
Received December 31, 2020, accepted January 11, 2021, date of publication April 14, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054767

Sparse Subspace Clustering for Stream Data
KEN CHEN 1, YONG TANG 1, LONG WEI 2, PENGFEI WANG 2,
YONG LIU 3, AND ZHONGMING JIN 2
1Sichuan Railway Industry Investment Group Company Ltd., Chengdu 610094, China
2Alibaba DAMO Academy, Alibaba Group, Hangzhou 310024, China
3Alibaba Cloud, Alibaba Group, Hangzhou 310024, China

Corresponding author: Ken Chen (chenken@foxmail.com)

ABSTRACT In the past few years, sparse subspace clustering (SSC) has gainedmany studies and found wide
applications. However, SSC suffers from the limitation in scalability. Furthermore, current SSC methods
could hardly tackle stream data where the structure of subspaces may change along time. In this paper,
we propose a novel method to extend SSC to stream data (StreamSSC). Our method is based on maintaining
a small subset of representatives to characterize the structure of the underlying subspaces during stream
data. StreamSSC is efficient in both computation and memory. Experimental results on both synthetic and
real-world streams demonstrate the effectiveness of StreamSSC. For efficiency, StreamSSC is faster than
existing online subspace clustering methods by roughly a magnitude.

INDEX TERMS Clustering algorithms, sparse subspace clustering, stream data.

I. INTRODUCTION
In many real-world applications, samples from different
classes approximately lie in a union of multiple low dimen-
sional subspaces. The subspace clustering problem aims to
segment samples into multiple clusters based on their under-
lying subspaces. In the past few years, it has attracted increas-
ing research interest and found wide applications in face
clustering [1], handwritten digit clustering [2] and motion
segmentation [3], [4]. There have been various subspace
clustering algorithms [2], [5], [6] proposed to segment data
into multiple clusters based on subspace structure.

Among these algorithms, sparse subspace clustering (SSC)
[1] is currently the most popular method, due to its theoretical
guarantee [5] and impressive performance in practice [6].
Formally, SSC first learns the sparse representations C of all
data points by solving the following optimization program:

min
C
‖C‖1 s.t. X = XC, diag(C) = 0, (1)

where X is the matrix of points, and each column of X corre-
sponds to one data point. Then, it applies spectral clustering
on the affinity matrix A = |C| + |C|T to divide the data into
multiple clusters.

According to Eq. 1, SSC needs to access all points in
memory, and compute the sparse representations for all data
points in X . The expensive memory and time consumption
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severely limits its scalability to stream data in which the size
of data is quite huge and even infinite. Although there have
been some scalable solvers proposed recently [7]–[11], they
cannot tackle the situation under which points in the same
clusters may arrive at different times and so the structure of
underlying subspaces changes over time. As a result, there
is a need to develop a flexible and efficient SSC method for
stream data.

The only existing attempt towards subspace clustering
for stream data is online low-rank subspace clustering
by basis dictionary pursuit (OLRSC) [12], which is an
online implementation of LRR via a stochastic optimization
scheme, while the counterpart for SSC remains open. Mean-
while, recent work [8], [13] shows that SSC could obtain
subspace-preserving affinity with the less restrictive assump-
tion on the distribution of samples compared with low rank
representation (LRR). As a result, there is a need to develop
a flexible and efficient SSC method for stream data.

However, we could hardly apply SSC directly to stream
data, due to the following challenges: (1) it needs to learn
the sparse representation of each point over all the remain-
ing points. The size of stream data is typically very large,
thus the accessibility to the entire stream to compute linear
combinations is impractical. It is also prohibitive to store the
entire stream in memory. (2) Clustering methods for stream
data require real-time clustering results of each new arriving
point, thus assigning the new point to its underlying subspace
should be implemented extremely fast. (3) A more essential
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difficulty comes from the nature of stream data, where the
structure of subspaces is changing gradually along time, one
needs to detect these changes accordingly, but there is no
variant of SSC up to now that could capture these dynamics.

In this paper, we propose a novel sparse subspace clus-
tering method for stream data (StreamSSC). In our method,
we keep track of the potential change in the structure of sub-
spaces during the stream. Meanwhile, we select and maintain
a representative set to characterize the structure of observed
subspaces. For a new arriving data point, we seek its sparse
linear combination over the representative set, upon which
we will investigate possible change taking place in the sub-
space structure. When the change is detected, we update the
subspaces by performing SSC on a small subset of points.
Then a new structure of subspaces will be obtained and a
new representative set will be selected to replace the pre-
vious ones, respectively. Our clustering framework repeats
this ‘‘subspace structure change detection - subspace struc-
ture update’’ procedure until the end of the stream. Finally,
the experimental results on both synthetic and real-world
streams demonstrate the effectiveness and efficiency of our
method.

Our method inherits the merits of the SSC model, while
overcomes all the above-mentioned challenges in stream data.
Specifically, our paper has the following contributions:

• We propose an effective strategy to select the representa-
tive set with minimal sampling complexity. StreamSSC
is capable of predicting the real-time clustering result of
each point as well as capturing changes in the structure
of subspaces.

• StreamSSC is efficient in both computation and mem-
ory. The memory cost is only O(Kd), where K is the
total number of subspaces emerging in the stream and
d is an upper bound of dimensions of these subspaces.
Experimental results show that StreamSSC is faster than
existing online subspace clustering methods by roughly
a magnitude.

This paper is organized as follows. In section 2, we review
related work. Thenwe propose our sparse subspace clustering
method for stream data in section 3. In section 4, experiments
are conducted on both synthetic and real-world streams. The
last section concludes this paper.

II. RELATED WORK
A. SUBSPACE CLUSTERING
In the past several years, there are two popular subspace
clustering approaches: sparse subspace clustering (SSC) [1]
and low rank representation (LRR) [2], which have received
intensive study [2], [5], [6]. Both SSC and LRR segment
datasets based on self-expressiveness among data points.
Formally, SSC and LRR aim to segment samples into their
underlying subspaces by solving

min
C
‖C‖ s.t. X = XC, diag(C) = 0 (2)

where X is the matrix of points. Then spectral clustering is
applied to the affinity matrix A = |C|+|C|T to cluster points.
The difference between SSC and LRR is that the norm ‖.‖
of C is chosen as l1 in SSC while the nuclear norm in LLR,
to encourage sparsity and low-rank property, respectively.

From then on, some variants of SSC and LRR have been
proposed to handle data under different scenes, such as
Low Rank Subspace Clustering [14], [15], Low Rank Sparse
Subspace Clustering [13], Latent LLR [16] and Structured
SSC [17], to name a few. There are also following work
focusing on certain aspects of subspace clustering, such as out
of sample problem [18], samples with missing entries [19],
outlier detection [5], dimensionality reduction [20] and graph
connectivity [21]. However, most of these methods suffer
from high time and memory complexities. Thus they are not
suitable for stream data whose size is typically quite large.

B. DISCUSSION ABOUT SCALABLE SUBSPACE
CLUSTERING
In recent years, many methods are proposed to improve the
scalability of SSC. Some scalable SSC solvers [7], [18] sug-
gest to utilize a small subset to represent the entire dataset to
reduce the computational cost. The recently proposed Scal-
able Sparse Subspace Clustering by Orthogonal Matching
Pursuit (OMP-SSC) [8] adopts orthogonal matching pursuit
to SSC and works well on massive data.

For example, Chen et al. [10] propose a dropout technique
to address the issue of over-segmentation that appeared in
current SSC methods and improve their scalability. Moti-
vated by Robust Principal Component Analysis (RPCA),
Zhang et al. design an Adaptive Low-rank Model for
subspace clustering [9]. To achieve the same goal, Mat-
sushima and Brbic [11] propose a Selective Sampling-based
Scalable Sparse Subspace Clustering (S5C) algorithm. For
high-dimensional data, random sketching approaches are
adopted to reduce data dimensionality and thus achieves
acceleration [22].

Although the above scalable subspace clustering methods
show appealing performance, they could hardly be applied
to subspace clustering on stream data. The reason is that
these method segments the whole static dataset directly.
Two methods could be applied to stream data. The first
one is OLRSC [12], which extends LRR via a stochastic
optimization scheme. The second one is online robust PCA
via stochastic optimization (ORPCA) [23], which recovers
low-rank subspace structure incrementally. Then the learned
low dimensional representations of all points can be applied
to perform clustering [12]. However, they could not output
real-time clustering results of each new arriving point, nor
could they detect subspace structure change in a stream,
which is one of the most challenging difficulties in stream
data clustering.

Beyond data forms of vectors, Li et al. consider tensor
data (i.e., the data having multiple dimensions) and propose a
method of online robust low-rank tensor modeling for stream-
ing data analysis [24].
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III. SPARSE SUBSPACE CLUSTERING FOR STREAM DATA
In this section, we introduce our Sparse Subspace Clustering
method for Stream data (StreamSSC). We start with the prob-
lem setup and an overview of our framework, then we will
address several important technical details of our method.

A. PROBLEM SETUP
Consider a data stream X = {xt }∞t=1 in which all points are
sampled from a union of K low dimensional linear subspaces
S1, · · · ,SK ⊂ RD, and the dimension of each subspace Si is
di � D. Points that lie in the same subspace Si are regarded
as a cluster Ci. In the context of stream, points from the same
subspace might arrive at different times. Thus, the subspace
structure involved in the stream may change gradually over
time. All the points are normalized to have unit l2 norm. In
this paper, we aim to solve the clustering problem over such
a massive stream via SSC efficiently.

For stream data, it is impractical to explore the exact
subspace structure via SSC. As a result, researchers usually
leverage a subset of points sampled from the stream to get
an approximate solution [25]. Therefore, we introduce an
important definition, representative set, as follows.
Definition 1: Suppose there are k subspaces {S(t)

i }
k
i=1

observed over X at time t, R(t)
i = {r1i , · · · , r

ni
i } ⊂

X is defined as a representative set of subspace S(t)
i if

span(R(t)
i ) = S(t)

i . Each point in R(t)
i is called a representa-

tive. R(t)
=

⋃k
i=1R

(t)
i is called the universal representative

set.
We use lowercase k to denote the current number of clus-

ters, which is dynamic along with coming of new data points.
And we use uppercase K to denote the number of underlying
clusters during the whole stream, which is a fixed number.

From the definition, the representative set is a summary of
each subspace because the representative set spans the indi-
vidual subspace and thus serves as an over-complete basis.
The utilization of representatives overcomes the difficulty
of seeking linear combination over all points. Note that we
do not require representatives from the same subspace to be
linear independent because the intrinsic subspace dimensions
di’s are usually unknown, and this relaxes our selection of
representatives to be more flexible.

At any time during our clustering process, we use the
representative sets to describe the current clustering structure.
We emphasize that the representative sets may change along
with the variation of the cluster structure. How to select
and maintain the representatives sets will be detailed in the
following section.

B. FRAMEWORK OVERVIEW
The basic idea of our method is exploiting the representa-
tive set to perform subspace clustering on stream data effi-
ciently in both computation and memory, then changes in the
structure of subspaces are captured by the outlier detection
technique.

We present an overview of our framework in Figure 1.
At the beginning stage, we collect T0 points X0 =

{x1, · · · , xT0} ⊂ X to perform standard SSC [1] as initial-
ization. We adopt the self-tuned strategy [26] to determine
the number of clusters. Then we select a small subset of
points from each cluster to act as a representative set for the
corresponding subspace.

FIGURE 1. Overview of our StreamSSC framework. During the stream
data, we select and maintain a small subset of points as the
representative set. For each new arriving point xt , we decide whether it is
an outlier. If xt is not an outlier, we directly output its clustering result.
Otherwise, we use these outliers for subspace structure change detection.
If the change is detected based on our proposed criteria, we update the
subspace structure and the representative set via performing SSC on a
small subset to replace the previous representative set. We repeat the
‘‘subspace structure change detection - subspace structure update’’
procedure until the end of the stream. Note that the subspace change
detection is simplified here for illustration.

After initialization, for each new arriving point xt ,
we decide whether xt is an outlier based on its sparse linear
combination over the current universal representative set.
If xt is not an outlier, we directly output its clustering
result. Otherwise, we use these outliers for subspace structure
change detection. If the change is detected based on our
proposed criteria, we update the subspace structure and the
representative set via performing SSC on a small subset to
replace the previous ones. Our method repeats this ‘‘subspace
structure change detection - subspace structure update’’ pro-
cedure until the end of the stream. The whole pipeline of our
method is presented in Algorithm 1. In the rest of this paper,
we omit the superscript t for simplicity when it does not cause
misunderstanding from the context.

C. SELECT REPRESENTATIVES
In this subsection, we specify our strategy to select represen-
tatives for subspaces. Because we require the representatives
of each subspace Si to span it, the number of representa-
tives ni should not be smaller than subspace dimension di
of Si. Intuitively, if we select more representatives from Si,
we could get a better estimation of the structure of Si. How-
ever, as the size of representatives becomes larger, the update
of subspaces during the later stage of the stream will become
less efficient. This is because that SSC is sensitive to the num-
ber of points and the subsequent SSC problem to update sub-
space structure is related to the size of the current universal
representative set. Therefore, we need an efficient sampling
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Algorithm 1 Stream Sparse Subspace Clustering
Input: Stream X = {x1, · · · , xt , · · · }
Parameters: Initialization size T0, Upper bound of

subspace dimension d , Subspace change
detection threshold γ

Output: Clustering result

β ← 2d ;
[{C (T0)

i }
k0
i=1, k0]←{xt }

T0
t=1;

R(T0)
i ← C (T0)

i ;
R← ∪iR(T0)

i ; k ← k0;
t ← T0 + 1;
repeat

α̂← xt ,R by Eq. 3;
if ‖α̂‖0 < β then // xt is not outlier

Output label of xt by Eq. 4;
t ← t + 1;

else // Subspace change detection
m← 0; L ← kd ;
for j← 1, · · · ,L do

α̂← xt+j,R by Eq. 3;
if ‖α̂‖0 < β then // xt+j is not
outlier

Output label of xt+j by Eq. 4;
else m← m+ 1 ; // xt+j is outlier

end
if m > γ then // Subspaces update

[{C (t+L)
i }

k
i=1, k]←R ∪ {xt+j}Lj=1;

R(t+L)
i ← C (t+L)

i ;
R← ∪iR(t+L)

i ;
end
t ← t + L + 1;

end
until the end of the stream;

strategy to select representatives from each subspace so that
the sampling complexity ni could be as small as possible.
Our research reveals that to ensure span(Ri) = Si, one

only need to randomly sample di points from the correspond-
ing cluster Ci, as long as points that lie on the subspace Si are
uniformly distributed. Therefore, the minimal requirement
for ni is exactly di, as stated in the following proposition.
Proposition 1: Given a subspace S with dimension d,

suppose r1, · · · , rd ∈ S are independently and identically
distributed random points sampled from uniform distribution
on SD−1 ∩ S, where SD−1 is the unit sphere in RD, then with
high probability, we have

span(r1, · · · , rd ) = S.
Proof: Assume A is an orthonormal basis of S, and r i =

Ayi for i = 1, · · · , d , then the coefficients y1, · · · , yd ∈ Rd

are independently and identically distributed random points
sampled uniformly from Sd−1. Uniform distribution on Sd−1
can be generated from standard Gaussian distribution [27].

Specifically, let z ∈ Rd be a random vector distributed
as N (0, Id ), then ẑ = z/‖z‖2 is uniformly distributed on
Sd−1. So it suffices to show that any family of independently
and identically distributed random points z1, · · · , zd sampled
from N (0, Id ) are linear independent with high probability,
which is equivalent to bound the smallest singular value
σd (Z ) of Z = [z1, · · · , zd ] from 0. This has been proved [28]
as follows,

P(
√
dσd (Z ) ≤ t) = 1− e−t

2/2−t
+ O(d−c),

where c > 0 is an absolute constant.
Actually, one can compute the exact distribution of σd (Z )

explicitly [28], [29]. For a typical case in our synthetic eval-
uation where the dimension of subspace d = 5, we get
P(
√
5σ5(Z ) ≤ 0.001) ≤ 0.001 by numerical computation.

Then we conclude that a random sampling of representatives
r1, · · · , r5 from the corresponding cluster could guarantee
P(rank(r1, · · · , r5) = 5) ≥ 99.9%.

To further illustrate this, we generate a set S of 1000 unit
norm points uniformly distributed on a subspace with dimen-
sion d in R500. We randomly select n points from S, then
we compute the rank of the column space spanned by these
selected points. Let n vary from 2 to 20 and d vary from
5 to 10, in each case, we repeat 100 times and take the
average. The result is shown in Fig 2. We can see that for
each d , only n = d randomly selected points are linear
independent, thus could serve as representatives.

FIGURE 2. The rank of the randomly selected points from the subspace
with respected to the sample size. The figure shows that for a subspace
of dimension d , only n = d randomly selected points are enough to span
the subspace. This verifies our claim in Proposition 1.

In practice, since both the dimension of subspace and
distribution of points on subspace are usually unknown, one
could choose ni as a slightly larger estimation of di.

D. SUBSPACE STRUCTURE CHANGE DETECTION
Given a new arriving point xt at time t , we express xt as a
sparse linear combination over the current universal represen-
tative setR with coefficient of the form α = [αT1 , · · · , α

T
k ]

T

and each αi ∈ Rni , then we aim to solve the following
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unconstrained problem:

min
α
‖xt −

∑
i

Riαi‖22 + λ
∑
i

‖αi‖1, (3)

where Ri = [r1i , · · · , r
ni
i ] ∈ RD×ni , i = 1, · · · , k , and λ > 0

is the regularization parameter. Here we use the regularized
version of SSC because data contains noise in practice.

From theoretical study in [30], if xt lies in certain sub-
space Si∗ , then the nonzero components in the optimal solu-
tion α̂ = [α̂T1 , · · · , α̂

T
k ]

T of the problem (3) corresponding
to representatives from other subspaces will be sufficiently
small compared with components corresponding to represen-
tatives from the subspace Si∗ . In this case, we simply output
the clustering result of xt determined by

i∗ = argmax
i
‖α̂i‖1. (4)

In contrast, if xt is an outlier, which means that xt does
not belong to any currently observed subspaces, the nonzero
components in the optimal α̂ tend to spread over different
subspaces, which results in a large l0 norm of α̂. Therefore,
we regard a point as an outlier if the number of nonzero com-
ponents in the optimal solution α̂ is larger than a threshold β.
We set β = 2d in our algorithm.

A key observation is that the appearance of the outlier
implies a potential change of subspace structure soon. In this
case, we confirm further whether the change is really taking
place. To achieve this goal, when encountered with the first
outlier xt , we start a temporary session to study the frequency
of outliers appearing in the following points. More precisely,
we take a session of pointsW t

L = {xt+1, · · · , xt+L} of length
L into consideration. If the number of outliers in the session
W t
L is larger than a threshold γ , these outliers probably come

from some new subspaces that do not be reflected by the cur-
rent representative set. Then it is time to update the subspace
structure.

Otherwise, these outliers are not sufficient to affect the
observed structure of subspaces, and they were judged as
outliers possibly because of the noise involved in these points.
As a result, we keep the subspace structure unchanged and go
on clustering new points regularly as we did before until the
next outlier appears.

E. SUBSPACE STRUCTURE UPDATE
To update the structure of subspaces, we simply perform SSC
over the union R ∪ W t

L to segment these points into new
subspaces. The motivation is as follows. First, the current
universal representative setR can well describe the structure
of observed subspaces; second, points in the session W t

L
incorporate potential change emerging in the stream.

The number of subspaces is also self-tuned by the method
proposed in [26], as we did in initialization. We randomly
select ni points from each cluster Ci to act as the representa-
tive set for the corresponding subspace, as we have justified
in Proposition 1. Then we use the selected representatives to
replace the previous ones.

During our iterative update of subspaces, the representa-
tives of all the subspaces that have ever appeared are stored
in the universal representative set. Thus representatives also
help to record the evolution of subspaces from the beginning
to the end of the stream.

F. IMPLEMENTATION
In this subsection, we provide a more detailed explanation of
the implementation of our algorithm.We introduce a parame-
ter d in Algorithm 1. This is because it is difficult to estimate
the size of the representative set ni for each subspace Si. For
convenience, we use an estimated uniform parameter d as an
upper bound of di’s. In this way, we only need to store at
most Kd + L points in memory. We set L = Kd in practice,
so the overall memory complexity is O(Kd). Meanwhile,
the size of the universal representative set is at mostKd , so the
outlier detection steps by solving the problem can be executed
extremely fast.

IV. EXPERIMENTS
A. EXPERIMENT SETUP
In this section, we compare the performance of our method
with two stream subspace clustering methods on both syn-
thetic and real-world streams. All the algorithms are imple-
mented in MATLAB 2016b and run on a Ubuntu 16.04 server
with Intel Xeon 3.0 GHz CPU, 64 GB memory.

1) COMPARED METHODS
We compare with the following two state-of-art stream sub-
space clusteringmethods: OLRSC [12] andORPCA [23]. For
both of them, we apply K-means to the obtained low-rank
representations of points. This strategy is also employed in
OLRSC [12]. We note that the number of clusters is changing
in our setting, while OLRSC and ORPCA require a pre-
defined number of clusters to perform K-means. For a fair
comparison, we adopt the number of clusters obtained by our
method during the data stream to serve as the number of clus-
ters for OLRSC and ORPCA. In both compared algorithms,
we use the codes released by the authors and set parameters
as suggested in the corresponding paper [12], [23].

2) EVALUATION METRIC
Given a stream X = {x1, · · · , xN }, we record the time indices
{Ts}Ss=1 of StreamSSC to update subspaces, where S is the
number of updates. That is, change in the subspace structure
is detected by StreamSSC and thus SSC is invoked at the Ts-th
point, s = 1, · · · , S. Then we divide theN−T0 stream points
(the T0 points for initialization excluded) into S+1 successive
sessions {Gs}

S+1
s=1 with each Gs = {xTs−1+1, · · · , xTs} for

1 ≤ s ≤ S and GS+1 = {xTS+1, · · · , xN }, such that
N − T0 =

∑S+1
s=1 |Gs|. Denote Ps as ground truth labels of

points in Gs and Qs as the corresponding clustering results,
then NMI(Ps,Qs) is the normalized mutual information of
clustering results for Gs. We use two measurements to eval-
uate the clustering performance: mean normalized mutual
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information (mNMI) and weighted normalized mutual infor-
mation (wNMI), defined as follows:

mNMI =
1

S + 1

S+1∑
s=1

NMI(Ps,Qs), (5)

wNMI =
S+1∑
s=1

|Gs|∑S+1
s=1 |Gs|

NMI(Ps,Qs), (6)

We adopt wNMI as a measurement because the number of
points in session |Gs| may vary for different s. Both mNMI
and wNMI range from 0 to 1, and a higher value means a
better clustering result.

3) STREAM DESIGN
For a dataset X = {x1, · · · , xN } containing K clusters
{Ci}Ki=1, we partition each cluster Ci into five subgroups
{C j

i }
5
j=1 of (approximately) equal size. The entire stream is

composed of K successive sessions {Xi}Ki=1. Each session
Xi contains five subgroups belonging to disjoint clusters.
To assess the effect of order among points on the performance
of clustering, all points within one session are randomly per-
muted. In this case, we can imitate the following three kinds
of change in the structure of subspaces: (1) disappearing
cluster (e.g. subspace ‘‘1’’ disappears from X1 to X2),
(2) emerging cluster (e.g. subspace ‘‘6’’ emerges from X1
to X2), (3) reappearing cluster (e.g. subspace ‘‘1’’ reappears
from X6 to X7). An example of the stream for K = 10 is
illustrated in Table 1.

TABLE 1. Stream design. The stream X is composed of 10 successive
sessions {Xi }

10
i=1. Each session Xi consists of five subgroups belonging to

disjoint clusters. The subgroups included in each Xi are shown in the
same column below Xi . For example, the first session X1 consists points
of clusters with labeling 1, 2, 3, 4, and 5.

All the experiments are repeated 10 times with different
random seeds and the average results are reported.

B. STREAM DATA
1) SYNTHETIC STREAM
We generate K = 10 subspaces {Si}10i=1 inR

1000. The number
of points in each subspace is n and the total number of points
is N = K ∗ n. Each Si is of dimension d with default value 5,
and spanned by a linear combination of d basis vectors. Both
the components of the basis vectors and the coefficients of
linear combination of a clean data points x̄t over basis vectors
are uniformly sampled from [0, 1]. Denote the matrix of clean
points as X̄ = [x̄1, · · · , x̄N ] ∈ R1000×N , where each point

x̄t is normalized to have unit norm. To test robustness of the
methods, we introduce noise in the generated data. Let µ be
the average of all the entries in X̄ , then we generate noisy
point xt from x̄t such that the j-th component xt (j) = x̄t (j) +
ρµσ for each t = 1, · · · ,N and j = 1, · · · , 1000, where
σ ∼ N (0, 1) is the standard Gaussian variable and ρ is the
noise scale with default value 0.3.

2) REAL WORLD STREAM
We evaluate on a stream produced by the public dataset:
MNIST (handwritten digit images). We choose n =
1000 images from each class of training set of MNIST.
Each image is represented as a D = 784 dimensional
vector of unit norm. The stream consists of N = 10, 000
images and is segmented into 10 successive sessions as
shown in Table 1. To test the scalability of our method,
we also use the full training set of MNIST, which consists of
n = 6, 000 images from each class. Then the stream size is
N = 60, 000. The stream design is the same as what we do for
N = 10, 000 images. Evaluation of scalability will be shown
in Table 7.

C. RESULT ON SYNTHETIC STREAM
1) SUBSPACE CHANGE DETECTION
First, we show the capability of StreamSSC to detect the
change in the subspace structure. A typical case of stream size
N = 10000, subspace dimension d = 5, noise scale ρ = 0.3
is shown in Table 2.We can see that StreamSSC performs five
subspace updates in total during the stream. The detected sub-
space numbers keep consistent with the ground truth increase
in the number of subspaces. We also note that the detected
subspace structure change time indices are very close to the
actual change time indices. For instance, StreamSSC detects
subspace structure change at time T2 = 2082, following
the actual change time t = 2000, the beginning of the ses-
sion X3. The subspace structure changes at this time because
points in the cluster C7 start to arrive, i.e., the subgroup C1

7
shown in Table 1 appears. This implies that our method can
effectively detect changes in the subspace structure during
the stream. Note that StreamSSC does not update subspaces
after T5 = 5070 anymore. This is obvious since all the
10 subspaces have been detected and the current universal
representative set has already contained representatives from
all the 10 subspaces.

TABLE 2. Illustration of subspace structure change detection by
StreamSSC on a synthetic stream of size N = 10,000, subspace
dimension d = 5, noise scale ρ = 0.3.
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TABLE 3. Performance of StreamSSC, OLRSC and ORPCA w.r.t. noise scale ρ on synthetic stream. The stream contains N = 10000 points lying in K = 10
subspaces. The subspace dimension d = 5 and noise scale ρ varies from 0.1 to 0.5 with step 0.1.

TABLE 4. Performance of StreamSSC, OLRSC and ORPCA w.r.t. subspace dimension d on synthetic stream. The stream contains N = 10000 points lying in
K = 10 subspaces. The noise scale ρ = 0.3 and subspace dimension d varies from 2 to 10.

2) COMPARISON OF CLUSTERING PERFORMANCE
To evaluate the performance of StreamSSC, OLRSC, and
ORPCA, we run on the synthetic stream of size N = 10000.
First, we fix subspace dimension d = 5 and let noise scale ρ
vary between 0.1 ∼ 0.5 with step 0.1, then we fix ρ = 0.3
and let d vary between 2 ∼ 10. Based on our conclusion from
Proposition 1, the number of representatives selected from
each subspace should be slightly larger than d to guarantee
the clustering performance, we set it as d + 1. And the
threshold γ used to detect the subspace structure change is
set 3 as a default value. The results are reported in Table 3
and Table 4.

From both tables, we observe that StreamSSC outperforms
OLRSC and ORPCA in clustering accuracy. Considering
that OLRSC and ORPCA use the number of clusters pro-
duced by StreamSSC to perform K-means, and both the two
measurements mNMI and wNMI range from 0.85 ∼ 0.95,
we conclude that StreamSSC could capture the change of
subspace structure rather accurately. In terms of running
time, StreamSSC is about a magnitude faster than OLRSC
and ORPCA. The results also verify the effectiveness of our
proposed representative selection strategy and sampling com-
plexity. Furthermore, we find that StreamSSC is not sensitive
to the order of points in the stream.

3) SCALABILITY ANALYSIS
To compare the scalability of StreamSSC, OLRSC and
ORPCA, we evaluate on seven synthetic streams of different
sizes: N = {1 × 104, 1 × 105, 1 × 106, 1 × 107, 1 × 108}.

The time cost (seconds) is reported in Table 5. Although
computational times of all the three methods grow almost
linearly with the size of the stream, StreamSSC is about a
magnitude faster than OLRSC and ORPCA. The reason is
that to update the representative set in StreamSSC, we only
need to perform SSC on a subset of at most 2 K (d+1) = 120
points, and the clustering process for a new arriving point
to solve Eq. 3 is extremely fast. In contrast, OLRSC and
ORPCA need to compute the low dimensional representation
and update the dictionary together for every new arriving
point, which requires more computation.

D. RESULT ON REAL WORLD STREAM
We set the rank of the dictionary used in OLRSC and ORPCA
as 5K = 50, inconsistent with the OLRSC paper [12], and
the estimated dimension of each subspace as d = 10 for
StreamSSC. The results are reported in Table 6.

We observe that StreamSSC outperforms OLRSC and
ORPCA more than 5% on average. Regarding efficiency,
the running time of StreamSSC is less than 20% of the time
cost by OLRSC and ORPCA. Meanwhile, it is important to
note that StreamSSC can output real-time clustering results
for each new arriving point, while OLRSC and ORPCA could
not report the clustering results until all the points in the
stream are received.

For scalability, the results are reported in Table 7. We eval-
uate the running time on two cases: N = 10, 000 and N =
60, 000. We can see that SteamSSC scales well for real-world
datasets. The running time is almost linear will the size of
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TABLE 5. Comparison of scalability of three methods on five synthetic streams of different sizes: N = {1× 104,1× 105,1× 106,1× 107,1× 108}.
Time cost(seconds) is reported. It shows that StreamSSC is about a magnitude faster than both OLRSC and ORPCA.

TABLE 6. Performance of StreamSSC, OLRSC and ORPCA on a stream of
MNIST dataset with stream size 10,000.

TABLE 7. Comparison of scalability of StreamSSC, OLRSC and ORPCA on
streams of the MNIST dataset with stream size 10,000 and 60,000,
respectively.

the stream. The growth rate is consistent with what we have
observed for synthetic data.

V. CONCLUSION
In this paper, we propose a novel method of sparse subspace
clustering for stream data (StreamSSC). StreamSSC can
detect changes in subspace structure and feedback real-time
clustering results of each point during the stream. Technically,
we exploit the representative set to characterize the observed
subspaces, then changes in subspace structure are captured
by an outlier detection scheme. Our method is efficient in
both computation and memory. Evaluation results on both
synthetic and real-world streams demonstrate that ourmethod
outperforms the state-of-art stream subspace clustering meth-
ods.
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