LS : Ordered list of candidate subgraphs.

1 LS ← φ

2 foreach q ∈ C(p̂) do
3 S ← Nε(q)
4 LS ← LS ∪ {S}
5 end
6 Ordered(LS )// based on #VS.
7 return LS

graph Gp. Similarly, S[c,l] is the supplemental graph of the
candidate subgraph S. In order to avoid computation over-
head we have restricted the values of c and l to maximum 3.
Algorithm 4 creates seven pairs of supplemental graphs
for pattern and candidate subgraph pair, wherein the first
supplemental graph pair is the graphs themself. The rest of the
six pairs of supplemental graphs are shown in figures 3, 4, 5,
and 6. These supplemental pairs of graphs help to find more
appropriate matches for the specified pattern graph vertices.
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Algorithm 4 BuildSupplementalGraphList(Gp,S)
Input : Gp: pattern graph, S: candidate subgraph
Output: Set of pairs of supplemental graphs: Lsupp

1 Lsupp← {(Gp,S)}
2 Ap← Adjacency matrix of Gp
3 AS ← Adjacency matrix of S
4 Compute matrices A2

p,A3
p,A2

S ,A
3
S

5 foreach c ∈ {1, 2, 3} do
6 foreach l ∈ {2, 3} do
7 G[c,l]

p [i, j]← 1, if Al
p[i, j] ≥ c, where

0 ≤ i, j ≤ rowCount(Ap)
8 S[c,l]

p [i, j]← 1, if Al
S [i, j] ≥ c, where

0 ≤ i, j ≤ rowCount(AS )
9 Lsupp← Lsupp ∪ {(G[c,l]

p ,S[c,l]
p )}

10 end
11 end
12 return Lsupp

Algorithm 5 Initialize(Vp,VS ,Lsupp)
Input : Vp: vertex set of pattern graph, VS : vertex set of

candidate subgraph, Lsupp: set of supplemental
graph pairs

Output: C(Gp): set of candidate sets.
1 C(Gp)← φ

2 foreach p ∈ Vp do

3
C(p)← {q ∈ VS : l(p) = l(q) and ∀(g1, g2) ∈ Lsupp,

1̄(g1, p) � 1̄(g2, q)}
4 end
5 C(Gp)← ∪p∈Vp{C(p)}
6 return C(Gp)

FIGURE 2. Identified candidate subgraphs of pattern graph Gp in data
graph Gd .

In algorithm 5, we have created and initialized the can-
didate set for each pattern graph’s vertex. For every vertex
p ∈ Vp, a vertex q ∈ VS can be a possible match if the labels
of p and q are same, and 1̄(g1, p) � 1̄(g2, q) for every pair of
supplemental graphs created in algorithm 4, where 1̄(g1, p) is
a degree sequence of vertex p in graph g1. Similarly, 1̄(g2, q)
is the degree sequence of vertex q in graph g2. 1̄(g1, p)
precedes 1̄(g2, q) is represented by 1̄(g1, p) � 1̄(g2, q) if

Algorithm 6 EmbSearch(Lsupp, C(Gp),M )

Input : Lsupp: set of supplemental graph pairs, C(Gp):
set of candidate sets, M : an embedding

Output: Fail F or Success M

1 if C(Gp) = φ then
2 return Success M
3 end
4 C(p)← Select a least sized candidate set from C(Gp).
5 F ← {p}
6 foreach q ∈ Ordered(C(p)) do
7 C′(Gp)← Copy(C(Gp))
8 switch Assign(Lsupp, C′(Gp), p, q) do
9 case Fail F ′
10 F ← F ∪ F ′
11 case Success
12 M ← M ∪ {< p, q >}
13 switch EmbSearch(Lsupp, C′(Gp)− C(p),M )

do
14 case Success
15 return Success
16 case Fail F ′
17 if @p′ ∈ F ′ such that C(p′) 6= C′(p′)

then
18 Remove {< p, q >} from M
19 return Fail F ′
20 end
21 F ← F ∪ F ′
22 end
23 endsw
24 end
25 endsw
26 end
27 return Fail F

there exists a subsequence of 1̄(g2, q) of the same length as
1̄(g1, p) such that each element of this subsequence is greater
than or equal to corresponding element of 1̄(g1, p). Finally,
C(Gp) is obtained by taking a union of candidate sets of each
pattern graph’s vertex. Table 2 presents the degree sequences
of the vertex 1 in supplemental graphs of the pattern graphGp.
Similarly, tables 3 and 4 present the degree sequences of
vertices 8 and 7 of the supplemental graphs of the candidate
subgraph S2. The vertex 8 does not belong in C(1) because
1̄(G[1,2]

p , 1) � 1̄(S[1,2]
2 , 8) (first column of tables 2 and 3).

On the other hand, vertex 7 belongs in C(1) (tables 2 and 4);
therefore, C(1) = {7}. Similarly, candidate sets for other
pattern graph vertices are created. The elements belonging
to candidate sets are as follows: C(0) = {6}, C(1) = {7},
C(2) = {8}, C(3) = {3}, C(4) = {9}, C(5) = {10, 13}.
Algorithm 6 presents the steps to find an embedding of

the pattern graph in candidate subgraphs. This algorithm is
recursive, and the terminating condition is given in step 1.
It first chooses a least sized candidate set C(p) from C(Gp); if
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FIGURE 3. Supplemental graphs of path-length 2 corresponding to the exemplar pattern
graph Gp.

FIGURE 4. Supplemental graphs of path-length 2 corresponding to the candidate subgraph S2.

FIGURE 5. Supplemental graphs of path-length 3 corresponding to the exemplar pattern
graph Gp.

FIGURE 6. Supplemental graphs of path-length 3 corresponding to the candidate subgraph S2.

TABLE 2. Degree sequences of the pattern graph’s vertex 1 in its
supplemental graphs.

a tie occurs, then it chooses a candidate set of vertex p ∈ Vp
of least degree. Next, it sorts the elements of C(p) based
on their degrees in Gd . Step 6 selects every time a vertex
q from the ordered C(p). Step 8 assign q to p; if Success

TABLE 3. Degree sequences of the candidate subgraph’s vertex 8 in its
supplemental graphs.

occurres, then it adds< p, q > to embedding M and recurs to
find a match for another pattern graph vertices. The function
Assign( ) and recursive call either gets Success or returns a set
of nogoods F . The F (set of nogoods) is a set of vertices of
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TABLE 4. Degree sequences of the candidate subgraph’s vertex 7 in its
supplemental graphs.

the pattern graph returned by the CountAllDistinct( ) function
when all-different constraints are failed. It is used to reduce
the search space. If the next recursive call fails to find any
match, the current match < p, q > cannot reduce the size of
candidate sets for the pattern graph vertices inF ′. In this case,
we ignore the current assignment and remove < p, q > from
embedding M and backtrack. Finally, if matching is not pos-
sible, then we return a set of nogoods combined with nogoods
of unsuccessful assignments or nogoods of the next recursive
call. Instead of simple backward jumps, the search uses a set
of nogoods and restarts [27], [28]. After succeeding or failing
of finding the embedding, the search process restarts from the
beginning, ensuring not to repeat any portion of the search
space that has already been visited.

Algorithm 7 is used to map a candidate set vertex q to pat-
tern graph p. In step 1, it performs the assignment operation.
Thereafter, steps 2 to 14 are used to update candidate sets
of unmatched vertices of Gp. In the update process (step 3),
matched vertex q is removed from the candidate sets of all
remaining unmatched vertices of the pattern graph Gp. For
each pair of supplemental graphs (G1,G2) ∈ Lsupp, if any
vertex p′ is a neighbor of vertex p in G1, then candidate
set C(p′) is updated by taking the common elements of the
neighbor of vertex q in G2 (i.e., N (G2, q)) with C(p′). If any
candidate set gives a wipe-out, then the assignment process
fails and returns the nogoods set. Step 13 collects all candi-
date sets and invokes CountAllDistinct( ) function.

Algorithm 7 Assign(Lsupp, C(Gp), p, q)
Input : Lsupp: Set of supplemental graph pairs, C(Gp):

Set of candidate sets, Vertex p, Vertex q
Output: Fail F or Success

1 C(p)← {q}
2 I ← φ

3 foreach C(p′) ∈ C(Gp)− C(p) do
4 C(p′)← C(p′)−q
5 foreach (G1,G2) ∈ Lsupp do
6 if (p, p′) ∈ E(G1) then
7 C(p′)← C(p′) ∩N (G2, q)
8 end
9 end
10 if C(p′) = φ then
11 return Fail{p′}
12 end
13 I ← I ∪ {p′}
14 end
15 C(Gp)← ∪p∈I{C(p)}
16 return CountAllDistinct(C(Gp))

Algorithm 8 presents the steps of the CountAllDistinct( )
function formally. This function ensures all-different con-
straint; i.e., all vertices of pattern graph Gp must have at
least one distinct match in the candidate subgraph S. First,
it initializes the variables F ,H,A, and n, where F is the set
of nogoods, H is a Hall set, i.e., the set of all vertices
to be excluded from other candidate sets, and A is a set
that accumulates all elements of processed candidate sets,
and n represents the number of candidate sets contributing
to set A. After initialization, C(Gp) is ordered in ascend-
ing order based on the size of its members. Thereafter, for
each C(p) in Ordered(C(Gp)), the following steps are per-
formed: remove any element present in existing Hall set H
from C(p) (step 3); update sets A and F and make incre-
ment in variable n (step 4). If candidate set C(p) is wiped
out or the cardinality of set A is less than n, then return
set F (steps 5 and 6). If cardinality of set A is equal to n,
then update Hall set H and reset A and n (steps 8, 9).
If for any subgraph isomorphism problem candidate sets
are C(p1) = {q1}, C(p2) = C(p3) = {q1, q2, q3}, C(p4) =
{q1, q2, q3, q4} and C(Gp) = {C(p1), C(p2), C(p3), C(p4)},
then the CountAllDistinct( ) function updates these candidate
sets to ensure the all-different constraint, and returns the
updated candidate sets as C(p1) = {q1}, C(p2) = C(p3) =
{q2, q3}, C(p4) = {q4}.
Applying these algorithms over the exemplar pattern and

data graphs identify three embeddings that are shown in
table 5. In order to deal with induced subgraph isomorphism,
we modified SubGlw in line to Glasgow solver, and its
technical details can be seen in [11], [29].

Algorithm 8 CountAllDistinct(C(Gp))
Input : C(Gp): Set of candidate sets
Output: Fail F or Success

1 (H,A,F , n)← (φ, φ, φ, 0)
2 foreach C(p) ∈ Ordered(C(Gp)) do
3 C(p)← C(p) \H
4 (A,F , n)← (A ∪ C(p),F ∪ {p}, n+ 1)
5 if C(p) = φ or #A < n then
6 return Fail F
7 end
8 if #A = n then
9 (H,A, n)← (H ∪A, φ, 0)
10 end
11 end
12 return Success

V. EXPERIMENTAL SETUP AND RESULTS
This section presents an experimental evaluation of our
proposed SubGlw solver over various pattern and data
graph pairs. All experiments are carried out on a desktop
with an Intel Core i5-6600 processor and 4GB of RAM.
SubGlw is implemented using the igraph library [30] in
the C++ programming language and it uses some functions
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TABLE 5. Exemplar pattern graph embeddings found in the data graph.

of Glasgow1. The igraph library has various functions
to carry out basic graph operations. We have used the g++
compiler in the Ubuntu 18.04.2 LTS environment to com-
pile the codes of SubGlw. The source codes of SubGlw
can be downloaded from https://github.com/ZubairAliIgraph/
SubGlw-master. This section also present an analysis for
identifying saddle point, which is a timeout at whichSubGlw
finds maximum embeddings with least execution time.
This analysis provides a better understanding of parameter
settings.

A. PATTERN AND DATA GRAPHS
In order to assess SubGlw’s performance, we have used
three benchmark data graphs namely Yeast, Human, and
Hprd whose statistics are presented in table 6. We have
constructed four pattern sets for each data graph containing
100 simple, undirected, labeled, and connected graphs of a
specific size. We kept the size of pattern graph as 10, 15,
20 and 25. Table 7 provides the details of the constructed
pattern sets. The pattern set Yn contains 100 pattern graphs
of size n (where n ∈ {10, 15, 20, 25}) is listed in this table
for the Yeast data graph. Accordingly, other notations from
this table can be followed. To construct a pattern graph of
said size, say n, we randomly took one vertex from the data
graph and visited n− 1 vertices of the data graph in breadth-
first-search order. The resulting pattern graph is the labeled
subgraph induced by n visited data graph vertices. In order to
create a pattern set of 100 such pattern graphs of a particular
data graph, we have repeated these steps 100 times.

TABLE 6. Statistics of the data graphs.

B. EVALUATION RESULTS
This section presents the evaluation results of SubGlw using
all pattern sets and data graphs discussed in the previous
section. The performance of SubGlw is measured in terms
of embedding count and execution time. The embedding count
for a pattern set is the sum of each pattern graph’s embedding
counts found in the corresponding data graph. On the other
hand, execution time of a pattern set is the sum of the execu-
tion times to find at most n embeddings for each pattern graph
in the corresponding data graph. While executing SubGlw,
we set 1000 as the embedding count limit for each data graph;

1https://github.com/ciaranm/glasgow-subgraph-solver

TABLE 7. Constructed pattern sets for Yeast, Human, and Hprd data
graphs.

500 milliseconds as the timeout for the Yeast and Human
data graphs, and 1000 milliseconds as the timeout for the
Hprd data graph. Table 8 presents the evaluation results of
SubGlw in terms of embedding count and execution time
over all data graphs.

TABLE 8. Performance evaluation results of SubGlw over Yeast, Human,
and Hprd data graphs.

C. COMPARATIVE ANALYSIS
In this section, we present a comparative analysis of SubGlw
with two state-of-the-art subgraph isomorphism finding
solvers – SubISO [7] and Glasgow [11] for both induced
and non-induced subgraph isomorphism problems. It should
be noted that SubISO finds only non-induced subgraph
isomorphism, whereas Glasgow finds both induced and
non-induced subgraph isomorphisms. Therefore, we have
considered both SubISO and Glasgow for the comparative
analysis of SubGlw for non-induced subgraph isomorphism,
and only Glasgow for the comparative analysis of SubGlw
for induced subgraph isomorphism. The experimental find-
ings reveal that SubGlw performs significantly better in
terms of both embedding count and execution time. Further
details about the comparative analysis are presented in the
following sub-sections.

1) COMPARATIVE ANALYSIS OF SubGlw FOR
NON-INDUCED SUBGRAPH ISOMORPHISM
In order to compare the performance of SubGlw for
non-induced subgraph isomorphism problem, we have
considered SubISO solver [7] with the default param-
eter settings, i.e., maximum recursive call as 1000 and
embedding count limit as 1000 for each pattern graph. For
SubGlw, we have used two parameters (i) embedding count
limit, which is set to 1000, and (ii) timeout, which ranges
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FIGURE 7. Comparative analysis results of SubGlw and SubISO in terms of number of embeddings per second for non-induced
subgraph isomorphism.

FIGURE 8. Comparative analysis results of SubGlw and SubISO in terms of execution time for non-induced subgraph isomorphism.

FIGURE 9. Comparative analysis results of SubGlw and Glasgow in terms of number of embeddings per second for non-induced
subgraph isomorphism.

from 15 to 125 milliseconds. Figures 7 and 8 presents
the comparative analysis results of SubGlw with SubISO.
In these figures, pattern sets are along the x-axis, and number
of embeddings per unit time and average execution time per
embedding are along the y-axis. Figures 7(a) and 8(a) present
the performance of SubGlw and SubISO over the Yeast
data graph. It can be observed from these figures that except
Y10 pattern set, SubGlw’s embedding count is greater than
that of the SubISO, and the execution time of SubGlw is
lesser than the execution time of SubISO for each pattern
set. Similarly, figures 7(b) and 8(b) present the performance
of SubGlw and SubISO over the Human data graph. It can
be observed from these figures that SubGlw’s embedding
count is greater than SubISO’s embedding count for all
pattern sets, and the execution time of SubGlw is lesser than
that of the SubISO for all pattern sets except H10. Finally,
figures 7(c) and 8(c) present the performance of SubGlw
and SubISO over the Hprd data graph. It can be observed
from these figures that here SubISO performs better in com-
parison to SubGlw for all pattern sets except P20. SubISO
has better performance on the Hprd data graph because it
has too many distinct vertex labels, and the set of candidate
matches for each vertex of the pattern graph is very small.
However, SubISO uses vertex labels as well as the labels

of the neighboring vertices to determine the set of candidate
matches. On the other hand, SubGlw takes more time to
identify fewer embeddings because it uses only vertex labels
(not the labels of the neighboring vertices as SubISO does) to
determine the set of candidate matches for a pattern graph’s
vertex.

We have also compared the performance of SubGlw
with Glasgow [11] for non-induced subgraph isomor-
phism. For both solvers, we used embedding limit
value as 1000 and the timeout value ranging from 500 to
1000 milliseconds.

Figures 9(a) and 10(a) present the performance of SubGlw
and Glasgow over the Yeast data graph. It can be observed
from these figures that except the pattern set Y10, SubGlw’s
embedding count is almost same as Glasgow’s embedding
count, but the execution time of SubGlw is lesser than the
execution time of Glasgow for all pattern sets. Similarly,
figures 9(b) and 10(b) present the performance of both solvers
over the Human data graph. It can be observed from these
figures that except the pattern set H10 SubGlw’s embedding
count is greater than Glasgow’s embedding count, and exe-
cution time of SubGlw is lesser than the execution time of
Glasgow for all pattern sets. Finally, figures 9(c) and 10(c)
present the performance of both solvers over the Hprd data
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FIGURE 10. Comparative analysis results of SubGlw and Glasgow in terms of execution time for non-induced subgraph isomorphism.

FIGURE 11. Comparative analysis results of SubGlw and Glasgow in terms of number of embeddings per second for induced subgraph
isomorphism.

FIGURE 12. Comparative analysis results of SubGlw and Glasgow in terms of execution time for induced subgraph isomorphism.

graph. It can be observed from these figures that SubGlw’s
embedding count is almost same as Glasgow’s embedding
count; however, the execution time of SubGlw is far lesser
than the execution time of Glasgow for all pattern sets.

2) COMPARATIVE ANALYSIS OF SubGlw FOR INDUCED
SUBGRAPH ISOMORPHISM
This section presents comparative analysis of SubGlw with
Glasgow for the induced subgraph isomorphism. Since
SubISO solver is not applicable for induced subgraph iso-
morphism, we have not considered it for the comparative
analysis. The parameter settings of SubGlw and Glasgow
are the same as explained in the previous section.

Figures 11(a) and 12(a) present the comparative analysis
results of SubGlw and Glasgow over the Yeast data
graph. It can be observed from these figures that SubGlw’s
embedding count is lesser than Glasgow’s embedding count
for the pattern sets Y10 and Y15; and embedding count of
both solvers is almost same for the pattern sets Y20 and
Y25. However, the execution time of SubGlw is lesser than
Glasgow’s execution time for all pattern sets. Similarly,
figures 11(b) and 12(b) present the comparative analysis
results of both solvers over the Human data graph. It can be
observed from these figures that SubGlw’s embedding count
is lesser than Glasgow’s embedding count for the pattern

sets H10 and H25, but it is larger for the pattern sets H15
and H20. However, execution time of SubGlw is lesser than
Glasgow’s execution time for all pattern sets. Finally, fig-
ures 11(c) and 12(c) present the comparative analysis results
of both solvers over the Hprd data graph. It can be observed
from these figures that SubGlw’s embedding count is either
same or greater than the embedding count of Glasgow.
Moreover, the execution time of SubGlw is far lesser than
the execution time of Glasgow for all pattern sets.

Based on the above experimental results, it can be con-
cluded that SubGlw significantly performs better than
Glasgow for induced subgraph isomorphism. The embed-
ding count of SubGlw is comparable with Glasgow, but
its execution time is much lesser than the execution time of
Glasgow.

D. DISCUSSION ON THE SADDLE POINT
This section presents a discussion on the analysis of the
saddle point for each pattern set which could be helpful for
a better understanding of the parameter settings. In geome-
try, saddle point is achieved when maxima of one variable
coincides with the minima of another variable. The concept
of saddle point is also used in the field of game theory.
For example, in a two-person-zero-sum game, saddle point
occurs when both players optimize their worst-case payoff.
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FIGURE 13. Timeout vs. embedding count for different pattern sets.

FIGURE 14. Timeout vs. execution time for different pattern sets.

In this game, player1 wants to maximize its goal, whereas
player2 wishes to minimize its goal, and the equilibrium is
achieved at the saddle point. In this study, the definition of the
saddle point given in the following paragraph is not exactly
same as it has been defined in game theory; instead, it is
an analogous definition. For a specific pattern set, we have
considered SubGlw’s embedding count and execution time
as player1 and player2, respectively.
Definition 16: Saddle point: A saddle point is a

timeout value at which a solver achieves maximum embed-
dings of a pattern graph in the data graph in least execution
time.

Figures 13 and 14 present a visualization of the variation
in the embedding count and execution time with increasing
timeout values. In figures13(a) and 14(a), saddle points occur
when timeout value is 100, 400, 200, and 400 milliseconds
for the pattern sets Y10, Y15, Y20, and Y25, respectively.
In figures 13(b), and 14(b), saddle points occur when time-
out value is 100, 400, 600, and 200 milliseconds for the
pattern sets H10, H15, H20, and H25, respectively. In fig-
ures 13(c), and 14(c), saddle point occurs when timeout value
is 800, 800, 800, and 600 milliseconds for the pattern sets
P10, P15, P20, and P25, respectively.

Since for any subgraph isomorphism solver both embed-
ding count and execution time parameters matter, identifica-
tion of saddle point for a pair of pattern and data graph is
an impotent issue. In [24], the authors compared many state-
of-the-art solvers using both embedding count and execution
time parameters. Saddle point identification for subgraph
isomorphism solvers is beneficial when we are concerned
about both parameters while solving a subgraph isomorphism
problem. We are always interested in maximizing the embed-
dings count and minimizing the execution time for any pair

of pattern and data graphs. At the saddle point, we get the
maximum value of embedding count with least execution
time. Our above-mentioned analysis determines one saddle
point for every pair of pattern and data graphs.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the development of an
efficient solver for subgraph isomorphism finding in large
graphs. The proposed solver is based on SubISO and
Glasgow, but it first decomposes a given data graph into
small-size candidate subgraphs based on a ranking function,
and then search the embeddings of the pattern graph in each
of them in line to the Glasgow solver. The ranking function
is designed to minimize both count and size of the candidate
subgraphs. The proposed SubGlw solver is compared with
two state-of-the-art subgraph isomorphism solvers for both
induced and non-induced subgraph isomorphisms in terms of
embedding count and execution time. The comparative
analysis results over three different data graphs reveal that
SubGlw performs significantly better in comparison to the
state-of-the-art solvers in terms of both embedding count and
execution time. We have also presented an analysis to deter-
mine the saddle point for each pattern set. The empiri-
cal analysis demonstrates that when parameter timeout meets
the saddle point for a specific pattern set, SubGlw achieves
optimal values of both embedding count and execution
time. Potential future directions of research include (i) using
the proposed lemma in other variants of the subgraph isomor-
phism problem to decompose data graph into small-size sub-
graphs, (ii) redesigning SubGlw for its parallel implementa-
tion using state-of-the-art tools, (iii) substituting supplemen-
tal graph by more light and effective isomorphic invariants or
other suitable data structures.
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