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ABSTRACT This article introduces a new kinematic modeling method used to analyze coupled rigid multi-
body movements. The method was applied to the study of a 5R planar parallel mechanism’s kinematics and
consists of analyzing two fixed configurations of the mechanism to systematize the rotational relationships
between the two structures. Mathematical models were developed using complex numbers. The inverse
kinematic problem was modeled as a system of eight nonlinear equations and eight unknowns, which was
solved with Newton-Raphson’s method. Subsequently, with the inverse problemmodel, a numerical database
related to the mechanism configurations, including singular positions, was generated to train a multilayer
neural network. The Levenberg-Marquardt algorithm was used for network training. Finally, an interpolated
linear path was used to understand the efficiency of the trained network.

INDEX TERMS Parallel robots, artificial neural networks, complex numbers, kinematics, Newton–Raphson.

I. INTRODUCTION
Parallel manipulators have been studied by several
researchers over the past two decades, because they have
competitive advantages over open-chain robots, for exam-
ple, greater accuracy, increased load capacity, more rigidity,
among others [1]. These features are essential in industrial
applications, such as simulators, machine tools, and CNCs,
among others [2]. Due to their special characteristics, parallel
robots are currently studied by various authors [3]–[8].

Parallel robots are used in several applications where high
levels of accuracy and precision are required: for example,
in spray paint operations [9] and machining operations [10].
To gain control of robots, the kinematic models that govern
their movements are needed. These models are classified
into inverse kinematics and direct kinematics. Various math-
ematical tools have been used to model the kinematics of
parallel robots, such as homogeneous matrices [11], complex
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numbers [12], [13], and Quaternions [14], and methods such
as Denavit-Hartenberg [15]. However, the use of these tools
and methods involves a high mathematical calculation. This
increased computational cost emphasizes the need to seek
new alternative ways to solve a parallel robot’s direct and
reverse kinematic problems.

In this sense, Artificial Neural Networks (ANN) have been
used to solve the inverse problem of open-chain robots, par-
allel robots, and other models such as the synthesis of mecha-
nisms [16]–[19]. The use of neural networks is mainly due to
the fact that the generated processing models are nonlinear.
There are several methods for calculating the inverse kine-
matics of robots, such as geometric, algebraic, and iterative
methods [20]. Artificial neural networks represent another
alternative to solve the inverse problem of serial and parallel
robots [21]. For example, in [22] neural networks are used to
generate the workspace of a 2-DOF parallel mechanism by
taking information from the solution of the reverse kinematic
problem. In [23] three types of neural networks (multilayer
perceptron, radial basis function, and Local Linear Model
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Trees) are used to solve inverse and direct kinematics, for-
mulated from nonlinear mathematical models related to an
Under-Constrained Cable-driven Parallel Robot.

Some combined artificial intelligence techniques are used
to solve the inverse or direct problems of robots. For example,
in [24] neural networks and genetic algorithms were used
to design a Stewart platform. These techniques and methods
solve issues such as maximumworkspace and direct kinemat-
ics. A fast analytical method and a deep learning approach
model were used in [25] to solve an industrial parallel robot’s
reverse problem. The analytical method was compared with
three models of neural networks. This process decreases
time for calculation and processing compared to traditional
methods.

In [26] the inverse kinematics problem of a 3-PSS
parallel manipulator is solved using several Machine learning
approaches (Multiple Linear Regression, Multi-Variate Poly-
nomial Regression, Support Vector Machine, Decision Tree
Regression, and Random Forest Regression). The Machine
Learning method, according to the authors, is easy to
implement and requires fewer calculations.

Hybrid methods are also applied for the study of the kine-
matic problems of parallel robots. For example, in [27] a
hybrid strategy consisting of a neural network and a numer-
ical method is presented to solve the direct kinematics for-
mulated from non-linear models of a tensegrity mechanism.
In [28] a hybrid algorithm composed of neural networks and
the Newton-Raphson method is presented, which solves a
direct kinematic problem of a 2RPU-2SPR parallel manipula-
tor. A mixed strategy was used in [29] to solve the immediate
problem of a Gough-Stewart platform. Neural networks were
used to solve the immediate problem, and the results were
combined with the Newton-Raphson method.

To provide data for the training of a neural network, it is
necessary to model the movements of robots or mechanisms
to generate mathematical models through which it is pos-
sible to formulate inverse and direct kinematic problems.
Traditionally these models are built using only one analysis
configuration [27]–[31], limiting the motion relationships
between the links that make up a robot. It is necessary to
propose new modeling methods that consider two analysis
configurations to systematize the rotations or translations that
the actuators will perform and generate the mathematical
models to raise and solve the kinematic problems associated
with robots. Typically, the resultingmodels develop nonlinear
equations, so it is necessary to use numerical methods such
as the Newton-Raphson method to solve them [32].

On the other hand, the 5R planar parallel mechanism has
been studied by various authors [33–41] as this mechanism
has some advantages such as: 1) it has a simple structure,
2) it has a large workspace, 3) it has good flexibility and
lack of singularities in the accessible workspace, and 4) it is
easy to control [33]. This robot has been studied in various
applications of Artificial Intelligence. For example, in [42]
a neural application based on an inverse kinematic model
was developed to generate workspaces of a parallel 2-DOF

mechanism. The application was oriented to the movement of
antennas and telescopes. In [43] the dynamics of the parallel
2-DOFmechanismwasmodeled and a non-linear pair control
was designed using artificial neural networks.

In [44], control of the type of neuro-slip was developed for
path tracking of a 2-DOF Parallel Mechanism. The control
consists of a feeding neural network combined with an error
estimator to compensate for large friction uncertainties and
external disturbances. In [45], a 2- DOF Parallel Mechanism
was designed to transplant flower seedlings, whose links
were optimized by an objective function and using genetic
algorithms. In [46], a 2- DOF ParallelMechanism and amicro
bipod were studied where the inverse kinematics of the robot
and its work area are modeled.

This work applies a new methodology for modeling the
movements of a 5R planar parallel mechanism. Two fixed
configurations of the tool and algebra of complex num-
bers [47] were considered to construct the kinematic equa-
tions that govern their movements. The reverse problem
was formulated with these equations, which were solved by
Newton-Raphson’s method [32]. Subsequently, a numerical
database with robot positions in the workspace and some
unique positions were generated to train an artificial neural
network that can be used as a model equivalent to the reverse
model. A straight path and a grade 5 polynomial speed pro-
file [48] were used to test the neural network’s efficiency. The
reverse problem obtained with the Newton-Raphson method
was compared to those generated by the neural network.

II. COMPLEX NUMBERS
This section presents a brief theoretical framework related to
complex numbers conceived as ordered pairs of real numbers.
Two binary operations are defined on the set <2, this is, ⊕ :
<
2
× <

2
→ <

2 and ⊗ : <2 × <2 → <2 through which
couples (<2,⊕) and (<2,⊗) form two groups, one additive
and one multiplicative commutative, respectively. The triad
(<2,⊕,⊗) is a commutative body [47]. Operations⊕ : <2×
<
2
→ <

2 and ⊗ : <2 ×<2→ <2 are defined by:

i) {a, b} ⊕ {α, β} = {a+ α, b+ β}

ii) {a, b} ⊗ {α, β} = {aα − bβ, aβ + bα},∀{a,

b}, {α, β} ∈ <2 (1)

On the other hand, in <2 a scalar product is defined • :
<×<

2
→ <

2, as an internal product< •, • >: <2×<2→
< and a norm |•| : <2 → < and, therefore, the structure
(<2,⊕,⊗, < •, • >, |•|) is a normed vector space with an
internal product called the vector space of complex numbers.
The transformation ρ : <2→ <2 defined by:

ρ (p,q) =
1
‖p‖
• p⊗ q; q ∈ <2 fixed, (2)

is linear and with positive determinant and is characterized
as a rotation. The matrix associated with transformation (2)
given the canonical basis B = [(1, 0), (0, 1)] ⊂ <2 is:

Mρ(p,•) =
1
‖p‖

[
a −b
b a

]
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On the other hand, p, q ∈ <2 are two complex numbers
with unitary norm. This is:

1) p =
{
p0, p1

}
; p20 + p21 = 1

2) q =
{
q0, q1

}
; q20 + q21 = 1 (3)

Finally, the relationships between the components of the
complexes p, q ∈ <2 and the components of the rotations are
as follows:

1) p =
{
p0, p1

}
; p0 ∈ <; p0 = cos θ1

p1 ∈ <; p1 = ± sin θ1
2) q =

{
q0, q1

}
; q0 ∈ <; q0 = cos θ2

q1 ∈ <; q1 = ± sin θ2 (4)

Here, θ1, θ2 ∈ < are angular displacements.

III. MODELING MECHANISM
This section presents the modeling of the 5R planar parallel
mechanism, also known as 2 GDL flat parallel robot. The
configuration of themechanism is as shown in Figure 1 where
moving position vectors and bases have been defined. The
purpose of modeling in the reference configuration is to
determine the coordinates of the pot point (see Figure 1) from
point ‘‘O’’ located in the Cartesian system (x, y).

FIGURE 1. Configuration of the 5R planar parallel mechanism and bases
in the initial or non-deformed configuration.

According to Figure 1 the coordinates of the pot point are
determined by means of the following loop equations:

0pot,O = 01,O ⊕ L3,1 ⊕ Lpot,3

0pot,O = 02,O ⊕ L4,2 ⊕ Lpot,4 (5)

Or, in equivalent form:

0pot,O = 01,O ⊕ L3,1 • eI1 ⊕ Lpot,3 • eIII1

0pot,O = 02,O ⊕ L4,2 • eII1 ⊕ Lpot,4 • eIV1 (6)

Now consider that inertial base rotations ej =
{
e1, e2

}
on

the mobile bases can be modeled using a linear transforma-
tion ρ : <2 → <2. Such rotations are modeled, according to
the expression (2), as follows:

1) eI1 = ρ
(
p, e1

)
=

1
‖p‖
• p⊗ e1

2) eIII1 = ρ
(
r, e1

)
=

1
‖r‖
• r⊗ e1

3) eII1 = ρ
(
q, e1

)
=

1
‖q‖
• q⊗ e1

4) eIV1 = ρ
(
s, e1

)
=

1
‖s‖
• s⊗ e1 (7)

Here, p, q, r, s ∈ <2, are complex numbers of unit norm
[44]. Expressions (6) are written in terms of the fixed inertial
base and complex of the unit norm; that is, based on the
expressions (7):

0pot,O = 01,O ⊕ L3,1 •
{
p⊗ e1

}
⊕ Lpot,3 •

{
r⊗ e1

}
0pot,O = 02,O ⊕ L4,2 •

{
q⊗ e1

}
⊕ Lpot,4 •

{
s⊗ e1

}
(8)

Using the operations ⊕ : <2 × <2 → <
2 and ⊗ :

<
2
× <

2
→ <

2 defined in (1), the following expressions
are obtained:

1) 0pot,O,x = 01,O,x + L3,1p0 + Lpot,3r0
2) 0pot,O,y = 01,O,y + L3,1p1 + Lpot,3r1
3) 0pot,O,x = 02,O,x + L4,2q0 + Lpot,4s0
4) 0pot,O,y = 02,O,y + L4,2q1 + Lpot,4s1 (9)

The unit norms associated with complex numbers are:

p20 + p21 = 1; r20 + r21 = 1

q20 + q21 = 1; s20 + s21 = 1 (10)

The geometric relationships defined between the compo-
nents of the rotations and the parameters associated with the
complex numbers p, q, r, s ∈ <2, according to relationships
(4), are as follows:

p =
(
p0, p1

)
; p0 = cos θ1, p1 = ± sin θ1

q =
(
q0, q1

)
; q0 = cos θ2, q1 = ± sin θ2

r = (r0, r1) ; r0 = cos θ3, r1 = ± sin θ3
s = (s0, s1) ; s0 = cos θ4, s1 = ± sin θ4 (11)

Here, θ1, θ2, θ3, θ4 ∈ < are the angular displacements
related to the positions of the links and the Cartesian axis x,
as shown in Figure 3.

The inverse kinematic problem is formulated below:
Given 0pot,O, 01,O, 02,O ∈ <2, L3,1, L4,2, Lpot,3, Lpot,4 ∈

<
+, find p =

{
p0, p1

}
, q =

{
q0, q1

}
, r = {r0, r1}, s = {s0, s1}

such that expressions (9) and (10) are satisfied.
The problem of inverse kinematics in the non-deformed

configuration generates a system of eight equations with eight
linear algebraic unknowns.
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FIGURE 2. New bases in the final configuration.

A. MODELING IN THE FINAL CONFIGURATION
This section models the deformed or final position of the 5R
planar parallel mechanism. Figure 2 shows the final configu-
ration and its associated mobile bases.

According to Figure 2, the new coordinates of the pot point
are obtained by the following expressions:

0pot′,O = 01,O ⊕ L3′,1 ⊕ Lpot′,3′

0pot′,O = 02,O ⊕ L4′,2 ⊕ Lpot′,4′ (12)

Expressions (12) can be written in terms of the new bases
shown in Figure 2, as follows:

0pot′,O = 01,O ⊕ L3′,1 • a
I
1 ⊕ Lpot′,3′ • a

III
1

0pot′,O = 02,O ⊕ L4′,2 • a
II
1 ⊕ Lpot′,4′ • a

IV
1 (13)

The rotational relationships between the initial configu-
ration bases and the new bases of the final configuration
(see Figures 1 and 2) can be represented in terms of unit
complex numbers as follows:

aI1= ρ
(
P,eI1

)
=ρ

(
P, ρ

(
p, e1

))
=

1
‖P‖

1
‖p‖
• P⊗ p⊗ e1

= P⊗ p⊗ e1

aIII1 = ρ
(
R,eIII1

)
=ρ

(
R, ρ

(
r, e1

))
=

1
‖R‖

1
‖r‖
• R⊗ r⊗ e1

=R⊗ r⊗ e1

aII1 = ρ
(
Q,eII1

)
=ρ

(
Q, ρ

(
q, e1

))
=

1
‖Q‖

1
‖q‖
• Q⊗ q⊗ e1

=Q⊗ q⊗ e1

aIV1 = ρ
(
S,eIV1

)
=ρ

(
S, ρ

(
s, e1

))
=

1
‖S‖

1
‖s‖
• S⊗ s⊗ e1

= S⊗ s⊗ e1 (14)

FIGURE 3. Angular offsets in the start and end configuration.

Therefore, loop equations (13) are written in terms of unit
complexes. This is:

0pot′,O

= 01,O ⊕ L3′,1 •
{
P⊗ p⊗ e1

}
⊕ Lpot′,3′ •

{
R⊗ r⊗ e1

}
0pot′,O

= 02,O ⊕ L4′,2 •
{
Q⊗ q⊗ e1

}
⊕ Lpot′,4′ •

{
S⊗ s⊗ e1

}
(15)

Here, P, Q, R, S ∈ <2 are complex numbers related to
the deformed or final configuration. The explicit form of
expressions (15) are as follows:

0pot′,O,x = 01,O,x + L3′,1
(
P0p0 − P1p1

)
+Lpot′,3′ (R0r0 − R1r1)

0pot′,O,y = 01,O,y + L3′,1
(
P0p1 + P1p0

)
+Lpot′,3′ (R0r1 + R1r0)

0pot′,O,x = 02,O,x + L4′,2
(
Q0q0 − Q1q1

)
+Lpot′,4′ (S0s0 − S1s1)

0pot′,O,y = 02,O,y + L4′,2
(
Q0q1 + Q1q0

)
+Lpot′,4′ (S0s1 + S1s0) (16)

Unitary norm expressions are:

‖P‖ = P20 + P21 = 1; ‖Q‖ = Q2
0 + Q2

1 = 1

‖R‖ = R2
0 + R2

1 = 1; ‖S‖ = S20 + S21 = 1 (17)

On the other hand, the geometric relationships defined
between the components of the rotations and the parameters
associated with the complex numbers of the deformed or final
configuration are as follows:

P = (P0,P1) ; P0 = cosα1; P1 = ± sinα1
Q = (Q0,Q1) ; Q0 = cosα2; Q1 = ± sinα2
R = (R0,R1) ; R0 = cosα3; R1 = ± sinα3
S = (S0,S1) ; S0 = cosα4; S1 = ± sinα4 (18)

Here, α1, α2, α3, α4 ∈ < are the angular displacements
defined between the initial configuration and the final config-
uration, as shown in Figure 3. The inverse kinematic problem
is formulated as follows:
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Given 0pot′,O, 01,O, 02,O ∈ <2, L3,1, L4,2, Lpot,3, Lpot,4 ∈

<
+, p =

{
p0, p1

}
, q =

{
q0, q1

}
, r = {r0, r1}, s = {s0, s1}

with, ‖p‖ = ‖q‖ = ‖r‖ = ‖s‖ = 1, find: P = {P0,P1},
Q = {Q0,Q1}, R = {R0,R1} y S = {S0,S1} such that
expressions (16) and (17) are satisfied.

The problem of inverse kinematics in the deformed config-
uration generates a system of eight equations with eight linear
algebraic unknowns.

The new features presented in this work in the model-
ing part are summarized below: Two-configuration modeling
allows a clear and correct analysis of the transition of move-
ments and relationships between local and mobile bases.
This modeling process is traditionally carried out in a single
configuration presented in [33]–[38], [49] which prevents us
from observing the physics of the movement and in particular
the relationships betweenmobile systems or bases. Themath-
ematical modeling of the 5R planar parallel mechanism gen-
erated by the systematization of complex numbers presented
in [47] developed a nonlinear equation system. However, this
nonlinearity does not affect the application of the modeling
methodology presented in this work, as it can in fact be
applied to model mechanical systems that move in space,
since Quaternions [50] are a formal extension of complex
numbers.

IV. TRAINING A NEURAL NETWORK
As mentioned above, the position kinematic models, both
in the reference configuration and in the deformed config-
uration, are associated with systems of nonlinear equations
of the polynomial type. These models require the use of
iterative algorithms such as the Newton–Raphson method
to provide numerical solutions to these problems. However,
there are four disadvantages: 1) incorrect initial conditions,
2) no guarantee as to the correct solution before executing
the algorithm convergence, 3) multiple solutions, and 4) no
solution (if the Jacobian matrix is singular). Another disad-
vantage of numerical approaches is that they require heavy
computational analysis and time. This article introduces an
unconventional technique to solve the displacement problem
associatedwith the 5Rmechanism under study using artificial
neural networks (ANN).

A. PROCEDURE FOR THE DESIGN OF NEURAL NETWORKS
This section systematically describes the procedure to obtain
the inverse kinematic model related to the 5R mechanism
using artificial neural networks. The neural network design
process can be simple when you have the experience; how-
ever, 4 fundamental stages are distinguished when neural
networks are used as a regression or classification technique:

1) A set of data must be obtained to identify the input and
output parameters that the neural network will have to
train.

2) The type and architecture of the neural network to train
must be designated.

3) The algorithm and training of the neural network are
selected.

FIGURE 4. Operational workspace.

4) Testing and validation of the performance of the trained
neural network are performed.

B. GENERATION OF TRAINING DATA SET TO SOLVE
KINEMATICS
One of the most complicated stages in the process of design-
ing a neural network is to obtain a set of input data since
these play a fundamental role in the quality of the model
obtainedwhen training the neural network, making the design
process a task that is not trivial and often requires experts
and ingenuity to obtain it. In this sense, obtaining a data set
to train the kinematics of robots associated with nonlinear
models will depend on the physical characteristics of the
same robot, its geometry, and the space in which it can work.
The purpose of this section is to express a training data set as
examples of appropriate network behavior made up of vector
pairs as shown in (19), where pq is the input of the network
and tq is the corresponding (target) output, according to the
nomenclature used in [51].

{p1, t1} , {p2, t2} , . . . ,
{
pQ, tQ

}
(19)

To train a network that learns the inverse kinematic prob-
lem, the position vector 0pot′,O ∈ <2 should be the network
input and the parameters of the complexes P,Q,R,S ∈ <2

will be the output. The geometry associated with the working
area (AT) of the 5R mechanism must be known and nar-
rowed in its entirety or in a section of interest, as shown
in Figure 4. Within the portion of the selected workspace,
single points originating unique robot configurations were
considered, to study the behavior of the network at these
points. The study area should be discretized into samples,
forming an array of network input examples:

P =
{
p1,p2, . . . ,pQ

}
(20)

Here, p =
[
0pot′,O,x 0pot′,O,y

]T
∈ Z+ and Q ∈ Z+.

Q is defined within the workspace and by a resolution
parameter µ that symmetrically separates the plane (x, y)
point to point. Figure 5 shows the workspace’s discretization
for a value of µ = 4 and Q = 4968 (number of data).
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To obtain the angular parameters, the formulated
Newton–Raphson method was used, solving the inverse
problem for each element at (20), thus forming the array of
objective examples of the network:

T =
{
t1, t2, . . . , tQ

}
(21)

being t =
[
P0 P1 Q0 Q1 R0 R1 S0 S1

]T and Q ∈ Z+

The explicit form of the set of examples (the training set) to
train a neural network with the inverse kinematic problem is:

p1 =
[
0pot′,O,x
0pot′,O,y

]
1
, t1 =



P0
P1
Q0
Q1
R0
R1
S0
S1


1


,


p2 =

[
0pot′,O,x
0pot′,O,y

]
2
, t2 =



P0
P1
Q0
Q1
R0
R1
S0
S1


2


,

. . . ,


pQ =

[
0pot′,O,x
0pot′,O,y

]
Q
, tQ =



P0
P1
Q0
Q1
R0
R1
S0
S1


Q


(22)

Expression (22) forms a set of data that was used to train
a neural network to solve the inverse kinematic problem. It is
important to mention that the parameters of the complex P, Q,
R, S ∈ <2 take values in a range of -1 to 1, so it is necessary to
normalize the vector 0pot′,O ∈ <2 in the same range, which is
commonly referred to as pre-processing and post-processing.

FIGURE 5. Discretized workspace.

C. NEURAL NETWORK ARCHITECTURE
The topology or architecture of a neural network consists of
the organization and arrangement of neurons in the network.
Neurons are grouped into layers, and the feedforward mul-
tilayer Artificial Neural Network (ANN) architecture is one
of the most used due to the flexibility in the good results it
delivers and its robustness in the presence of disturbances.
This section proposes the structure of the artificial neural
network to solve the inverse kinematics of the 5R planar
parallel mechanism.

Choosing the correct neural network architecture for a
regression or classification problem remains a difficult issue,
and despite the existence of various proposals to solve it,
there is no agreement on the strategy to follow to select
the appropriate neural network architecture [52], [53]. Some
authors have used genetic algorithms to generate the neural
network topology for the study of the movements of a PUMA
560 robot [54].

For the network used in this work, the topology was
selected by performing different tests with different configu-
rations, and the one that generated the best results was taken.
Figure 6 shows the proposed network architecture to solve the
inverse kinematic problem related to the 5R planar parallel
mechanism, and the focus of this study. It should be noted that
this article does not focus on neural network optimization.

For multilayer networks, the output of one layer becomes
the input of the next. The equation that describes this opera-
tion is a recursive equation represented as follows [51]:

am+1 = fm+1(Wm+1am + bm+1); for m = 0, 1, . . . ,M − 1

(23)

whereM ∈ Z+ is the number of layers in the network,W and
b contain the weights and biases, respectively, of the current
layer, and f represents the transfer function. Neurons in the
first layer receive external inputs as follows:

a0 = pq (24)

FIGURE 6. Network architecture for the inverse problem.
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Equation (24) provides the starting point for (23). The
neural network shown in Figure 6 consists of 2 inputs, three
hidden layers with 15 neurons per layer, and an output layer
of 8 neurons and 8 outputs, according to (22). This network
has associated in the neurons of the hidden layer transfer
functions (also called activation function) hyperbolic tangent
sigmoid and in the neurons of the output layer linear transfer
functions, and so, maintains the properties of nonlinearity and
linearity between the input and output data of the network.

D. NEURAL NETWORK TRAINING
In multilayer feedforward neural networks there are several
training algorithms available; all these algorithms use the gra-
dient of the performance function to determine how to adjust
weights and biases to obtain the best performance from the
network. The default performance function for feedforward
networks is the mean quadratic error (mse):

mse =
1
Q

Q∑
k=1

e (k)2 =
1
Q

Q∑
k=1

(t (k)− a (k))2 (25)

Here, a is a vector with network-generated outputs, t,
which are the target outputs that the network should have in
the k iteration. On the other hand, the gradient is determined
using the technique called retro-propagation, which involves
performing backward calculations through the network. This
technique updates network weights and biases in the direc-
tion of performance that decreases faster. You can write an
iteration of this algorithm as follows:

xk+1 = xk − αkgk (26)

Here, xk represents the current vector of weights and
biases, gk is the current gradient, and αk is the reason for
learning. Among the algorithms available to train neural net-
works are several high-performance algorithms that can con-
verge ten to one hundred times faster than other algorithms,
such as the Levenberg–Marquardt algorithm which is consid-
ered the fastest method to train moderately sized feedforward
neural networks (up to several hundred weights) [55]; it also
has an efficient implementation in the MATLAB software R©.

For neural network training, this work used the Levenberg–
Marquardt algorithm; the data used are those described
in (22). The dataset was not divided for testing and validation
because the network is intended to fully learn all the data
from the area (AT) portion considered; the target mse that the
network must achieve in its performance was set to 1e−6 and
the maximum number of epochs was 3000.

The graph in Figure 7 shows the mean quadratic error for
neural network training. The error starts at a large value and
as the training times increase the error decreases to a small
value, in other words, the network can be said to have learned.
The training ended up reaching the proposed goal mse, the
best performance is for a 9.98e−7 error.
This article presents novelties in neural networks since tra-

ditionally the training is done only by taking the draft angles
and not the axis of rotation of each joint. The neural network

FIGURE 7. Performance graph.

handles the parameters of the inverse kinematic problem, i.e.
2 inputs (x, y) and 8 outputs (four angular displacements and
four axes of rotation). This fact has an advantage since it
is possible to have information about each angular displace-
ment parameter, both the rotation angles and the axes. While
the studied mechanism has flat movements and the axes of
rotation only characterize the direction of rotation on the z-
axis, spatial motion does require accurate information from
the rotation axes since they are updated in each sequence of
movements.

E. NEURAL NETWORK VALIDATION
In this section, we proceed to validate the trained neural net-
workwith the inverse kinematic problem. The performance of
a trained neural network can be measured to some extent by
an error during training, but it is good practice to investigate
the network response in more detail. One option is to perform
a regression analysis between the network response and the
corresponding target data in the training set. The graph in
Figure 8 shows the regression of the network’s fit to the train-
ing set data. The correlation coefficient (R-value) is ameasure
of how well the objectives explain the variation in the output;
if this number equals 1, there is a perfect correlation between
the target data and the network outputs. A continuous line
indicates the best fit, the network outputs are plotted against
the target data as open circles and a continuous line indicates
the perfect fit (network output equal to target data).

With regression analysis, it can be inferred that the network
will perform well to unknown data during training and the
following is to test the networkwith unknown data. To do this,
two cases were considered: 1) a study of the singularities and
2) the use of a straight path. The singularities related to the 5R
planar mechanism studied in this work have been analyzed
in [56]. For the case of the singularities related to the 5R
mechanism in this study, the cases shown in Figures 8 and 9
were considered.

According to Tables 1 and 2, the trained network gave
very close results, both at the singular points considered and
at nearby points, so it is possible to affirm that it had a
satisfactory training. Another novelty and advantage offered
by themodeling proposed in this work and its solution are that
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FIGURE 8. Singular configuration 1.

FIGURE 9. Singular configuration 2.

TABLE 1. Network results from a singular point.

TABLE 2. Network results for another singular point.

it does not present mathematical singularities, so it is possible
to reach the unique points in the working area, considering
that the singular mechanics (physical) are different from the
mathematics. Mathematically, it is possible to obtain data in
a physical singularity; however, it is impossible to pass into
reality.

It should be mentioned that this work does not present
a comprehensive and in-depth study of the problem of the
singularities associated with the 2-DOF Parallel Mechanism.
Only a few unique positions were considered to know the
results delivered by the neural network.

On the other hand, to test the network elsewhere in its
workspace, the path shown in Figure 10 was considered. The
mathematical relationships of the rectilinear trajectory are as
follows:

FIGURE 10. Straight-line trajectory.

For the stretch A–AB.

0AB.O(t) = 0A,O ⊕ 0AB,A(t) •

[
xAB,A − xA
yAB,A − yA

]
dAB,A

T

•

0AB,O(t) =
•

0AB,A(t) •

[
xAB,A − xA
yAB,A − yA

]
dAB,A

T

••

0AB,O(t) =
••

0AB,A(t) •

[
xAB,A − xA
yAB,A − yA

]
dAB,A

T

(27)

For the stretch A-AB.

0B,O(t) = 0AB,O(t)⊕ 0B,AB(t) •

[
xB − xB,AB
yB − yB,AB

]
dB,AB

T

•

0B,O(t) =
•

0B,AB(t) •

[
xB − xB,AB
yB − yB,AB

]
dB,AB

T

••

0B,O(t) =
••

0B,AB(t) •

[
xB − xB,AB
yB − yB,AB

]
dB,AB

T

(28)

Expressions (25) and (26) represent displacement, speed,
and acceleration related to a moving point traveling through

space-time. The functions 0AB,A(t),
•

0AB,A (t),
••

0AB,A (t),

0B,AB(t),
•

0B,AB(t) and
••

0B,AB(t) are movement intensities and
can be represented by equivalent interpolated functions (⇔),
such as degree 5 polynomial functions [57].

For the A-AB stretch, the following expressions are
available:

0AB,A(t) ⇔ PAB,A(t) = α0+α1t+α2t2+α3t3+α4t4+α5t5
•

0AB,A(t) ⇔
•

PAB,A(t)=α1+2α2t+3α3t2+4α4t3+5α5t4
••

0AB,A(t) ⇔
••

PAB,A(t) = 2α2+6α3t+12α4t2+20α5t3 (29)
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FIGURE 11. Smoothed scroll profile.

The values of the coefficients of the polynomials are
obtained by knowing the distance values in the stretch under
consideration, the start and end speeds of the run, and the start
and end values of the acceleration (or the values where the
function is required to work). Figure 11 shows the displace-
ment profile on both sections interpolated with a polynomial
of degree 5.

To verify that the neural network infers with good
accuracy, the results are compared with results using
the Newton–Raphson method, considering the following
relationships:

For the stretch A-AB. For the stretch AB-B.

0pot′,O(t) = 0AB,O(t) 0pot′,O(t) = 0B,O(t) (30)

Explicitly for the A-AB section, we have:

0pot′,O,x(t) = 01,O,x + L3′,1
(
P0(t)p0 − P1(t)p1

)
++ Lpot′,3′ (R0(t)r0 − R1(t)r1)

= 0A,O,x + PAB,A(t) •
xAB,A − xA

dAB,A
0pot′,O,y(t) = 01,O,y + L3′,1

(
P0(t)p0 − P1(t)p1

)
++ Lpot′,3′ (R0(t)r0 − R1(t)r1)

= 0A,O,y + PAB,A(t) •
yAB,A − yA

dAB,A
0pot′,O,x(t) = 02,O,x + L4′,2

(
Q0(t)q0 − Q1(t)q1

)
++ Lpot′,4′ (S0(t)s0 − S1(t)s1)

= 0A,O,x + PAB,A(t) •
xAB,A − xA

dAB,A
0pot′,O,y(t) = 02,O,y + L4′,2

(
Q0(t)q0 − Q1(t)q1

)
++ Lpot′,4′ (S0(t)s0 − S1(t)s1)

= 0A,O,y + PAB,A(t) •
yAB,A − yA

dAB,A
(31)

Also, to solve the inverse kinematic problem with the
Newton-Raphson method, the following relationships are

FIGURE 12. Comparison of the trained network and the Newton-Raphson
method for rectilinear trajectory in terms of rotation angles.

TABLE 3. Examples of validation of ann results for inverse kinematics.

required:

P0(t)2 + P1(t)2 = 1; Q0(t)
2
+ Q1(t)

2
= 1;

R0(t)2 + R1(t)2 = 1; S0(t)2 + S1(t)2 = 1 (32)

The relationships between rotation parameters and com-
plex number components are:

P(t) = (P0(t),P1(t)) ; P0(t) = cosα1(t);P1(t) = ± sinα1(t)

Q(t) = (Q0(t),Q1(t)) ; Q0(t)=cosα2(t);Q1(t) = ± sinα2(t)

R(t) = (R0(t),R1(t)) ; R0(t) = cosα3(t);R1(t) = ± sinα3(t)

S(t) = (S0(t),S1(t)) ; S0(t)=cosα4(t);S1(t) = ± sinα4(t)

(33)

V. DISCUSSION
The coordinates, 0pot′,O,x, 0pot′,O,y ∈ < shown in Table 3,
were generated using equations (29) and (31). This table
shows three columns of interest: the linear path with 100
points (only 6 shown), the response of the trained neural
network for the inverse problem, and the response of the
Newton–Raphson method (see Figure 12). To get a bet-
ter idea of neural network performance and how proximate
their results are, they were calculated: absolute error (Ea),
quadratic error (MSE), and the root of the mean quadratic
error (RMSE) for each angular displacement parameter; the
results are shown in the following Tables:

According to the tables above, the results obtained from
the neural network model show a failure rate (mse) of 4.87e-
4 and 4.44e-3 for the best and worst cases, respectively, being
a fairly accurate model and with a numerical precision of
one digit. For the study of singularities, Tables 8 and 9 show
the comparative results between the trained network and the
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TABLE 4. Examples of ann results and error calculation for α1.

TABLE 5. Examples of ann results and error calculation for α2.

TABLE 6. ExampleS of ann results and error calculation α3.

TABLE 7. Examples of ann results and error calculation α4.

TABLE 8. Results at a singular point.

Newton–Raphson method. As can be interpreted, the results
are close, although not accurate. It is possible to study the
accuracy in detail by increasing the amount of data to train.

It is worth mentioning that there are other methods for
the validation of neural networks, for example, the cross-
validationmethod [58], [59]. This method was not considered
in this work because there is little data and, on the other hand,
it is required to split the available dataset randomly into a
training sample and a test dataset. This would mean that the
neural network could not recognize a significant part of the
available data needed for the cross-validation method, which
would mean that the neural network could not completely
learn the data considered from the workspace.

TABLE 9. Result for another singular point.

Finally, the 5R planar parallel mechanism has been studied
using geometric methods and whose modeling and solution
are easy to solve [60]. However, the main idea of this work is
to generalize the modeling of the mechanism to spatial mod-
els, where nonlinear models are presented more frequently,
and the center of the study is not in itself the mechanism
but the modeling methodology, training, and validation of the
network.

VI. CONCLUSION
This article has modeled a 5R planar parallel mechanism
using algebra of complex number. The Newton–Raphson
method and artificial neural networks were used to solve the
inverse problem. Themain conclusions are summarized in the
following points:

• The use of two configurations in mechanism modeling
makes it possible to clarify and systematize the rela-
tionships that exist between the reference position and
the deformed position. This clarification is not found
in the traditional modeling studies of the 5R planar
parallel mechanism [36], [37]. The systems of equations
generated during the analysis were eight equations and
eight nonlinear unknowns of the polynomial type for the
inverse kinematic problem case in both configurations.

• The results obtained from the neural network model
show a failure rate (mse) of 4.87e-4 and 4.44e-3 for
the best and worst cases, respectively, being a fairly
acceptable model in numerical precision and accuracy
to solve the inverse problem. The input data to validate
the inverse problem considering the neural network were
the coordinates of the points that travel a straight path
in the plane, and the output data were eight parameters,
four related to angular displacements and four associated
with the axis of rotation. This proposal is new because
traditionally only angular displacements are trained and
not rotation axes [61]. For the study of motion problems
in space knowing the rotation, axes are an advantage,
since these are updated in each rotation sequence.

• Another advantage that represents solving inverse prob-
lem with the neural network, is the training data set,
since these are careful and studied so that there is a con-
tinuity in the solutions of the 5R planar parallel mecha-
nism, therefore, having a model that generalizes unique
solutions rather than multiple solutions as does the ana-
lytical model using the Newton–Raphson method.

• The two-configuration modeling method and neural net-
work training used to solve the reverse problem of the
5R parallel planar mechanism can be widespread for the
modeling of movements in the plane and space of robots
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and mechanisms, considering other mathematical tools
such as quaternion algebra [50].
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