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ABSTRACT The Internet of Things (IoT) is becoming an increasingly common paradigm. As IoT usage
scenarios have increased, many challenges in IoT operating systems’ safety and adaptability have remained.
According to the programming model, IoT operating systems can be categorized into three types: mul-
tithreading, event-driven, and hybrid. Different operating system models are applied in different scenarios
depending on the real-time requirements or resource richness. The safety of IoT operating systems is critical;
hence, formal verification is an important method of detecting potential vulnerabilities and providing safety
guarantees. This paper proposes a hybridmodel for an IoT operating system and employs the Event-Bmethod
for modeling and verification.We rewrite the requirements and divide the Event-Bus hybrid operating system
model into eight levels for refinement. The safety and liveness properties of Event-Bus are guaranteed by
generating and proving the proof obligations at each model level. A large proportion of the proof obligations
(91%) are automatically proven on the Rodin platform to simplify the development process.

INDEX TERMS Formal verification, operating systems, formal specifications, event-B.

I. INTRODUCTION
With the improvement of network communication technol-
ogy and the decrease in the cost of hardware computing
power, the era of the Internet of Things (IoT) has arrived. An
IoT operating system (OS) provides basic functions (includ-
ing task management, memory management, and communi-
cation management) under limited resources. Due to various
scenario limitations, IoT devices are often required to com-
plete specified computations using small volumes and few
resources. Consequently, IoT devices need a customized OS.

The programming models for IoT OSs can be classified
into three types [1]: multithreading, event-driven, and hybrid.
The task of multithreading OSs (such as Lite OS [2] and
RIOT [3]) is called a thread. In multithreading OSs, the run-
ning resources of the lower-priority thread are preempted by
the higher-priority thread. The disadvantages of this approach
are the large memory space required to save each thread’s
context and the time consumed in switching threads. In an
event-driven OS, such as the Oberon System [4] or Nano-
RK [5], the event handler schedules tasks. An event is
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triggered when a task finishes, and the event handler executes
the next task. The hybrid OS approach was proposed with
the development of IoT OSs that combine the event-driven
and multithreading programming models. Although many
hybrid programming models have been presented to date,
these works are subject to various problems, such as poor
parallel performance and insufficient scheduling flexibility.
Thus, at present, there is still room for optimization in the
design of hybrid programming models.

With the development of formal verification technology,
the corresponding tools have become increasingly mature.
An increasing number of software programs employ for-
mal verification technology, and the importance of formal
verification is generally recognized. In formal verification,
the validator constructs a model with mathematically precise
semantics under design and performs extensive analysis con-
cerning correctness requirements [6].

Event-B [7] is a formal modeling and verification method
based on set theory and predicate logic. Event-B adapts
refinement theory and a level-by-level method to increase
the specification to gradually complete system modeling.
The proof obligation [8] provides mathematical proof of the
properties according to a set of rules. The Rodin platform
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[9] introduces support for automatic Event-B model creation
and proving the proof obligation. This techniquemakes heavy
usage of events defined utilizing guards and parallel actions.
Although very powerful for formal verification proofs, this
approach is not entirely satisfactory for developing classic
programs, where the dynamic part is defined by operations
related to preconditions and sequential actions. We use events
to develop a classic approach to address preconditions and
sequential action operations in the last refinement model.

This paper contributes to exploring safe and reliable IoT
OSs. Themajor contributions of this work can be summarized
as follows:
• A hybrid model of an IoT OS, called Event-Bus,
is proposed. Event-Bus consolidates the multithread-
ing model with the publish-subscribe pattern (a partic-
ular event-driven model). The main advantage of this
approach is the ability to be flexibly configured to adapt
to different scenarios.

• The Event-B method is employed to construct Event-
Bus’s formal model. We prove the safety and liveness
properties of Event-Bus in each level of the model using
the Rodin platform. The automatic verification rate of
the entire verification reaches 91% through the clear
model description and the design of an excellent refine-
ment strategy.

The overall structure of this paper has seven sections,
including this introduction. Section II introduces the related
work of the formal verification of the IoT. Section III gives
the background on hybrid IoT OS models and describes the
formal modeling and analysis methods. Section IV is con-
cerned with rewritten requirements and proposing a refine-
ment strategy. Section V and Section VI present the process
for building the abstracted model and refining each level
of the model. Section VII verifies and validates the system.
Finally, Section VIII contains the conclusion and ideas for
further work.

II. RELATED WORK
In recent years, an increasing amount of literature on IoT
environment safety has been published. Formal verification is
an important method to ensure the correctness of the system.
Approaches for verifying IoT OSs and embedded software
can be divided into three categories: (1) verification of appli-
cation programs with a highly abstracted scheduling policy,
(2) verification approaches for the correctness of either OS
models or implementations, and (3) verification ofmonolithic
kernels or partial kernel services.

A. VERIFICATION OF APPLICATION PROGRAMS WITH A
HIGHLY ABSTRACTED SCHEDULING POLICY
Many studies have shown that the first method can be used
effectively to verify embedded software under specific limita-
tions [10]–[12]. Gallardo et al. describe an approach to verify
concurrent C code by automatically extracting a high-level
formal model suitable for analysis with the Construction
and Analysis of Distributed Processes (CADP) toolbox [10].

The approach fits well within the existing architecture of
CADP, which does not need to be altered to enable C pro-
gram verification. Inverso et al. propose a new approach to
Bounded Model Checking (BMC) for sequentially consistent
C programs using POSIX threads [11] in which a multi-
threaded C program is first translated into a nondeterministic
sequential C program. This program preserves reachability
for all round-robin schedules with a given bound on the
number of rounds and then re-uses existing high-performance
BMC tools as backends for the sequential verification prob-
lem. Rabinovitz et al. propose a SAT-based bounded verifica-
tion technique, called Threaded-C Bounded Model Checking
(TCBMC), for threaded C programs [12]. This approach is
based on C Bounded Model Checking (CBMC), which mod-
els sequential C programs in which the number of executions
for each loop and the depth of recursion are bounded. More-
over, bugs that invalidate safety properties can be detected.
These include races and deadlocks, the detection of which is
crucial for concurrent programs. This category of approaches
assumes arbitrary interleavings among tasks but reduces the
verification complexity by either using partial-order reduc-
tion, limiting the number of context switches among tasks,
which suffer from a high false-alarm rate and additional costs
for refinements.

B. VERIFICATION APPROACHES FOR THE CORRECTNESS
OF EITHER OS MODELS OR IMPLEMENTATIONS
Several approaches realize the importance of addressing
OS-related issues and compose formal OS models by con-
verting C programs into the modeling language used to model
the OS [13]–[15]. Klein et al. transform the seL4 microkernel
into a Haskell model for formal development [13]. In this
case, the correctness of the compiler, assembly code, and
hardware is assumed. They use a unique design approach that
fuses formal and OS techniques. The implementation strictly
follows a high-level abstract specification of kernel behavior
that encompasses both traditional design and implementation
safety properties. Thus, the kernel will never crash and will
never perform an unsafe operation. There are many formal
verifications of theOSEK/VDXOS in the context of IoTOSs.
Huang et al. employ the process algebra named Communi-
cating Sequential Processes (CSP) to describe and analyze a
real code-level OSEK/VDXOS, and they formally model the
whole system as a CSP process encoded and implemented
in the process analysis toolkit [14]. The expected properties
are described and expressed in terms of the first-order logic.
Zhu et al. present a unified executable formal automobile
kernel under the OSEK/VDX standard by defining the sys-
tem services’ operational semantics in the standard using a
rewrite-based executable semantic framework called K [15].
They identify several ambiguities in the OSEK/VDX stan-
dard and a potential deadlock vulnerability in an industrial
automobile application. However, this category of methods
suffers from high verification costs due to comprehensive
interpretation of the program code and the formal OS model.
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C. VERIFICATION OF MONOLITHIC KERNELS OR PARTIAL
KERNEL SERVICES
The last approach is to verify only the unexpanded kernel
or partial kernel services. By reducing the scope of formal
verification, this method simplifies formal development and
allows an IoT system’s vital properties to be verified. Soft-
ware verification has many successful applications regarding
monolithic OS kernels and their extensions, including verifi-
cation of OS device drivers [16], [17], verification of network
protocols [18], [19], and verification of a memory manage-
ment subsystem [20], [21]. Because of the rich expressive-
ness of the Event-B method, many studies use Event-B to
verify the kernel services of an IoT OS. Amjad et al. use the
Event-B formal verification method to model and verify the
ZigBee protocol stack by embedding the protocol primitives
in Event-B [22]. Wen et al. present the formal development
of a memory management module for a real-time OS [23].
They propose various novel techniques in relation to a mod-
ular software structure, corresponding code generation, and
related Event-B approaches.

As IoTOS features become increasingly abundant, the sup-
ported programming model also changes from the original
single multithreaded or event-driven model to a hybrid pro-
gramming model. Nevertheless, the formal verification of
hybrid OS models is an underexplored domain.

III. BACKGROUND
Ahybrid OSmodel is a combination of an event-drivenmodel
and a multithreading model. Event-B is an event-driven for-
mal verification method in which an event-driven model can
be easily constructed. Hybrid OS models and the Event-B
method are introduced in this section.

A. HYBRID OS MODELS
IoT scenarios often have real-time requirements or few mem-
ory resources. There are scenarios where the OS’s real-time
requirements are rigorous: a quintessential example is the
Internet of Vehicles (IoV). Multithreading OSs, which typ-
ically employ preemptive scheduling, are suitable for IoV
applications. Tasks with higher priority can be executed
faster, and tasks with the same priority can be performed in
turn to simulate concurrent effects. The guarantee of real-time
performance and the realization of parallel scenarios are
among the advantages of the multithreading OS [24]. How-
ever, its main disadvantage is considerable computing and
memory resource consumption. In scarce resource scenar-
ios, for example, wireless sensor networks (WSNs), more
attention is given to controlling the power consumption and
memory resource consumption of the OS [25]. Many WSN
OSs’ programming models are event-driven. Event-driven
OS scheduling is mostly cooperative, avoids frequent context
switching, and saves separate stack space for each task. Tasks
are executed efficiently and require few resources [26] in
event-driven OSs. However, the monopolization of comput-
ing resources by long tasks is a problem in event-driven

FIGURE 1. The relationship between objects in the Event-Bus hybrid OS
model.

OSs that makes the system’s real-time performance
unsatisfactory [27].

A hybrid OS, such as OpenSwarm [28] or SenSpire
OS [29], combines the approaches of multithreading and
event-driven programming models and therefore offers flex-
ibility in expressing and customizing different scheduling
policies. The previously proposed hybrid programming mod-
els are designed for specific application scenarios, and they
face problems such as inflexible scheduling strategies and
poor concurrent performance. OpenSwarm has two modules,
an event manager and a threadmanager, which schedule event
handlers and threads, respectively. An event handler in the
event manager can be scheduled only in accordance with
the first-in first-out (FIFO) strategy. Both the event handlers
and threads in SenSpire OS have priority. In addition to a
time-sharing thread scheduler and a FIFO event scheduler,
it also has a priority-based event scheduler. The hybrid mod-
els of SenSpire OS and OpenSwarm do not consider the
optimization of concurrent performance because the func-
tions they support are sufficient to cope with their application
environments. However, the IoT application scope is becom-
ing increasingly wider, and the corresponding scenarios are
becoming increasingly complex. Hence, hybrid models have
room for further optimization in terms of flexibility and con-
currency.

Event-Bus is a hybrid programming OS that uses con-
current coroutines combined with a subscription publishing
model to implement a hybrid model. The publish-subscribe
pattern is a special type of event-driven model. In the
Event-Bus OS, each thread contains multiple corou-
tines. A coroutine is a general-purpose subroutine for
non-preemptive multitasking, for which execution can be
suspended and resumed. Atmost one coroutine can run simul-
taneously in each thread. Concurrent coroutines have two
features: 1) the same coroutine can run on different threads,
and 2) the same piece of code can generate multiple corou-
tines, which can be executed in parallel. In the schematic
presented in Figure 1, the coroutine outside the dashed box
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is the running coroutine, and the remaining coroutines are
in the waiting queue. There are many topics in such an OS.
A coroutine can be a subscriber (S in the figure), with the
purpose of subscribing to related topics, or a publisher (P in
the figure), which the purpose of publishing events to a topic.
Each coroutine can publish messages or subscribe to topics
using the publish-subscribe pattern.

Event-Bus also has the advantages of this hybrid pro-
gramming model, namely, the efficiency of the event-driven
approach and the expressiveness of threads. In Event-Bus,
the applications represented in the multithreaded model are
extensible, and collaboration services are executed in the
event-driven model to save resources and achieve high per-
formance. In addition, Event-Bus has several notable charac-
teristics by virtue of its design:

• Integrated communication between modules: Event-
Bus supports two programmingmodels and realizes syn-
chronous and asynchronous communication functions
between modules. It overcomes the problems of syn-
chronization and execution order caused by concurrency
by means of the built-in communication mechanism
between modules.

• Support for complex and customized event schedul-
ing methods: In the Event-Bus model, each thread is
an event scheduler, allowing different event handles to
respond simultaneously on a multicore platform. Thus,
event-driven programs can be more quickly responded
to. Developers can process a single sequence of pro-
grams with a single-thread and single-coroutine struc-
ture, use a single-thread and multiple-coroutine struc-
ture to write collaborative services, or design multiple
threads and multiple coroutines to achieve concurrent
programming.

• Simplification of event-driven programs: In pro-
grams implemented on the basis of traditional
event-driven models, event handles are distributed
among different functions, and it is impossible to
directly understand the relationship between events from
the code. Moreover, additional design is required to
ensure the order of code execution. Event-Bus uses
coroutines to solve these problems that that can easily
complicate the program logic in event-driven systems,
thereby simplifying the coding logic of programs.

The combination of coroutines and the publish-subscribe
pattern gives the Event-Bus model advantages in terms of
concurrent processing and customized scheduling. However,
its correctness and safety need to be further verified using
formal methods.

B. EVENT-B METHOD
Event-B is a formal method for discrete system modeling
based on the B-Method and developed from the idea of action
systems [30], [31]. The obligation of proof characterizes
the semantics of the Event-B model. Event-B focuses on
proof obligation: it expresses the system at different levels

FIGURE 2. The relationship between the abstract machine and context
file in the Event-B method.

through refinement [32] and uses mathematical proofs to
ensure consistency between models. The methodology is
customized with respect to system requirements in differ-
ent projects. Event-B is an event-driven formal verification
method whose operation can be seen as the continuous exe-
cution of events that meet the conditions, making it easier to
model event-driven behavior and concurrent processes. The
multithreading component of the Event-Bus hybrid OSmodel
involves cooperative serialization operations. We define the
‘‘running state’’ enumerator, thereby transforming guarded
events into preconditioned operations. This technology [23]
enables parallel events in Event-B to run in sequence accord-
ing to the requirements.

The Event-B model consists of two parts: dynamic and
static. The static part of the model is described in the context
file, which includes the vectors’ set, constants, axioms, etc.
The model’s dynamic part is implemented by the abstract
machine and includes variables, invariants, theorems, events,
etc. Their relationship is briefly summarized as follows:
machines see contexts, contexts can be extended, machines
can be refined. The relationship between the abstract machine
and context in the Event-B method is shown in Figure 2.

This work relies on a formal verification and development
framework based on the Event-B method [7]. We adopted
the Event-B method and the Rodin platform to analyze the
Event-Bus hybrid model. The method’s framework is shown
in Figure 3. In this framework, the requirements are rewritten
to make the description more accurate [33]. The rewritten
requirements are carefully taken into account and summa-
rized following top-down vertical refinement. A mapping
between requirements and refinement is designed to obtain a
refinement strategy and confirm that the refinement strategy
is satisfactory. According to the refinement strategy, require-
ments are converted into events and actions to complete
the model’s vertical refinement. We add attributes or refine
operations through a series of model refinements, complete
the model step by step, and finally simulate the entire sys-
tem. Invariants and theorems describing properties in the
model can be converted into corresponding proof obligations
based on rules. The correctness properties of the model are
guaranteed by fully proving the related proof obligations.
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FIGURE 3. Formal verification and development framework based on the Event-B method.

TABLE 1. Basic mathematical notations used for Event-B in this paper.

The properties that are already proved to hold in the early
models are guaranteed to hold in the later models using
refinement. This framework is suitable for verifying a system
in the design phase, and the verification result is an assess-
ment of the safety and feasibility of the system design. More-
over, Event-B’s implementation model can be converted into
architecture code to guide the writing of system executable
code.

The basic mathematical notations used for Event-B in this
paper are defined in Table 1.

IV. REQUIREMENTS AND REFINEMENT STRATEGY
The requirements are analyzed and rewritten, and a refine-
ment strategy is designed before modeling. An abstract ver-
sion of the system is built initially. This model reflects the
fundamental properties of the system.We gradually refine the
model tomake it more concrete via a refinement strategy [32].
In this section, we focus on the requirement rewriting analysis

and refinement strategy formulation before proceeding to
modeling.

A. REQUIREMENTS ANALYSIS
When developers implement the Event-Bus hybridOSmodel,
they must draw up a series of documents to establish
development goals, called initial requirements. In formal
development, the initial requirements are an essential ref-
erence for modeling. Nevertheless, the system cannot be
modeled directly based on these requirements because the ini-
tial requirements regularly describe various implementation
details with natural language and lack information about the
system’s operating environment and properties. Therefore the
initial requirements are rewritten based on the specification
of the Event-B method. We communicate with developers
repeatedly based on the initial requirements to determine the
correctness and completeness of the rewritten requirements.
The initial requirement rewriting process can be divided into
three steps:

1) MODIFY
There are some unclear or unreasonable requirements in ini-
tial requirements, such as pseudo-implementation descrip-
tions and the pseudo-solution of a problem that is not
stated. For the former, we employ it as a comment instead
of keeping it in the rewritten requirements. For the lat-
ter, we make precise changes through communication with
developers.

2) ADD
The number of requirements will increase in two cases.
One is to decompose complex requirements. Complex
requirements containing multiple pieces can be decom-
posed to facilitate our subsequent modeling implementa-
tion. The other is to increase the correctness requirements.
The correctness requirements of the system are essential
for verification. Such requirements are often ignored in the
development stage. We need to summarize and add to these
requirements.
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TABLE 2. Refinement strategy of the Event-Bus hybrid model.

3) CLASSIFY
Requirements describe the system’s function, environ-
ment, and attributes through natural language, not a
pseudo-realization of the system. Their roles are to provide
a reference to the correctness of the final constructed sys-
tem. Requirements are segmented into three categories: FUN
(functional requirements), ENV (environmental require-
ments), and SAF (property requirements).
Event-Bus’s rewritten requirements include 36 specifica-

tions, consisting of 18 functional requirements, 16 environ-
mental overtures, and 2 property requirements.

B. REFINEMENT STRATEGY
A complex system has numerous requirements that are
challenging to fully implement in a single model. The
Event-B method solves this problem via a layered and refined
approach. First, we build the initial abstract model. Then,
corresponding requirements are implemented through mul-
tiple refinements of this model. In the refinement process,
the model increases in detail and becomes closer to the final
implementation. The rewritten requirements are gradually
transformed into a modeling language. Given the functions
described by various requirements and the dependencies
between these functions, we design the refinement strategy
to build hierarchically accurate models.

Considering the rewritten requirements, we separate the
refinement strategy into 8 levels of models. In Table 2,
the rewritten requirements implemented in the model at each
level are provided. Each model comprises a context file and
an abstract machine, denoted byCx andMy, respectively. The
first model is called the abstract model, and the last is the
implementation model.

The refinement strategy is divided into the following four
stages:

1) THE PUBLISH-SUBSCRIBE PATTERN
Model 0, called the abstract model, models the publish-
subscribe pattern, which is the fundamental basis of the

Event-Bus model. This model describes the basic function of
the publish-subscribe pattern.

2) MESSAGE PROCESSING
In model 1, the concrete realization of message processing is
expressed. We add the concepts of the release queue, dispatch
queue, and receiving queue. The judgment and handling of
illegal and legal messages are distinguished here.

3) THREADS AND COROUTINES
Threads and coroutines are implemented in model 2 to model
5. The two roles of publishers and subscribers are gradually
replaced by threads and coroutines.

4) RUNNING STATE
Inmodel 6, the running state is introduced, and the scheduling
of the system is modeled.

Model 7 is the last level of the Event-Bus system, and its
role is to assist in the proof of the system’s deadlock-free
property. It does not involve any refinement aspect, so it is
not included in the refinement strategy stage.

V. ABSTRACT MODEL
We present the detailed process of building the abstract model
in this section. The abstract model is model 0 of the sys-
tem, and the most abstract concept of the Event-Bus is the
publish-subscribe pattern.

A. SPECIFICATIONS
The following are the rewritten requirements in the abstract
model. The first four are environmental requirements,
explaining the objects in the publish-subscribe pattern and
their connections. The next two describing the behavior of the
system execution are functional requirements. The remaining
two are the property requirements of the system.

The system contains some publishers who can
send some messages.

ENV-1

The system contains subscribers who receive
some messages.

ENV-2

The system defines a set of topics. ENV-3

Each message the publisher sends is associ-
ated with a unique topic.

ENV-4

Each subscriber can subscribe to topics and
add topics to its subscription collection.

FUN-1

Each subscriber can unsubscribe from a topic
of interest by removing the topic from its sub-
scription collection. After that, the subscriber
will not receive any messages related to the
topic.

FUN-2

When a publisher sends a message, sub-
scribers interested in the message’s topic will
eventually receive the message.

SAF-1

The system is deadlock-free. SAF-2
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B. CONTEXT FILE
The first context file in the abstract model is C0, which
has four carrier collections that correspond to the sets of
topics, subscribers, publishers, and messages. The domains
of variables related to these four types of data are TOP, PUB,
SUB, andMSG. The code is as follows.

CONTEXT C0
SETS

TOP \\Topic Collection
PUB \\Publisher Collection
SUB \\Subscriber Collection
MSG \\Message Collection

END

C. INVARIANTS
The abstract model defines 11 invariants to express its
rewritten requirements. The first four invariants represent
instances of the topic, subscriber, publisher, andmessage, and
they all belong to the corresponding constant set. Invariant
inv1_5 records which topic each message belongs to. Invari-
ant inv1_6 records the publisher of each message. Invariant
inv1_7 records all messages sent to subscribers. Invariant
inv1_8 describes the variable erm, which is related to the
time meta variable era. The definition of variable era is given
in invariant inv1_9, which is a natural number representing
the system time. Variable stp records the topics of inter-
est to each subscriber in each period, described in invari-
ant inv1_3. Invariant main_1, called the ‘‘main property’’
describing the system’s liveness, is proposed based on SAF-1.
We analyze this invariant in detail in SectionVII. The variable
erm represents the relationship between the message and
the system time. The definitions of these invariants are as
follows.

inv1_1: top ⊆ TOP
inv1_2: sub ⊆ SUB
inv1_3: pub ⊆ PUB
inv1_4: msg ⊆ MSG
inv1_5: tms ∈ msg→ top
inv1_6: pms ∈ msg→ pub
inv1_7: rms ∈ sub→ P(msg)
inv1_8: erm ∈ msg→ 1 .. era
inv1_9: era ∈ N1
inv1_10: stp ∈ (1 .. era)→ (top↔ sub)
main_1: ∀s,m·s ∈ sub ∧ m ∈ rms(s)⇒

tms(m) 7→ s ∈ stp(erm(m))

D. EVENTS
In the abstract model, publishers, subscribers, and topics are
the three most basic objects. create_pub, create_sub, and
create_top are events for creating three objects: publisher,
subscriber, and topic, respectively. The code is shown below.

create_pub:
ANY p
WHERE

grd1: p /∈ pub
THEN

act1: pub := pub ∪ {p}
END

create_sub:
ANY s
WHERE

grd1: s /∈ sub
THEN

act1: sub := sub ∪ {s}
act2: rms(s) := ∅

END

create_top:
ANY t
WHERE

grd1: t /∈ top
THEN

act1: top := top ∪ {t}
END

Subscribers can be interested in multiple topics.
subscrib_topic and rmv_topic denote the events of subscrib-
ing to a topic and unsubscribing from a topic, respectively.
The relationship between subscribers and topics is main-
tained by modifying the variable stp. The code is shown
below.

subscrib_topic:
ANY s, t
WHERE

grd1: s ∈ sub
grd2: t ∈ top

THEN
act1: stp(era) := stp(era) ∪ {t 7→ s}

END

rmv_topic:
ANY s, t
WHERE

grd1: t 7→ s ∈ stp(era)
THEN

act1: stp := stp ∪
{era+ 1 7→ (stp(era) \ {t 7→ s})}

act2: era := era+ 1
END
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The event send_msg indicates that publisher p publishes
message m with topic t . The publisher is not interested in the
recipients of the message but cares only about the topic.

send_msg:
ANY p, m, t
WHERE

grd1: p ∈ pub
grd2: m /∈ msg
grd3: t ∈ top

THEN
act1: msg := msg ∪ {m}
act2: tms(m) := t
act3: pms(m) := p
act4: erm(m) := era

END

The event handle_msg is used to detect a newly published
message and assign it to each subscriber interested in this
message’s topic. The subscriber handles all messages sent to
it, but the details of message processing are not defined.

handle_msg:
ANY s, m
WHERE

grd1: s ∈ sub
grd2: m ∈ msg
grd3: tms(m) 7→ s ∈ stp(erm(m))
grd4: m /∈ rms(s)

THEN
act1: rms(s) := rms(s) ∪ {m}

END

The refinement process is illustrated after the abstract
model. According to the refinement strategy, we gradually
build the model by making it increasingly precise such that
it expresses more relevant properties.

VI. REFINEMENTS
Based on the refinement strategy, three functional stages are
considered: message processing, thread and coroutine, and
running state.

A. MESSAGE PROCESSING
The details of message processing are omitted from the
abstract model: we describe the messaging strategy in this
subsection. The model at this stage corresponds to model 1.
The following three rewritten requirements describe the mes-
sage’s delivery and the processing after the message is
received.

When a publisher sends a message, multiple
copies of the message are sequentially deliv-
ered to the queues of subscribers interested in
the message’s topic.

FUN-3

A message in a subscriber’s receiving queue
will be accepted by the subscriber and
removed from the receiving queue if the topic
is still of interest to the subscriber.

FUN-4

A message in a subscriber’s receiving queue
will not be accepted by the subscriber andwill
be removed from the receiving queue if the
topic is not of interest to the subscriber.

FUN-5

The variable nyd represents the message delivery list,
shown as invariant inv2_1, defined to record the source and
destination of each sent message. Invariant inv2_2 defines
the receiving queue rqu that is used to store the subscribers’
messages. Invariant inv2_3 introduces the characteristics that
every published message is recorded in nyd .

inv2_1: nyd ∈ msg↔ sub
inv2_2: rqu ∈ msg↔ sub
inv2_3: ∀m·m ∈ dom(nyd)⇒ nyd[{m}]

⊆ stp(erm(m))[{tms(m)}]

The events of the abstract model are modified based on
the rewritten requirements. The process of message handling
is refined into receiving messages and refusing messages,
corresponding to FUN-2 and FUN-3, respectively. The event
handle_msg in the abstract model is decomposed into two
events: recv_msg and refu_msg.

Two guard conditions are applied during the receive mes-
sage event. One is message m in the receiving queue of
subscriber s, and the other is s still interested in the topic of
m. A two-step action is executed if the guard conditions are
met. First, m is deleted from s’s receiving queue rqu. Then, m
is accepted by adding m to s’s received collection rms.

recv_msg:
ANY s, m
WHERE

grd1: m 7→ s ∈ rqu
grd2: tms(m) 7→ s ∈ stp(era)

THEN
act1: rqu := rqu \ {m 7→ s}
act2: rms(s) := rms(s) ∪ {m}

END

The different guard condition for refusing messages is that
the current subscriber does not subscribe to a given topic. The
action is to remove the message from s’s receiving queue rqu.

refu_msg:
ANY s, m
WHERE

grd1: m 7→ s ∈ rqu
grd2: tms(m) 7→ s /∈ stp(era)

THEN
act1: rqu := rqu \ {m 7→ s}

END
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B. THREADS AND COROUTINES
This section introduces threads and coroutines to replace pub-
lishers and subscribers. The refinement of model 2 to model
5 is described this subsection. The rewritten requirements
ENV-5 and ENV-6 describe the relationship between these
objects. We apply various variables and invariants to define
threads and coroutines based on Event-B’s parallel event
feature.

Each thread contains some coroutines. ENV-5

Each coroutine corresponds to a publisher and
a subscriber.

ENV-6

The publisher and the subscriber are not the objects
expected by the implementation model but represent the fun-
damental concepts of Event-Bus. The refinement and replace-
ment of variables can be solved in these refined models.
The concepts threads and coroutines replace publishers and
subscribers: there are one or more threads in the OS and one
or more coroutines in a thread. Each coroutine in Event-Bus
can be regarded as being coupled with a publisher and a
subscriber. Consequently, each coroutine can send or receive
messages and subscribe to topics.

The replacement relationship between the thread/coroutine
and the publisher/subscriber is now defined. A series of
related variables, such as rqu and nyd , represents threads,
coroutines, and other refined characteristics. The invariants
that define these constraints are as follows, where invariant
inv3_1 means variable th_rq is the union of the receiving
queues of all subscribers in thread th. Invariants inv3_2 and
inv3_3 express the conversion of the message delivery list
nyd after the introduction of threads. Invariants inv3_4 and
inv3_5 represent the relationship when the message delivery
list nyd1 is converted from threads to coroutines. Invariant
inv3_6 enforces the invariance of cstp, that is, the corou-
tine’s topic subscription. Invariant inv3_7 means that cstp
is derived from the original subscriber- and topic-associated
variable stp.

inv3_1: th_rq = (λth·th ∈ thr|
(
⋃
s·s ∈ ths−1[{th}]|rquB {s}))

inv3_2: nyd1 ∈ thr→ (msg↔ sub)
inv3_3: nyd = (

⋃
t ·t ∈ thr|nyd1(t))

inv3_4: nyd2 ∈ thr→ (msg↔ crt)
inv3_5: ∀t,m, s, c·t ∈ thr ∧ m ∈ msg

∧ s ∈ sub ∧ c ∈ crt⇒ ((s 7→ c) ∈ sc⇒
((m 7→ s) ∈ nyd1(t)⇔
(m 7→ c) ∈ nyd2(t)))

inv3_6: cstp ∈ (1 .. era)→ (top↔ crt)
inv3_7: ∀e, t, s, c·e ∈ 1 .. era

∧ t ∈ top ∧ s ∈ sub ∧ c ∈ crt
⇒

((s 7→ c) ∈ sc⇒
((t 7→ s) ∈ stp(e)⇔ (t 7→ c) ∈ cstp(e)))

Threads and coroutines replace the publishers and sub-
scribers in all events’ input parameters. The WITH area
defines the variable substitution relationship. All variables are
related to the publisher or the subscriber, for example, req
and nyd are replaced with the corresponding variables th_rq
and nyd2.

As shown in the replacement in the event recv_msg,
the input parameter changes from subscriber s to
coroutine c.

recv_msg:
ANY c, m
WHERE

grd1: c ∈ crt
grd2: crs(c) = TRUE
grd3: m 7→ sc−1(c) ∈ th_rq(ct(c))
grd4: falsetms(m) 7→ c ∈ cstp(era)

WITH
s: s = sc−1(c)

THEN
act1: cst(c) := sleeping
act2: th_rq(ct(c)) := th_rq(ct(c)) \

{m 7→ sc−1(c)}
act3: crms(c) := crms(c) ∪ {m}

END

C. RUNNING STATE
The last stage consists of model 6, which is the implemen-
tation model. The states of a coroutine are illustrated in
the implementation model. In an OS, a thread regularly has
three states: ready, running, and blocked. The three states
of a thread are condensed into two states of a coroutine in
the model: active and sleeping (the ready state and running
state are combined into the active state). ENV-7 describes
the running states of a coroutine, and ENV-8 shows that all
coroutines in the same thread must be executed sequentially.

The coroutine has two states, active and sleep-
ing, and it is in only one state at a time.

ENV-7

At most one coroutine in a thread is running. ENV-8

A state set STT is added to the context file C3, as follows.
There are two constants, active and sleeping, which represent
the two states of the coroutine in the model. Axiom axm1
explains the relationships between the following variables.

CONTEXT C3
SETS

STT
CONSTANTS

active, sleeping
AXIOMS

axm1: partition(STT, active, sleeping)
END
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Variable cst means that each coroutine has a state of STT ,
constrained by the following invariants inv4_1 and inv4_2.
inv4_3 and inv4_4 define the coroutine waiting topic set
variable cwt . The topics in the set cwt must be subscribed
to by the coroutine.

inv4_1: cst ∈ crt→ STT
inv4_2: ∀c·c ∈ crt ∧ cst(c) = active⇒

(∀cr ·cr ∈ crt ∧ cr 6= c ∧
ct(c) = ct(cr)⇒ cst(cr) = sleeping)

inv4_3: cwt ∈ top↔ crt
inv4_4: cwt ⊆ cstp(era)

We add judged states to the guard conditions of related
events to ensure that all coroutines in the same thread
have only one coroutine running simultaneously. Two events
wait_msg and recv_msg define the transition of the corou-
tine’s states: the event wait_msg changes the running state
from active to sleeping, and the event recv_msg changes the
running state from sleeping to active.
The active state coroutine requests that the topic of inter-

est’s message calls the event wait_msg, and the running state
changes to sleeping. The meaning of wait_msg is that an
active coroutine initiates a waiting request for certain topics,
and the two parameters c and ts represent the coroutine and
topic set, respectively. The guard condition grd1 requires that
the variable c is an active coroutine. The guard condition grd2
indicates that ts is a nonempty topic set and that all topics in
ts are subscribed to by c. grd3 requires that the coroutine c is
not the last active coroutine in the system.

wait_msg:
ANY c, ts
WHERE

grd1: c ∈ crt ∧ cst(c) = active
grd2: (ts ⊆ top ∧ ts 6= ∅) ∧

(ts× {c} ⊆ cstp(era) \∅)
grd3: (∃d ·d ∈ crt ∧ d 6= c ∧

cst(d) 6= sleeping ∧ d ∈ ran(sc)) ∨
(∃m, d ·d ∈ crt ∧ d ∈ ran(sc) ∧
m ∈ msg ∧ tms(m) 7→
d ∈ cwt ∪ (ts× {c}) ∧
(m 7→ d ∈ (nyd2(onth(tms(m)))) ∨
m 7→ sc−1(d) ∈ (th_rq(ct(d)))))

THEN
act1: cst(c) := sleeping
act2: cwt := cwt ∪ (ts× {c})

END

The meaning of the receive message event recv_msg is that
a sleeping coroutine c has received the message m that it is
waiting for. If there is no active coroutine in the thread of
c at this time, c will receive this message. grd1 requires the
variable c to be a coroutine. grd2 indicates that the messagem

is sent to the receiving queue of the thread of c. grd3 indicates
that the topic of message m is subscribed to and awaited by
coroutine c. grd4 requires that all coroutines in the thread of
c are sleeping. The meaning of the next few actions is that the
coroutine c receives the message m, then the waiting request
of c is removed, and c enters the active state.

recv_msg:
ANY t, m, c
WHERE

grd1: c ∈ crt
grd2: m 7→ sc−1(c) ∈ th_rq(ct(c))
grd3: (tms(m) 7→ c ∈ cstp(era)) ∧

tms(m) 7→ c ∈ cwt)
grd4: ∀cr ·cr ∈ crt ∧ ct(cr) = ct(c)

⇒ cst(cr) = sleeping
THEN

act1: rms(sc−1(c)) := rms(sc−1(c)) ∪ {m}
act2: th_rq(ct(c)) := th_rq(ct(c)) \

{m 7→ sc−1(c)}
act3: crms(c) := crms(c) ∪ {m}
act4: cst(c) := active
act5: cwt := cwt B− {c}

END

The above method describes the model refinement process
that is performed after the abstract model is established. The
purpose of model 7 is to support the proof of nature, and the
corresponding rewritten requirement is SAF-2. Since model
7 does not involve the refinement of any variables or events,
it is not described in this section.

VII. VERIFICATION AND VALIDATION
Invariants are proposed to express the system’s properties to
verify and validate the system and subsequently generate and
prove the corresponding proof obligations.

A. VERIFICATION BY PROOF OBLIGATIONS
The interplay between editing models and analyzing their
proof obligations are the two components of the Event-B
method [8]. Proof obligation ensures that each event pre-
serves the invariants and verifies that the refinement has
been performed correctly. The proof obligation represents
the backbone of Event-B’s ability to demonstrate the correct-
ness regarding some behavioral semantics [34]. The Rodin
Platform automatically generates proof obligations, and the
rules for generating proof obligations follow the substitutions
calculus [7]. Three types of proof obligations are essential in
the Event-Bus hybrid model.

1) INVARIANT PRESERVATION PROOF OBLIGATION
The invariant proof obligation ensures that the invariant is
always established during the operation of the entire system.
Let v be the variables before the event is executed and v′ be
the variables after the event is executed. Sets s and constant c
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constitute the context file. The axioms of s and c are denoted
by P(s, c), and the invariant is denoted by I (s, c, v). Let
G(s, c, v) be the guard and R(s, c, v, v′) be the before-after
predicate of a machine’s event. The statement to prove to
guarantee that the event maintains invariant I (s, c, v) is the
following:

P(s, c) ∧ I (s, c, v) ∧ G(s, c, v) ∧ R(s, c, v, v′)

⇒ I (s, c, v′) (1)

2) THEOREM PROOF OBLIGATION
The theorem proof obligation is automatically created to
ensure that a stated context andmachine theorem are provable
from the axioms and invariants. In accordance with which
variables are involved in the theory, the theory variant can
be divided into T (s, c, v) and T (s, c). When the axioms and
invariants are determined, the theorem invariant is satisfied.
Its definition is shown below.

P(s, c) ⇒ T (s, c)

P(s, c) ∧ I (s, c, v) ⇒ T (s, c, v) (2)

3) REFINEMENT PROOF OBLIGATION
If machine M refines machine N, M is called the concrete
machine and N is the abstract machine. The invariant preser-
vation proof obligation should be established to verify that
each concrete event preserves both newly created invariants
in the concrete machine and abstract invariants. The con-
crete event execution does not contradict the corresponding
abstract event.

B. CORRECTNESS INVARIANTS
Properties are corresponding proof rules and invariant con-
straints in Event-B. Two essential properties of concur-
rent systems are safety and liveness. Safety properties are
described as ‘‘something bad never happens.’’ Deadlock-
free [35] is an essential safety property in the Event-B model.
Liveness properties [36] refer to the state of ‘‘something good
eventually happens.’’ The main property is a description of
the liveness of the system.

1) DEADLOCK-FREE
Deadlock in Event-B means there is no way to execute any
event when the model is in a given state and the guard
conditions of all events are not met. In contrast, a model has
at least one event to execute in any state is called deadlock-
free. Consider a model with n events, where each event has
several guardian conditions. Let Gi(1 < i < n) be the sum of
all guardian conditions for the i − th event. Gi(1 < i < n)
is true means that event i of the model can execute. The
mathematical expression of the model’s deadlock-free theory
is as follows.

P(s, c) ∧ I (s, c, v)

⇒ G1(s, c, v) ∨ G2(s, c, v) ∨ · · · ∨ Gn(s, c, v) (3)

The implementation model is complicated, and it is
difficult to prove the deadlock-free property directly. We
solve the problem through a bottom-up proof method. The
deadlock-free property is proved at every model level.
The proof result of a lower-level model can be uti-
lized as a theorem to assist in proving a higher-level
model.

The deadlock-free theorem of the abstract model is denoted
as dlf_0, which is described as follows. There are nine guard
conditions in the abstract model that indicate whether the
abstract model is deadlock-free.

dlf_0: P(s, c) ∧ I (s, c, v)⇒
G1(s, c, v) ∨ G2(s, c, v) ∨ · · · ∨ G9(s, c, v)

The deadlock-free theorem of the implementation model is
denoted by dlf, with the previous-level model’s deadlock-free
property theorems. The mathematical expression is as
follows.

dlf: dlf _0, . . . , dlf _6 ` P(s, c) ∧ I (s, c, v)⇒
G1(s, c, v) ∨ G2(s, c, v) ∨ · · · ∨ G16(s, c, v)

2) MAIN PROPERTY
The main property is that all messages in the system can be
delivered correctly. Themain property of the abstract model is
describedmain_1 as follows. If subscriber s receivesmessage
m, s must be interested in the topic when m is sent.

main_1: ∀s,m·s ∈ sub ∧ m ∈ rms(s)⇒
tms(m) 7→ s ∈ stp(erm(m))

All events satisfy the main property before and after run-
ning. Themain property’s description and proof change as the
models are refined. We rewrite the main property in the other
two refined models.

In model 1, the event handle_msg is split into the required
event recv_msg and the refused event refu_msg: the main
property must be modified to match the case for both
events. The added variable e describes the event to ensure
the timeliness of a message. The main property is as
follows.

main_2: ∀s,m·s ∈ sub ∧ m ∈ rms(s)⇒
(∃e·e ∈ erm(m) .. era ∧
tms(m) 7→ s ∈ stp(e))

Model 6 introduces threads and coroutines to replace
publishers and subscribers, respectively. Correspondingly,
the invariant of the main property is changed based on
the thread and the coroutine. The coroutine c replaces the
subscriber s. The main property is as follows.
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main_3: ∀c,m·c ∈ crt ∧ m ∈ crms(c)⇒
(∃e·e ∈ erm(m) .. era ∧
tms(m) 7→ c ∈ cstp(e))

C. VALIDATION AND STATISTICS
For model validation, the Rodin platform is employed to
model and verify Event-Bus. The Rodin platform automat-
ically generates the corresponding proof obligations for each
theorem and invariant and can also automatically prove most
of the proof obligations, although a few complex proof obli-
gations require manual interactive proof. The proof obliga-
tions of the correctness generation invariants are to be proven
at each model level.

There are many powerful plugins in Rodin; in this work,
we utilize Atelier B, AnimB, and ProB to reduce our work-
load. Atelier B proves the proof obligations automatically,
and ProB is a constraint solver and model checker for the
Event-B method. Most of the proof obligations are demon-
strated without user intervention. The constraint-solving
capabilities of ProB can be applied to model development,
deadlock checking, and test-case generation. AnimB ani-
mates and simulates models: it allows fully automatic anima-
tion and can systematically check a specification for a wide
range of errors.

TABLE 3. Proof statistics of the Event-Bus hybrid model.

Table 3 shows the proof results of the models in the
Rodin platform. A total of 634 proof obligations were
discharged, of which 577 were discharged automatically,
whereas the remaining 57 required manual certification,
for an automatic certification rate of 91%. The completion
rate of automatic proofs is related to the complexity of
the proof obligation. The abstract model is automatically
proven because of its simple structure. However, the proof
obligations of the deadlock-free property involve all events’
guard conditions, and the structure is the most complex.
Therefore, we prove the deadlock-free property by hand in
every refined model. The powerful plugins of Rodin dra-
matically help our work by automating most of the tedious
mechanical work. Nevertheless, part of the verification work
requires human intervention, which can be avoided by more
thoughtful modeling and more intelligent automatic proof
tools.

VIII. CONCLUSION AND FUTURE WORK
We focus on the modeling and verification of a hybrid model
for an IoT OS. Various programming models are analyzed,
and the Event-Bus hybrid model is proposed. The Event-B
method is applied for modeling and verification of Event-
Bus. The refinement strategy partitions all requirements into
8 levels of models. The Event-Bus is verified and validated
by proving the corresponding proof obligation in each level
of model, and the deadlock-free property and main property
are satisfied in each model.

Work on the remaining issues in this paper will be pre-
sented in the future. We will focus on automated verification
and propose a set of Event-B modeling specifications to
further automate the system’s proving work. Furthermore,
we will explore the automated code generation of Event-B,
convert Event-B code into executable C codemore efficiently,
and guide the code implementation of the Event-Bus IoT OS.
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