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ABSTRACT Power flow (PF) analysis of microgrids (MGs) has been gaining a lot of attention due to the evo-
lution of islandedMGs. To calculate islandedMGs’ PF solution, a globally convergent technique is proposed
using Differential Evolution (DE)- a popular optimization algorithm for global non-convex optimization.
This paper formulates the PF problem as a constrained optimization problem (COP) considering all the
operating conditions of the Droop Controlled Islanded MGs (DCIMGs). To solve the proposed COP, εDE-
NGM, (Epsilon based Differential Evolution with Newton-Gauss-basedmutation) is proposed. The proposed
algorithm, εDE-NGM, is a novel variant of DE since it comprises a novel mutation operator, Newton-Gauss-
based mutation (NGM). NGM includes all the important features of DE’s mutation strategies as well as
reduces the constraint violation by utilizing the information of constraint-space. Numerical experiments
validate that the global convergence ability of proposed algorithms in solving COPs than existing state-
of-the-art algorithms. Furthermore, the proposed algorithm as a PF tool has better robustness than existing
tools on ill- and well-conditioned systems with heavy loads, different limit violations, and inappropriate final
solutions (far from the flat start). The performed comparative analysis confirms good agreement of accuracy
and efficacy with the existing method for islanded MG’s PF.

INDEX TERMS Constrained optimization problem, differential evolution, islanded microgrid, power flow,
distributed generation.

NOMENCLATURE
α Active power exponent
x̄L Lower bound of search space
x̄U Upper bound of search space
x̄θ Top θ−th individuals
β Reactive power exponent
1x̄ Increment expected in point x̄
1C(x̄) Constraint violation vector
ω Operating system frequency
ω0 Nominal frequency of the system
φ(x̄) Degree of the constraint violation
Bij Susceptance of line between ith and jth bus
C(x̄) Constraints vector
Cp Frequency dependability coefficient for active power
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Cq Frequency dependability coefficient for reactive
power

cp Control parameter for reduction speed of the
ε−level

CR Crossover rate
D Dimension of the problem
F Scaling factor parameter
f (x̄) Objective function
Gij Conductance of line between ith and jth bus
gi ith inequality constraint
hj jth equality constraint
mpi Reactive power static droop gain
Nbus Total number of buses
ng Number of inequality constraints
nh Number of equality constraints
npi Active power static droop gain
P0,l,k Nominal active power load demand at k th bus
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Pi,dg Active power injection by DG at ith bus
Pi Active power injection at ith bus
Pj,max Maximum active power limit of DG at jth bus
Pj,min Minimum active power limit of DG at jth bus
Pl,k Active power load demand at k th bus
Q0,l,k Nominal reactive power load demand at k th bus
Qi,dg Reactive power injection by DG at ith bus
Qi Reactive power injection at ith bus
Qj,max Maximum reactive power limit of DG at jth bus
Qj,min Minimum reactive power limit of DG at jth bus
Ql,k Reactive power load demand at k th bus
r Resistance of line
Sdg Set of droop buses
Vk Voltage at k th bus
Vm,k Imaginary part of voltage at k th bus
Vr,k Real part of voltage at k th bus
x Reactance of line
z impedance of line

I. INTRODUCTION
A microgrid (MG) has been recognized as a collection of
Distributed generation units (DGs) interconnected with ther-
mal and electrical loads, energy storage units, and capacitor
banks. Besides, it functions as a single small scale distribu-
tion system. By using power electronic controls and inter-
faces,MG’s reliability, security, and controls can be enhanced
[1], [2]. An MG can run in an islanded or grid-connected
mode. In an islanded mode, DGs controllers are capable
of voltage and frequency regulation along with controlling
active and reactive power sharing among them [3]. While
in a grid-connected mode, the main grid regulates MGs’
operating frequency and slack bus voltage [4]. In islanded
MGs, DGs are interconnected to each other using a suit-
able control approach for power-sharing (see, for example,
[3]–[6]). To design an effective and efficient control strategy,
a PF analysis model is required to calculate the steady-state
variables, especially for an islandedMG. In popular practices,
DG having the highest capacity is considered as a slack bus.
This bus operates as an infinite bus at a constant voltage to
provide system frequency, and other DGs are treated as either
PV or PQ buses. However, this assumption cannot be feasible
in Islanded MGs. For example, the generation capacity of
DGs is not usually high enough to enable them for acting as
an infinite bus [7]. Therefore, a DG cannot be operated as a
slack bus in PF analysis. In DCIMGs, load sharing among
all DGs has been done using droop controllers. In this case,
bus voltage and system frequency are locally regulated [8].
Due to the droop controllers’ installation, new PF variables
are introduced. These new variables cannot be handled by
conventional PF analysis tools.

PF analysis includes computing of bus voltages and line
flows in the electric power networks for given load demands.
Numerous techniques have been proposed for PF analy-
sis of the different types of electric networks according to

their characteristics. Some of them are derived from the
Newton-Raphson (NR) approach [7], [9], while others are
based on the basic electric circuit laws [10]. However, con-
ventional algorithms cannot obtain steady-state solutions for
the DCIMs due to the droop characteristics of power-sharing
controllers. To resolve this issue, Abdelaziz et al. proposed a
three-phase model of the PF problem as a least-square opti-
mization problem in [11], which adopts the real characteris-
tics of islandedMGs. In [11], the Newton-Trust region (NTR)
algorithm is utilized to solve the formulated least-square
optimization problem. Although NTR’s convergence is bet-
ter than other conventional techniques, it is highly sensi-
tive to the initial solution. The authors of [12] proposed
an interior point-based power flow technique for balanced
islanded microgrids, where PF is formulated as COP. How-
ever, this algorithm is only applicable to a balanced sys-
tem. Therefore, this algorithm can hardly be used in the PF
analysis since distribution systems are highly unbalanced in
nature.

Several modifications to the conventional algorithms have
been proposed for increasing their applicability in the case
of DCIMGs. Authors of [13] proposed a backward/forward
sweep (BFS) method to solve the PF problem of DCIMGs.
In [13], a reference voltage is selected from one of the bus
voltages of all DGs in such a manner that reactive power gen-
eration at other DGs can be regulated. However, this assump-
tion does not mimic the actual behavior of the DCIMGs
since reactive power generation depend upon their local
bus-voltage magnitude. In [14], a modified BFS algorithm
is proposed to obtain steady-state solutions of a DCIMG.
However, their application is limited to the radial MGs since
BFS algorithms consider the radial structure in their model
formulation.

In [15], a modified Gauss-Seidel (GS) algorithm is pro-
posed for PF analysis of the DCIMGs, where all operational
features of the DGs are included alongside droop character-
istics. Although the PF model is accurate, the modified GS
algorithm exhibits poor convergence characteristics as com-
pared to other conventional alternatives. Mumtaz et al. [16]
propose a Modified NR (MNR) algorithm, where the PF
model includes non-linearity of the droop equations. How-
ever, MNR fails to converge for the system having a high
R/X ratio due to the ill-conditioning of the PF model pro-
posed in [16]. To resolve this issue, Kumar et al. [17], [18]
proposed a nested iterative framework for the NR-based algo-
rithm to improve the convergence over the PF problem of
DCIMGs.

Moreover, several studies based on a nature-inspired opti-
mization algorithm have been performed to solve the PF prob-
lem of DCIMGs. The authors of [19] introduced a method
based on the Particle Swarm Optimization (PSO) algorithm
to solve the PF problem of DCIMGs [19], where PSO is
employed to calculate the optimum droop parameters for
sharing the reactive power. However, this method cannot
consider the sharing of active power among the DGs. In [20],
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the work of [19] is extended by implementing two operators,
mutation and guaranteed convergence, in PSO. These oper-
ators improve accuracy and ability to drag solutions from
the infeasible regions to feasible regions. A Genetic Algo-
rithm (GA) based PF models for DCIMGs is also proposed
in [21], and [22]. A new hybrid evolutionary algorithm is
proposed in [23] where hybridization of two different evo-
lutionary algorithms (GA and Imperialist Comparative Algo-
rithm (ICA)) is done and named as Imperialist comparative
algorithm and genetic algorithm (ICGA). However, solutions
obtained by these evolutionary algorithms are not so accurate
for considering as a steady-state solution.

Moreover, PF problems can be divided into three classes
i) well-conditioned, ii) ill-conditioned, and iii) unsolvable.
In the well-conditioned case, conventional PF algorithms,
such as Newton’s based algorithm, can easily solve under
the flat initial seed. Although ill-conditioned PF problems
are solvable, traditional algorithms fail to converge under
the flat start. Usually, the real operating point of these
problems is far away from the flat start. On the other
hand, the unsolvable PF problem has no solution in its fea-
sible region. In the case of DCIMG, ill-conditioned and
unsolvable systems are frequently encountered. PF algo-
rithms may fail to converge for some ill-conditioned oper-
ating conditions of the DCIMG, such as heavy load, faulty
lines, etc. A robust PF method should have the following
qualities.

1) It must show high efficiency while solving well-
conditioned test cases.

2) It must provide adequate robustness towards the
ill-conditioned conditions.

3) It can obtain a PF solution for unsolvable cases near to
a feasible operating state.

However, to achieve the above-mentioned properties, a bal-
ance between convergence and efficiency is expected in
the core of the PF methods during the iterative steps.
In Table 1, a summary of recently proposed power flow algo-
rithms for microgrids is reported. As shown in the Table 1,
ill-conditioned and unsolvable test cases have not been con-
sidered. In this work, a global convergent PF algorithm
is proposed that provide effective and robust performance
over different kind of PF problems: i) well-conditioned
microgrids, ii) ill-conditioned microgrids, and iii) unsolvable
microgrids.

To overcome all the above-discussed limitations of state-
of-the-art algorithms, this paper proposes a new PF formula-
tion expressed in the form of the COP, where different modes
of operations of DGs, such as PV, PQ, and droops opera-
tions are modeled as problem constraints. To solve this COP,
a novel optimization algorithm, called εDE-NGM, is pro-
posed. The convergence capability and feasibility related
issues of DE are improved for solving the COPs having a high
number of equality constraints. For this purpose, a solution
repairing mutation operator, called NGM, is incorporated
in DE to repair an infeasible solution. The performance of

TABLE 1. A summary of major power flow algorithms of islanded MG
proposed since last decade. Ref.: Reference, IM: Islanded Microgrid, GCM:
Grid-connected Microgrid,, BO: Balanced Operation, UBO: Unbalanced
Operation, MN: Meshed Network, RN: Radial Network, IC: Ill-conditioned,
US: Unsolvable Case.

εDE-NGM is analysed over modern COPs, and obtained
results are compared with the results of state-of-the-art
algorithms to show the algorithm’s effectiveness. Further-
more, to show the efficacy of the εDE-NGM as a PF tool,
a comparative analysis with the time domain simulator in
PSCAD [39], evolutionary algorithms methods (GPSO-GM
[20], and ICGA [23]) and deterministic method, i.e., NTR
[11] are also presented. The main contributions of this work
are summarized as follows.

• A novel formulation is introduced as a COP for the PF
analysis of DCIMGs.

• This PF formulation includes constraints based on the
droop characteristics of DGs to deal with the droop
buses. Besides, system frequency is also considered as
an extra variable of the PF problem.

• A metaheuristic, named as εDE-NGM, is proposed to
solve COPs with non-linear equality constraints. More-
over, this algorithm is utilized as a PF tool for DCIMGs
by solving the PF problem formulated as a COP.

• This PF solving approach implements an adequate
method to share reactive and active power among DGs
based on their droop characteristics.

This paper is organized as follows. In the second section,
the microgrid system and load are modeled. This is followed
by formulating the constrained optimization problem for a
power flow analysis of islanded MGs. In the fourth section,
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the main steps of the optimization algorithm are proposed.
The validation of the proposed algorithm on the power flow
problem of islanded MGs is discussed in the fifth section.
Finally, the conclusion of this paper is given in section six.

II. DIFFERENTIAL EVOLUTION
DE is a global optimization search algorithm proposed by
Storn and Price [40]. DE can be applied to different opti-
mization problems viz. non-convex, non-differential, non-
linear, and multi-modal problems. In literature, it is shown
that DE has been proved to be robust and efficient in these
problems [41]. In DE, initial solutions are generated ran-
domly within the lower and upper bound of search space,
and these solutions form an initial population. Each solution
consists of n elements as decision parameters of the problem.
At each iteration, all solutions of the population are selected
as parents. Offspring generation of each parent is done as
follows:
• The mutation process begins with the selection of 3
solutions from the population different from the parent.
The first solution out of 3 is considered a base vector
and the other two solutions are utilized to generate a
difference vector. This difference vector is weighted
using a parameter F and added to the base vector. This
process returns a vector, called a mutant vector, for each
parent.

• The mutant vectors crossover with their parent solu-
tions to generate trial solutions. Here, the probability of
crossover is controlled by a parameter CR. This scheme
returns a trial solution for each parent solution.

• Finally, the trial solutions are compared one-yo-one with
their parent, where a trial solution is selected in place of
its parent if it is better than the parent in terms of fitness
value.

The DE [40] algorithm is a popular global optimization
technique used in different problems of the power system.
DE is a more robust and efficient technique as compared
with other evolutionary algorithms (EAs). Enhanced variants
of DE have been considered the best according to recent
CEC competitions [42], [43]. However, most power system
problems contain several constraints, and DE may not be
directly applied to such problems. To cope with this issue,
several variants of DE have been proposed in the literature.
To solve COPs, a modified variant of DE is proposed in [44],
where multiple trial solutions are generated for each indi-
vidual using various mutation operators. Deb’s feasibility
rule [45] is employed in the selection procedure to handle the
constraints.

Elsayed et al. [46] proposed a multi-operator based
self-adaptive DE to solve COPs. In that paper, each mutation
operator has its own sub-population to generate new trial
solutions. An improvement index is utilized to dynamically
change the number of individuals in each sub-population
according to their success rate. In [47], an improved version
of the above-discussed algorithm, called ISAMODE-CMA,
is proposed, where the CMA-ES algorithm is utilized as

a local search operator, and a dynamic penalty is used to
transform constrained-space into bound-constrained-space of
the given problems. In [48], amulti-operator basedDE variant
is proposed where two crossover operators, four mutation
strategies, and two constraint handling techniques are incor-
porated in DE’s framework to solve COPs.

Wang et al. [49] proposed a composite DE for solving
COPs using three distinct mutation operators. Each mutation
operator generates trial solutions for each solution where
one operator is used to improve diversity, while others
increase the convergence rate. Furthermore, a hybrid con-
straint handling technique and restart mechanism are also
developed to handle the COPs’ complex constraints. In [50],
an adaptive DE algorithm is proposed to solve COPs, where
DE/rand/1/bin mutation strategy is applied in the early stage
of optimization. In contrast, DE/rand/1/exp mutation strat-
egy is utilized in later iterations. Division of optimization
stages and applying different mutation strategies in each
stage improve the balance between exploitive and exploratory
search. Moreover, CR is dynamically updated using the suc-
cess information of generated individuals.

Gao et al. [51] proposed a dual-population based DE vari-
ant with coevolution for constrained optimization. In that
algorithm, a COP is transformed into a bi-objective optimiza-
tion problem where the first objective is the actual objec-
tive function, and another one is the constraint violation.
The whole population is divided into two sub-populations in
which each sub-population is evolved to improve respective
objectives. An information-sharing scheme is also proposed
to exchange the information between these sub-populations.
In [52], an improved variant of DE is proposed to solve
COPs, where one of two distinct mutation operator is selected
randomly to improve the solution quality in the population.
Moreover, to deal with equality constraints, a new scheme
is proposed to transform equality constraints into inequality
constraints.

Trivedi et al. [53] proposed a unified DE (IUDE) algorithm
for constrained optimization, where existing DE variants,
SaDE, CoDE, and JADE with the ranking based mutation are
incorporated in a single framework. In that algorithm, three
mutation strategies and two-parameter settings with static
penalty technique are used to evolve two sub-populations.
An enhanced variant of IUDE is introduced in [54], where
a combination of Deb’s feasibility rule and ε-constrained
are applied to deal with constraints. Interested readers can
pursue a review paper written by Das et al. [55] for further
information about the new improvements of DE. In the liter-
ature, numerous DE-based algorithms have been proposed to
solve COPs. However, existing algorithms suffer from serious
issues, which are as follows [56].

1) The performance of the above-mentioned algorithms
deteriorates when the number of equality constraints
increases.

2) The above-mentioned algorithms may not find a fea-
sible solution to problems having a low volume of
feasible regions.
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3) They can suffer from local convergence when mul-
tiple disconnected feasible regions are present in the
problem-space.

Generally, power system planning problems involve many
equality constraints, and identifying a feasible solution
becomes extremely challenging for state-of-the-art algo-
rithms [57]. For dealing with the equality constraints, most of
the EAs convert equality constraints into relaxed inequality
constraints. As a result, the feasibility of the obtained solu-
tions is inadequate. To address this issue, this paper intro-
duces an algorithm to solve the problem with many equality
constraints by introducing a NGM operator that finds a fea-
sible solution from an infeasible solution using the NG [58]
algorithm at the infeasible solution as an initial solution. The
proposed algorithm is named as εDE-NGM, and the main
operators of εDE-NGM are discussed in the next section.

III. PROPOSED ALGORITHM
This section introduces the proposed algorithm εDE-NGM,
which utilizes ε-constrained and NGM to handle the con-
straints for solving COPs with a large number of equality
constraints.

Without losing generality, a COP can be defined as follows.

Minimize, f (x̄)

subject to: gi(x̄) < 0, i = 1, 2, . . . , ng,

hj(x̄) = 0, j = 1, 2, . . . , nh,

x̄L ≤ x̄ ≤ x̄U . (1)

Degree of the constraint violation, φ(x̄), can be calculated as
follows:

φ(x̄) =

∑ng
i=1max{0, gi(x̄)} +

∑nh
j=1max{0, |hj(x̄)| − ε}

nh+ ng
,

(2)

where ε is equal to 0.0001.

A. GAUSS-NEWTON BASED MUTATION
The NGM is an operator used to calculate a feasible solu-
tion for an infeasible solution using gradient information of
constraints. In this operator, the infeasibility of the solution
is considered a least-square optimization problem. This least
square problem is solved using the Gauss-Newton algorithm
[58]. The infeasibility of the solution, 8(x̄), can be rep-
resented as a least-square optimization problem using the
following equation.

8(x̄) = 0.5

 ng∑
i=1

max{0, gi(x̄)}2 +
nh∑
j=1

hj(x̄)2


(3)

In GNM, this problem is solved using iterative Newton-Gauss
algorithm. 4x̄, are defined as follows [58].

4x̄ = −
∇C(x̄)T4C(x̄)
∇C(x̄)T∇C(x)

, (4)

where,

4C(x̄)=[4g1(x̄) . . .4gng(x̄),4hng+1(x̄) . . .4hng+nh(x̄)]T ,

4gi(x̄) = max{0, gi(x̄)}. (5)

This mutation operation, x̄ fea = x̄ infea + 4x̄ infea, is executed
in iterative fashion when x̄ infea is infeasible solution. This
mutation operation is repeated forNg times while the solution
infeasible.

B. ε-CONSTRAINED HANDLING TECHNIQUE
In ε-constraint handling technique, an ε-level comparison is
done to compare the solutions [59]. The ε-level comparison
is defined using lexicographic order in which constraint vio-
lation, φ(x̄), precedes objective function value, f (x̄) [59].

Let {φ1, φ2} and {f1, f2} be the constraint violation value
and the function value at points {x1, x2} respectively. Then,
the ε level comparisons are defined as follows.

(f2, φ2) <ε (f1, φ1)⇔


f2 < f1, if (φ1, φ1 ≤ ε)
f2 < f1, if (φ1 == φ2)
φ2 < φ1, otherwise ,

(6)

(f2, φ2) ≤ε (f1, φ1)⇔


f2 ≤ f1, if (φ1, φ1 ≤ ε)
f2 ≤ f1, if (φ1 == φ2)
φ2 ≤ φ1, otherwise .

(7)

Generally, there is no need to control ε-level for most of
the COPs. However, COPs with equality constraints should
be solved by controlling the ε level during the optimization.
A simple way to control the ε-level is proposed in [59] and
defined using the following equations.

ε(t) =

{
φ(x̄θ )(1− t

Tc
)cp, 0 < t < Tc

0, Tc ≤ t.
(8)

C. THE ALGORITHM εDE-NGM
The algorithm εDE-NGM is based on DE/rand/1/exp. The
main steps of algorithm εDE-NGM are shown in Fig. 1.
• Step 1: Initialization- In this step, a population, P, of Np
solutions is initialized within the bound of search-space
using the following equation.

x̄0i = (x̄U − x̄L)rand + x̄L , i = 1, 2, . . .N , (9)

where rand represents the random number generator
which generates the number from uniform distribution
within the range (0, 1). An initial value of ε-level, ε(0),
is calculated using (8).

• Step 2: Mutation- For each solution x̄ki , three different
solution x̄kr1, x̄

k
r2, and x̄

k
r3 are selected from the current

population. A new mutant solution, v̄ki , is calculated
using x̄kr1, x̄

k
r2, and x̄

k
r3 as follows.

v̄ki = x̄kr1 + sF(x̄
k
r2 − x̄

k
r3), (10)

• Step 3: Crossover- The mutant solution vki , is used as
a donor solution in crossover operation of solution xki
to generate a trial solution, uki . A crossover point, l,
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FIGURE 1. Flowchart of the εDE-NGM.

is randomly selected from 1 to D. The elements of
l − th dimension of the trail solution uki is taken from
the element of l − th dimension of donor solution vki .
Subsequent elements of trial solution uki are taken from
donor solution vki with exponentially decreasing proba-
bility (calculated using crossover rate CR). Rest of the
elements of trial solution uki are taken from the elements
of solution xki .

• Step 4: Newton-Gauss based Mutation- If the generated
trial solution uki is infeasible (does not satisfy all the
constraints), uki is updated using NGM. This process is
repeated until the number of trials of NGM reaches to
Ng or solution uki becomes a feasible solution.

• Step 5: Selection- If the trial solution uki is better than
solution xki on the basis of ε-level comparison, the trial
solution uki is replaced the solution x

k
i for the next itera-

tion.
• Step 6: ε-level control- The value of ε-level is updated
using (8).

• Step 7: Population Diversity Enhancement- To cope
with premature convergence and stagnation, population
diversity is improved using reinitialization of the pop-
ulation. Reinitialization of the population is done when

one of the following two criteria is fulfilled during the
search.
1) Population diversity becomes very low (< 10−8).
2) Standard deviation of the degree of constrained

violation of the population becomes very low
(< 10−8), and a feasible solution is not existing
in that population.

• Step 8: Termination Condition- If the total number of
iterations becomes greater than the maximum allowed
iteration (Tmax), the algorithm is terminated. Otherwise,
go to Step 2.

D. GLOBAL CONVERGENCE PROPERTY OF THE εDE-NGM
In this section, the proposed algorithm’s asymptotic global
convergence is verified using several theoretical concepts and
statements. Here asymptotic global convergence means that
when the number of iteration satisfies t → ∞ then the
probability of the algorithm’s best solution is global optimum
approaches 1.

To verify the global convergence property of the proposed
algorithm, the convergence concept in probability is intro-
duced here as defined in [60].
Definition 1: Let assume a population sequence of each

iteration, {Y(1),Y(2), . . .Y(k)}, generated by the proposed
algorithm to solve a constrained optimization problem. Then,
the proposed algorithm converges to a feasible solution set in
probability if it satisfies the following condition.

lim
k→∞

p{Y(k) ∩ S∗ 6= ∅} = 1, (11)

where S∗ represents the solution set of the feasible optimal
solutions and p is the probability of occurrence of an event.
Theorem 1: Let an individual y exists in each population

Y(k) such that

p{y ∈ S∗} ≥ α > 0. (12)

Here α is a positive number, then the proposed algorithm can
converge to a solution of the optimal solution set in terms of
probability.

Proof: The probability of a population’s solution be the
element of the optimal solution set can be calculated using
the following relation.

p{yki ∈ S∗} =
µ(S∗)
µ(Y(k))

| σ (Y(k)) |

max{| yki − E(S∗) |, | σ (Y(k)) |}
,

(13)

where µ() represents the Lebesgue measure, E() represents
the expected or mean value, and σ () represents the standard
deviation value. As the population is reinitialized when it
converges to the non-optimal point, p{yki ∈ S∗} is always
greater than zero, i.e.

p{yki ∈ S∗} = αki > 0. (14)

Therefore,

p{Y(k) ∩ S∗ = ∅} = 1− αkmax , (15)
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where,

αkmax = max{αk1 , α
k
2 , · · · , α

k
Np}. (16)

In DE, the current population’s best solution is the same or
better than the best solution of the population obtained in
previous iterations, implying

lim
k→∞

p{Y(k) ∩ S∗ 6= ∅} = lim
k→∞

1−
k∏
i=1

(1− αkmax) = 1,

(17)

which is required to prove. �

IV. POWER FLOW FORMULATION
In this section, the PF problem of the DCIMG is described.
Then, this problem is transformed into a COP to apply evolu-
tionary algorithms to solve the PF problem of DCIMGs. The
modeling of the DCIMG and it’s components is an important
action that influences the PF solutions. The DG and load
models are presented in the following subsection.

A. MODELING OF THE DCIMG AND IT’S COMPONENTS
1) STATIC LOAD MODEL
In the static load model, active and reactive power absorbed
by the load depends upon the bus voltage and system fre-
quency.

Pl,k = P0,l,k (ap + bp|Vk | + cp|Vk |2 + dp|Vk |α)

× (1+ ep(ω − ω0)), (18)

Ql,k = Q0,l,k (aq + bq|Vk | + cq|Vk |2 + dq|Vk |β )

× (1+ eq(ω − ω0)), (19)

where ap + bp + cp + dp = 1; aq + bq + cq + dq = 1.
Voltage and frequency-based active and reactive loads can

be represented using (18) and (19) respectively as reported in
[14], [61].

2) MODELING OF LINES IN ISLANDED MGs
A line impedance of islanded MGs can be defined as, z =
r+jwl. Here, the value of reactance, x (= wl), depends on the
operating frequency. Therefore, small deviation in frequency
can change the reactance of the lines.

3) MODELING OF DGs IN CASE OF ISLANDED MGs
In grid-connected MGs, DGs can provide pre-specified
active and reactive generation to satisfy system loads’ power
demands. In such an operation, the difference in total
load demand and power generated by DGs are supplied or
absorbed by the main grid to kept the system frequency and
voltages of the buses constant. Similar to conventional power
systems, in grid-connected MGs, DGs can be modeled as a
PV, and PQ bus [62], [63]. However, this cannot be valid in
the case of DCIMGs due to the following reasons.

1) There is no slack bus in DCIMGs.
2) System frequency is not constant.

3) Reference voltage does not exist in islanded MGs to
calculate the voltage of all system buses.

4) In an islanded mode, the deviation between power
generation and demands may be fixed by changing the
system frequency and magnitude of the voltage using
droop controllers.

Therefore, islanded MGs’ power flow problem will be
solved without considering the slack bus in the system.
To formulate the power flow problem of islanded MGs,
in place of a slack bus, multiple droop buses are mod-
eled based on the droop characteristics to share the power
demand among the DGs. According to the controllers’ droop
characteristics, an increment in reactive power and active
power demand follows from a decrement in the magni-
tude of the voltage and operating frequency, respectively.
So, in the case of droop bus, reactive and active power
generation of a DG can be calculated using the following
equations.

Pi =
1
npi

(w∗i − w), (20)

Qi =
1
mqi

(V ∗i − Vi), (21)

where V ∗i and w∗i represent the nominal values of voltage
magnitude and frequency, respectively; Based on the IEEE
Standard 1547.7 [4], (20) and (21) are valid for islanded
MGs where the output impedance of converter is assumed
inductive.

B. POWER FLOW EQUATIONS
In DCIMGs, the operating frequency is an extra unknown
variable of the PF problem. Therefore, new equations should
be derived for the PV, PQ, and droop buses presented
below.

1) PF EQUATIONS OF A DROOP BUS
The value of active and reactive power injection of bus i can
be defined using the following equations.

Pi = Pi,dg − Pi,l, (22)

Qi = Qi,dg − Qi,l, (23)

wherePi,dg andQi,dg are calculated using (20) and (21). Here,
Pi and Qi can be calculated using following equations.

Pi = Vri
N∑
j=1

(VrjGij − VmjBij)+ Vmi
N∑
j=1

(VrjBij + VmjGij),

(24)

Qi = Vmi
N∑
j=1

(VrjGij − VmjBij)− Vri
N∑
j=1

(VrjBij + VmjGij).

(25)
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2) PF EQUATIONS OF A PQ BUS
The active and reactive power injection are known in PQ
buses, so PQ buses can be defined as follows.

Pk =Vrk
N∑
j=1

(VrjGkj − VmjBkj)+Vmk
N∑
j=1

(VrjBkj + VmjGkj),

(26)

Qk =Vmk
N∑
j=1

(VrjGkj − VmjBkj)− Vrk
N∑
j=1

(VrjBkj+VmjGkj).

(27)

3) PF EQUATIONS OF A PV BUS
The active power and voltage magnitude are known in PV
buses, so PV buses can be defined as follows.

Pk =Vrk
N∑
j=1

(VrjGkj − VmjBkj)+Vmk
N∑
j=1

(VrjBkj + VmjGkj),

(28)

V 2
k = V 2

rk + V
2
mk . (29)

C. POWER FLOW PROBLEM FORMULATION AS A
CONSTRAINED OPTIMIZATION PROBLEM
To solve the PF problem of DCIMGs, a COP is derived.

1) OBJECTIVE FUNCTION
Here, the impact of droop equations defined in (20) and (21)
on PF solutions is exercised in the objective function. There-
fore, the objective function is to minimize the sum of square
error of mismatch equations of droop bus i.e.

f =
∑
k∈Sdg

(4P2k +4Q
2
k ), (30)

where

4Pk =
1
npk

(w∗i − w)− Pk,dg, (31)

4Qk =
1
mqk

(V ∗k − Vk )− Qk,dg, (32)

In this formulation, PF equations are considered as equality
constraints.

1) Equality constraints related to kth PQ or Droop bus.

Pk − Vrk
N∑
j=1

(VrjGkj − VmjBkj)− Vmk
N∑
j=1

(VrjBkj + VmjGkj) = 0, (33)

and

Qk − Vmk
N∑
j=1

(VrjGkj − VmjBkj)+ Vrk
N∑
j=1

(VrjBkj + VmjGkj) = 0. (34)

2) Equality constraints related to kth PV bus.

Pk − Vrk
N∑
j=1

(VrjGkj − VmjBkj)

−Vmk
N∑
j=1

(VrjBkj + VmjGkj) = 0, (35)

and

V 2
k − V

2
rk − V

2
mk = 0. (36)

3) Bound constraints.

Vrk,min ≤ Vrk ≤ Vrk,max , k = 1, 2, . . . ,Nbus,

Vmk,min ≤ Vmk ≤ Vmk,max , k = 1, 2, . . . ,Nbus,

wmin ≤ w ≤ wmax ,

Pj,min ≤ Pj,dg ≤ Pj,max , j ∈ Sdg,

and

Qj,min ≤ Qj,dg ≤ Qj,max , j ∈ Sdg (37)

In DCIMG system having N buses andM DGs, total number
of variables is (2N +2M ) and number of equality constraints
is 2N .

V. RESULT AND DISCUSSIONS
To investigate the performance of the εDE-NGM, two sets of
problems are utilized. The first one includes 28 benchmark
problems with different scales taken from the IEEE CEC
2017 [64]. The second one includes PF problems of different
test systems. These problems contain different hard prop-
erties, such as small and separated feasible regions, strong
nonlinearity, and rotated search space.

A. EXPERIMENT 1: BENCHMARK ON IEEE CEC
2017 PROBLEM SUITE
In this experiment, parameter settings such as population
size and maximum allowed function evaluations are reported
in Table. 2. 25 independent runs is performed on each
test problem of IEEE CEC 2017’s test-suite. It is worth
noting that maximum function evaluations allowed is set
according to guidelines provided in [64], and the same set-
ting is also used in other algorithms used in comparative
analysis.

TABLE 2. Population Size Np and Maximum allowed function evaluations
MaxFEs.

The performance of εDE-NGM is compared with five
state-of-the-art algorithms, such as εMAgES [65], IUDE
[54], εLSHADE44 [66], CORCO [67], and DECODE [68].
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TABLE 3. Experimental outcomes of εDE-NGM and five selected contenders over 25 independent runs on the 28 test problems with dimension 10 from
IEEE CEC 2017.

TABLE 4. Experimental outcomes of εDE-NGM and five selected contenders over 25 independent runs on the 28 test problems with dimension 30 from
IEEE CEC 2017.

Here first three algorithms are the top-ranked algorithm of
IEEE CEC 2017’s competition, and the last two are recently
proposed algorithms.

In Tables. 3-6, the mean of the objective function and
degree of constrained violation (denoted as ‘‘OF’’ and ‘‘CV’’)
obtained from each algorithm over 25 independent runs for
test problems with dimensions 10, 30, 50, and 100, respec-
tively, are reported. In these tables, ‘‘−’’, ‘‘+’’ and ‘‘=’’
represent that performance of εDE-NGM isworse than, better
than, and significantly equal to other algorithms, respectively,
based on the Wilcoxon rank-sum test at 0.05 significance
level.

In case of problems with dimension 10, the proposed algo-
rithm performs edge over εMAgES, IUDE, εLSHADE44,
CORCO, and DECODE on 19, 13, 14, 17, and 10 problems,
respectively. However, other algorithms perform better than
εDE-NGM on zero, three, three, zero, and four problems,
respectively.

For problems with dimension 30, εDE-NGM is superior
to other algorithms on 19, 21, 18, 17, and 16 problems,
respectively, while other algorithms are better than two, one,
two, one, and two problems, respectively.

As shown in Table. 5, the proposed algorithm performs bet-
ter than other algorithms on 19, 21, 21, 16, and 19 problems
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TABLE 5. Experimental outcomes of εDE-NGM and five selected contenders over 25 independent runs on the 28 test problems with dimension 50 from
IEEE CEC 2017.

TABLE 6. Experimental outcomes of εDE-NGM and five selected contenders over 25 independent runs on the 28 test problems with dimension 100 from
IEEE CEC 2017.

with dimension 50, respectively. On the other hand, other
algorithms are superior on four, zero, three, two, and two
problems, respectively.

In the case of problems with dimension 100, εDE-NGM
outperforms other algorithms on 21, 23, 22, 18, and 18 test
problems, respectively. In contrast, other algorithms’ perfor-
mance is better than εDE-NGMon five, four, three, three, and
five test problems, respectively.

Following outcomes can be prepared from this comparative
analysis.

1) Proposed algorithm determines a better optimum solu-
tion for most of the problems compared to others.

2) As compared to others, the proposed algorithm locates
a feasible solution in each trial for most of the
problems.

3) As compared to others, the proposed algorithm’s per-
formance does not deteriorate much with increasing
dimensionality of the problem-space.

4) The proposed algorithm performs better than other
algorithms in the case of COPs having a high number
of equality constraints and a low volume of feasible
regions.

Therefore, the above comparative analysis reveals that
the proposed algorithm, εDE-NGM, is better than the
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state-of-the-art algorithm on COPs, especially in the case
of high dimension problems with more complex equality
constraints.

B. EXPERIMENT 2: APPLICATION OF εDE-NGM ON
POWER FLOW PROBLEMS
In this section, PF results are analyzed to validate the pro-
posed algorithm (εDE-NGM) method. All PF algorithms
reported in this paper are implemented in MATLAB R2018b
environment in the computer with core i7, 3.2 GHz, and 8 GB
of RAM. The initial start voltage is considered 1 p.u for
all algorithms, and the termination of the algorithm is set
as either based on tolerance or iteration. Four case studies
were investigated to segregate the proposed algorithm (εDE-
NGM) on different test systems viz. 6-bus, 33-bus, 69-bus,
and 25-bus (unbalanced).

1) CASE I: 6-BUS MICROGRID
In this case, 6-bus test systems were adopted for the imple-
mentation of the proposed load flow algorithm. Fig. 2 shows
the typical topology of the 6-bus test system. The load data
and line connectivity data used in test systems are reported
in ref. [69]. This system consists of three similar settings
droop control of DGs on buses 4, 5, and 6 and operated
in droop control mode. The detailed specifications such as
location, active and reactive droop gain (np andmq), nominal
frequency setpoint (ω∗), nominal voltage set point (V ∗), and
ratings of DGs Smax ,Qmax are depicted in Table. 7.

FIGURE 2. The 6-bus test system.

TABLE 7. Droop control settings of DGs in 6-Bus system.

To show the effectiveness of the proposed load flow algo-
rithm (εDE-NGM) and a comparative analysis with the time

domain simulation modeled in PSCAD, evolutionary algo-
rithms methods (GPSO-GM and ICGA) and deterministic
method, i.e., NTR, are reported in Table. 8. The average mag-
nitude and phase angle errors for the time-domain simulation
model in PSCAD software are presented in Table. 9. From
Table. 9, it is observed that the average phase and magni-
tude errors with the implementation of εDE-NGM method
are lower as compared to the GPSO-GM, ICGA, and NTR
method. More precisely, the average phase angle error in the
case of εDE-NGM is 0.0126%, and the average magnitude
error is 0.0189%w.r.t time domain simulationmodel. A small
deviation in frequency is also observed while performing
power flow by all algorithms. It is also important to note
that the computational time required for εDE-NGM is lowest
among all given algorithms.

As a summary, it is important to note that the PF result
obtained from the proposed algorithm (εDE-NGM) shows
good accuracy with respect to evolutionary algorithms meth-
ods (GPSO-GMand ICGA) and deterministicmethod (NTR).

2) CASE II: 33-BUS MICROGRID
A 33-bus distribution system with a rated voltage of 12.66 kV
is used in this case study to demonstrate the proposed load
flow algorithm. The single line diagram of the distribution
system shown in Fig. 3 accommodating four DGs on bus
numbers 26, 22, 25, and 9. The data related to line impedance
and system load demand are adopted from [13].

FIGURE 3. The 33-bus test system.

The detailed specifications such as location, active and
reactive droop gain (np and mq), nominal frequency setpoint
(ω∗), nominal voltage set point (V ∗), and ratings of DGs
Smax ,Qmax are delineated in Table. 10. For a fair comparison,
the power flow results obtained from εDE-GN is compared
with existing evolutionary algorithms viz. GPSO-GM and
ICGA.

In this case, all algorithms’ performance has been evalu-
ated after assuming all DGs have operated in droop control
mode. The total active and reactive load demands on 33-
bus islanded microgrid are 3.6790 MW and 2.2326 MVAr,
respectively. In contrast, active and reactive power losses are
0.0428MW and 0.0294MVAr, respectively. The steady-state
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TABLE 8. Power flow result of 6-Bus system test system.

TABLE 9. Average error with respect to Time simulation model.

TABLE 10. Droop control settings of DGs in 33-Bus system.

FIGURE 4. Bus-wise voltage of 33-bus islanded microgrid.

frequency obtained by εDE-NGM for this case is 0.99845
p.u. The voltage magnitude and phase angle obtained from
all algorithms are compared in Figs. 4 and 5. Fig. 4 shows
that the average magnitude of εDE-NGM with respect to
GPSO-GM and ICGA is 0.338% and 0.276%, respectively.
Whereas, Fig. 5, it is observed that the average phase angle
error of εDE-NGM with respect to GPSO-GM and ICGA is
0.419% and 0.105%, respectively.

The active and reactive power sharing by individual DGs
are shown in Fig. 6. It is observed that reactive power-sharing
of DG#2 and DG# 3 has reached its maximum capac-
ity whereas, other DGs shares within their limits. It is
also observed that all DGs are operated within permissible

FIGURE 5. Bus-wise angle of 33-bus islanded microgrid.

FIGURE 6. Active and reactive power sharing of DGs on the 33 bus
islanded microgrid.

apparent power rating. The statistical index parameter such
as standard deviation (SD), worst value (WV), and Best
mean (BM) obtained after 55 runs for all evolutionary algo-
rithms are compared in Table. 11. From Table. 11, it can be
concluded that the proposed algorithm (εDE-NGM) requires
less run time and lower SD, WV, and BM among all evolu-
tionary algorithms.
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TABLE 11. Statistical parameters for 33-bus microgrid.

FIGURE 7. Topology of 69-Bus system.

TABLE 12. Droop control settings of DGs in 69-Bus system.

3) CASE III: 69-BUS MICROGRID
The IEEE 69 bus distribution system shown in Fig.7 has been
considered for this case study. This system is having with
total active and reactive loads of 3.772MW and 2.694MVAr,
respectively. Bus number 50, 27, 35, 46, and 65 are consid-
ered for DGs installation. The data related to line impedance
and system load demand are taken from ref. [13].

The detailed specifications such as location, active and
reactive droop gain (np and mq), nominal frequency setpoint
(ω∗), nominal voltage set point (V ∗), and ratings of DGs
Smax ,Qmax are delineated in Table.12. For a fair comparison,
the power flow results obtained from εDE-NGM is compared
with existing evolutionary algorithms viz. GPSO-GM and
ICGA.

In this case, all algorithms’ performance has been evalu-
ated after assuming all DGs have operated in droop control
mode. The total active power and reactive power load demand
on the distribution system are 3.7722 MW and 2.6941
MVAR, respectively, whereas active and reactive power
losses are 0.0868 MW and 0.0424 MVAr. The steady-state
frequency obtained by εDE-NGM is 0.9983 p.u. The voltage
magnitude and phase angle obtained from all algorithms
are compared in Figs. 8 and 9. From Fig. 8, it is observed
that the average magnitude of εDE-NGM with respect to
evolutionary algorithms (GPSO-GM and ICGA) is 0.253%.
Whereas, Fig. 9, it is observed that the average phase angle
error of εDE-NGM with respect to evolutionary algorithms
(GPSO-GM and ICGA) is 0.112%.

FIGURE 8. Bus-wise volatge of 69-bus islanded microgrid.

FIGURE 9. Bus-wise angle of 69-bus islanded microgrid.

TABLE 13. Statistical parameters for 69-bus microgrid.

The active and reactive power sharing by individual
DGs are shown in Fig. 10. It is observed that reactive
power-sharing of DG#1, DG#2, and DG# 3 has reached its
maximum capacity whereas, other DGs shares within their
limits. It is also observed that all DGs are operated within per-
missible apparent power rating. The statistical index parame-
ter such as standard deviation (SD), worst value (WV), and
Best mean (BM) obtained after 55 runs for all evolution-
ary algorithms are compared in Table. 13. From Table. 13,
it can be concluded that the proposed algorithm (εDE-NGM)
requires less run time and lower SD, WV, and BM among all
evolutionary algorithms.
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FIGURE 10. Active and reactive power sharing of DGs on the 69 bus
islanded microgrid.

FIGURE 11. Topology of 25-Bus unbalanced microgrid.

4) CASE IV: 25-BUS UNBALANCED MICROGRID
The 25-bus unbalanced microgrid with the rated voltage
of 12.66 kV has been adopted for this study. The single line
diagram of the distribution system is shown in Fig. 11. The
load data, line connectivity, and impedance for a different
type of conductor used in the distribution system are given
in [69]. Three DGs were installed at bus number 13, 19, and
25. It is assumed that all the DGs are operated in a balanced
condition.

The detailed specifications such as location, active and
reactive power gain (np and mq), nominal frequency setpoint
(ω∗), nominal voltage set point (V ∗), and ratings of DGs
Smax ,Qmax are delineated in Table. 14.

TABLE 14. Droop control settings of DGs in 25-Bus system.

TABLE 15. Statistical parameters for 25-bus unbalanced microgrid.

The steady-state frequency obtained by the proposed algo-
rithm (εDE-NGM) is 0.99812. Total active and reactive
power losses are 0.0196 and 0.0143 p.u, respectively. Fig. 12
shows the comparison of the bus-wise voltage profile for all
three phases. The maximum average voltage magnitude error
of εDE-NGM concerning evolutionary algorithms (GPSO-
GM and ICGA) is 0.164% at bus number 22 of phase-A.
Whereas the maximum average voltage angle error of εDE-
NGM concerning evolutionary algorithms (GPSO-GM and
ICGA) is 0.21% at bus number 22 of phase-B. The active
and reactive power sharing of all individual DGs based on
their individual specification and setting are shown in Figs. 14
and 15. From Fig. 15, it is observed that DG#1 and DG#2 are
operated at maximum reactive power capacity. Whereas, only
DG#3 is operated at lower to its maximum capacity and
operated in droop controlled mode. It is also important to
note that DGs’ apparent power-sharing is also within the
specified limit. The statistical index parameter such as stan-
dard deviation (SD), worst value (WV), and best mean (BM)
obtained after 55 runs for all evolutionary algorithms are
compared in Table. 15. From Table. 15, it can be concluded
that the proposed algorithm (εDE-NGM) requires less run
time and lower SD, WV, and BM among all evolutionary
algorithms.

As a summary, εDE-NGM methods are well performed
in all cases. In case I: 6-bus system, the proposed algorithm
is compared to time-domain simulation modeled in PSCAD,
evolutionary algorithms methods (GPSO-GM and ICGA),
and deterministic method, i.e., NTR. the power flow result
obtained from the proposed algorithm (εDE-NGM) shows
good accuracy with respect to evolutionary algorithms meth-
ods (GPSO-GMand ICGA) and deterministicmethod (NTR).

In Case II and Case III, the 33-bus and 69-bus bal-
anced microgrid are adopted for analyses purpose. Whereas,
In Case-IV, the 25-bus unbalanced microgrid system is con-
sidered for the study. For a fair comparison, power flow
results obtained from the proposed algorithm (εDE-NGM) is
compared with GPSO-GM and ICGA algorithm.

C. ROBUST ANALYSIS
In this section, the proposed algorithm’s robustness is ana-
lyzed on several hard-to-solve ill-conditioned and unsolvable
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FIGURE 12. Phase-wise bus voltage of 25-bus microgrid.

FIGURE 13. Phase-wise bus angle of 25-bus microgrid.

FIGURE 14. Active power sharing of individual DGs on 25-bus microgrid.

test problems. Here, unbalanced microgrids are considered
for this experiment. System data of all these test systems
are available online in https://github.com/abhisheka456/Test-
Systems. The performance of the proposed algorithm is
compared with the following state-of-the-art algorithms’
performance:

1) Newton-Trust region (NTR) algorithm [11],
2) Projected Levenberg-Marquardt (PLM) algorithm [25],
3) Implicit Z-bus (IZBUS) algorithm [36], and
4) Guaranteed convergence particle swarm optimization

with Gaussian mutation (GPSO-GM) [20].

FIGURE 15. Reactive power sharing of individual DGs on 25-bus
microgrid.

Two stopping criteria are considered to terminate all
above-mentioned algorithms, including proposed algorithms:
i) convergence tolerance is 10−6 pu, and
ii) maximum allowed computation time is 2 hours.
As shown in the Table 16, two classes of ill-conditioned
test systems are considered. In the first case, heavily loaded
systems are considered, while systems with faulty lines are
selected for the second case of the ill-conditioned systems.
In all test systems, the proposed algorithm can provide an
operating power flow solution effectively. As compared to
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TABLE 16. Comparison of computation time required by different
algorithms. (NC: Not Converged).

other existing algorithms, the proposed algorithm performs
better than other ones in the case of all ill-conditioned test
systems considered here.

This experiment’s overall analysis suggests that the pro-
posed algorithm can solve ill-conditioned test systems more
robustly than other algorithms.

VI. CONCLUSION
In this paper, a globally convergent algorithm based on DE
is proposed for the PF problem of DCIMGs. The operating
frequency is described as an additional PF variable in the
proposed method. DGs’ operations are modeled in droop, PV,
and PQ modes as per the DCIMGs’ characteristics. Then,
the proposed PF problem is transformed into a COP that can
be solved using optimization algorithms. For solving COPs,
a DE-based algorithm, named εDE-NGM, is proposed by
incorporating the NGM operator in the DE framework. The
performance of the proposed algorithm is verified on the
benchmark problems. The outcomes reveal that it performs
better than existing algorithms in terms of the solution’s qual-
ity and convergence in COPs with high number of equality
constraints. After that, the proposed algorithm is applied to a
balanced and unbalancedDCIMG to analyze its performance.
The proposed algorithms’ performance is compared with the
time-domain simulation modeled in PSCAD, evolutionary
algorithms methods (GPSO-GM and ICGA), and conven-
tional method, i.e., NTR. The obtained results reveal that the
performance of the proposed algorithm is superior to others.
The main contributions of this work can be summarized as
follows.

1) In this paper, the PF problem of a DCIMGS is trans-
formed into COPs to develop a global-convergent PF
analysis tool using optimization algorithms.

2) A metaheuristic, named as εDE-NGM, is proposed to
solve COPs with a high number of equality constraints
effectively. Further, this algorithm is applied to the PF
problem of DCIMGs.

3) The performance of the proposed algorithm is analyzed
on modern benchmark problems. The obtained perfor-
mance is compared with the state-of-the-art algorithms.
Experimental results show that the proposed algorithm

is more effective than other algorithms over COPs hav-
ing a good number of equality constraints.

4) At last, the proposed algorithm is tested on the different
types of test problems. Obtained outcomes suggest that
the proposed algorithm performs very well on differ-
ent problems, especially ill-conditioned and unsolvable
test cases concerning other algorithms.

Overall, the proposed technique provides robust and effective
performance in terms of convergence and efficiency. Conse-
quently, it is suggested to further implement this algorithm to
probabilistic PF analysis of DCIMGs in the future.
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