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ABSTRACT This document describes the implementation of a neuro-fuzzy adaptive system MIMO
(Multiple Input Multiple Output), using two neuro-fuzzy MIMO systems: one for control and the other
for identifying the plant. Under this approach, the controller is optimized, employing the model obtained
during the identification of the plant that utilizes data generated from the controller’s operation. In this way,
the plant identification and the controller optimization is performed iteratively. The application case consists
of controlling aMIMO non-linear hydraulic system fed by a pump and a three-way valve. In order to observe
the controller performance various experimental configurations are considered.

INDEX TERMS Adaptive, control, hydraulic, MIMO, neuro-fuzzy.

I. INTRODUCTION
When having uncertainty, inaccuracy, and ambiguity in the
phenomenon to model and control, the fuzzy logic systems
seem a suitable option given the flexibility when describing
this type of behavior [1], [2]. A systematic manipulation of
vague and inaccurate concepts is visible when using fuzzy
sets, at the same time, such sets can be employed to represent
variables in linguistic terms [3]. Thus, the sets become a
suitable option for solutions in control systems given the
flexibility and capacity of fuzzy logic systems when having
uncertainty, vagueness, and ambiguity in the phenomenon to
model [1], [2].

Automation applications have developed tools based on
Boole’s algebra allowing the definition of control rules [4],
[5]. Nevertheless, these systems display limited performance
due to abrupt transitions in the actions of control. One way
to improve the performance of the systems is replacing the
Boolean sets for fuzzy sets [6]. A methodology for the design
of fuzzy sets under this approach is displayed in [7], [8].

Neuro-fuzzy systems are an option of control when having
a plant of high complexity given by non-linearities, parameter
variations, among others [2]; thus, the implementation of
neuro-fuzzy control strategies require a previous plant iden-
tification and the controller’s optimization with this model.
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Essentially, adaptability consists of the capacity of an
organism to survive in an environment [9]. Reference [10]
indicates that this principle can be applied to optimization
and in adaptive intelligent control systems. Thus, intelligent
control is the study to achieve the automation by emulating
of intelligent biological systems. There are examples of opti-
mization processes when considering biological or behav-
ioral processes. This focus is useful in numerous practical
problem controls where a mathematical model is difficult or
non-viable; in such cases, heuristics can be employed for the
design of control systems.

According to [11] and [12], the Adaptive Control (AC)
includes a set of techniques that provide a systematic
approach for the controller’s adjustment in real-time, aiming
at keeping the desired performance level of the control system
when plant’s parameters of the dynamic model are known
and variable through time. Adaptive control techniques may
provide an automatic adjustment procedure in closed-loop for
controller’s parameters; in such cases, the effect of the adapta-
tion disappears as time passes. Besides, it must be considered
that changes in the operating conditions may require a reboot
of the adaptation procedure.

For control of uncertain non-linear systems, adaptive con-
trol is a suitable technique to handle system uncertainties
using a parameter estimator. In this way, adaptive control
provides controller’s automatic adjustment for maintaining
the desired system operation when the plant parameters are
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not precisely known. For the operation of adaptive control,
the system output is measured and compared with the desired
values; then, based on the comparison error, the adjustable
controller adapts its parameters using adaptation mechanisms
[13]. Besides, adaptive control has shown to be applicable in
different Multiple Input Multiple Output (MIMO) systems,
developing techniques such as Multivariable Model Refer-
ence Adaptive Control (MRAC), being this an important area
in a theoretical and practical way [14]. Another important
aspect is concerning to the sensor and actuator failures, which
can cause intermittent fault, system performance deterio-
ration, and even damages. To solve the uncertain actuator
failure issues, different control techniques were proposed,
where adaptive control based failure compensation designs
are a suitable option [15].

According to [16], [17], most of the techniques employed
to design control systems are based on the plant’s exceptional
knowledge and environment. Nevertheless, the plant may
be remarkably complex, and the basic physical procedures
are not entirely understood. Thus, the control techniques are
improved with an identification technique to understand the
plant better. If the identification of the system is recursive,
that is, if the model of the plant is periodically updated
based on previous estimations and new data, the control
and identification can be made simultaneously. The adaptive
control can be taken as a direct aggregation of a method
with a system’s form of identification that may determine if
the plant is a linear or non-linear, finite, or infinite dimen-
sion and if it displays a discreet or continuous dynamic of
events. Thus, adaptive control is all about applying a system’s
identification technique to reach a model of the process and
its surroundings from input-output experiments, and then
using this model for control design. Controller parameters are
adjusted during plant’s operation as the data amount for iden-
tification increases. In practice, these controllers are applied
to unknown plants that slowly vary in time. The application
of such systems arises in contexts like advanced systems for
flight control for aircraft and spacecraft, robot manipulators,
power-system controls, among others.

A fuzzy system allows establishing an initial configuration
and structure for identifying the plant and the controller’s
optimization. At the same time, this addresses the difficulty
present in neural networks to establish this structure, and its
parameters initialization [2]. In that sense, when employing
neural networks, the initial configuration is usually random,
while a fuzzy system permits a previous configuration based
on the preliminary knowledge of the system.

Plant identification for the design of control systems is
an important aspect that has been approached in different
ways. Some of these solutions have used fuzzy logic and
neural networks. However, there are drawbacks, such as the
black box nature of the neural network and the problem of
determining suitable membership functions for fuzzy sys-
tems. These weaknesses can be avoided by implementing
neuro-fuzzy systems since these include hybrid structure that
combines both approaches [18]. The rules of a neuro-fuzzy

system allow to incorporate previous knowledge of the sys-
tem, therefore, this can be a useful instrument to deal with
the identification of uncertain non-linear systems. Also, fuzzy
logic and neural network controllers are generally considered
applicable to plants that are mathematically less understood
and where the experience of human operators are available
for providing qualitative rules. Based on the universal approx-
imation theorem, fuzzy logic controllers are general enough
to perform any non-linear control actions. An adaptive fuzzy
system is equipped with a training algorithm in which an
adaptive controller is synthesized from a collection of fuzzy
rules and the parameters of the membership functions change
according to some adaptive law in order to control a plant to
track a reference trajectory [19].

Regarding training techniques associated with optimiza-
tion methods, evolutionary algorithms have demonstrated to
be useful to approach an optimum global value; however,
those require a high number of evaluations of the objective
function and various executions. On the other hand, methods
based on gradient calculations present rapid convergence
but are also susceptible to the initial search point showing
convergence toward local minima [20]. As reported by [10],
techniques based on gradient calculations offer practical and
effective methods to optimize online and, thus, adjust all
control system parameters. The basic approach deals with the
iterative adjustment of parameters that minimize the approxi-
mation error; however, local minima are usually present since
the approximation error’s objective function is not convex.

As stated in [21], gradient calculations are widely used in
algorithms for adjusting neural systems; mainly, the descend-
ing gradient method is consistently employed in the Back
Propagation (BP) algorithm for training neural networks.
Thus, an alternative to improve the adaptive control perfor-
mance employing gradient-based algorithms consists of a
suitable preliminary configuration of the systems used for
both plant identification and the controller.

A. APPLICATIONS OF ADAPTIVE NEURO-FUZZY CONTROL
Adaptive control is a robust and suitable alternative to face
uncertainties related to parameter prediction in a dynamic
system. Applicable structures for the controller and the plant
model are necessary to employ these types of systems with
training methods to adjust the parameters effectively.

According to [22], neuro-fuzzy systems are a suitable alter-
native for identification and control implementing adaptive
systems where the Takagi-Sugeno (TS) model is mainly used
for identification and adaptive control of non-linear systems.
Generically, TS is employed to approximately parameter-
ize the characterizable uncertainties existing in the plants.
In adaptive control, plant identification can be carried out
offline and online. The design of controllers can be carried out
considering designs stable parameter-adaptation algorithms
for both linearly and non-linearly parameterized TS fuzzy
systems. Also, these systems can be used to address adaptive
fault compensation problems subject to actuator faults and
fault-tolerant control [22].

59988 VOLUME 9, 2021



H. Espitia et al.: Control of MIMO Coupled Plant Using a Neuro-Fuzzy Adaptive System

Regarding the structure, neuro-fuzzy systems allow mod-
eling non-linear processes and obtain information about a set
of data using learning algorithms. Also, neural-fuzzy logic
systems ease the direct use of experts’ knowledge as a start
point for optimization [23]. Despite all the advantages of
neural networks and fuzzy inference systems, neuro-fuzzy
control structures present limitations when increasing the
number of fuzzy rules associated with the system’s order or
the number of fuzzy sets employed in each input [24].

On some developments of neuro-fuzzy adaptive con-
trol, in [25] is presented an adaptive backstepping control
approach for Single Input Single Output (SISO) non-linear
networked control systems with network-induced delay
and data loss. The paper [26] proposed a fractional-order
integral fuzzy sliding mode control scheme for uncertain
fractional-order non-linear systems subjected to external
disturbances and uncertainties. Meanwhile, in [27] is pre-
sented the design of an adaptive-fuzzy control compensa-
tion strategy for direct adaptive control. Finally, in [28] is
presented an Online Neuro-Fuzzy Controller (ONFC) that
uses a simple structure displaying low computational cost and
can control non-linear, time-varying, and uncertain systems.
A brief review of different adaptive control applications using
neuro-fuzzy systems is presented below, where Fig. 1 shows
the main aspects identified.

FIGURE 1. Main aspects identified of adaptive neuro-fuzzy control
applications.

1) SPECIFIC APPLICATIONS
On applications related to the development of adaptive
neuro-fuzzy control systems, reference [29] proposes a
scheme to attenuate the seismic responses for cable-stayed
bridges considering different parametric scenarios, condi-
tions of the place, and seismic characteristics. The study
compares the performance of adaptive methods with passive
schemes before and after considering parametric variations.
The simple adaptive control scheme offers a general and
successful reduction for the bridge parameters variation.

Another industrial application is observed in [30] that
studied a pilot-scale reformer to produce hydrogen (H2) by
reforming methane (CH4) with CO2. An Adaptive Neuro
Fuzzy Inference System (ANFIS) approach employs fuzzy
type 2 systems, which allowed parts of linearization of the
non-linear model. The membership functions (generalized
bell) are optimized using empirical training data. The model
is employed in a Model-Based Predictive Control (MPC) for
designing optimal control strategies with no restrictions using
a quasi-linear model adopting suitable weights in the control
inputs.

A medical application is displayed in [31], developing
control strategies in a closed-loop for infusion andmedication
administration being especially useful in anesthetic during
numerous surgeries to provide stability for the necessary
state of consciousness. The authors propose a neuro-fuzzy
adaptive controller to overcome the current challenges in con-
trol closed loops of the anesthetic, like inter and intrapatient
variability, complex and non-linear dynamics, measurement
noises and surgical alterations, and sub-impulse and overflow
in the induction stage.

2) MOTOR CONTROL, ELECTRIC VEHICLES, AND ROBOTICS
Control of electric motors is another application of
neuro-fuzzy control; in this sense, reference [32] proposes
an operation scheme for an induction motor controlled by
a neuro-fuzzy system; such scheme uses the amplitude of
the stator flux and the electromagnetic torque errors through
an adaptive neuro-fuzzy inference system to act on both the
amplitude and the angle of the desired reference voltage.

In regards to electric vehicles is considered the work [33],
where the objective is to determine the minimization of the
total energy consumption (electric battery and fuel) in hybrid
vehicles (hydraulic and electric) with a combination of energy
management that includes elements of fuzzy logic, neural
networks, and rule-based algorithms. In this work, vehicle’s
global efficiency is calculated considering the electric motor,
hydraulic pump, hydraulic motor, and transmission. An adap-
tive neuro-fuzzy algorithm is integrated into the vehicle to
real-time control.

Another related work is [34] that presents an Adaptive
Neuro-Fuzzy Sliding Mode Control (ANFSMC) architecture
for diving motion control of an Autonomous Underwater
Vehicle (AUV) in the presence of parameter perturbations and
wave disturbances. The problem of non-linear uncertain div-
ing behavior is addressed using a neural network designed to
approximate a part that presents non-linear unknown dynam-
ics and external disturbances. A corrective control based on
an adaptive fuzzy proportional-integral control is applied to
eliminate the chattering phenomenon.

A work on robotics is seen in [35], proposing hybrid adap-
tive algorithms of neuro-fuzzy control of a manipulator with
uncertainties. The controller’s outputs are used to generate the
final actuation signal (action) based on the current position
and speed errors. Thus, the industrial robot control includes
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non-linearities, uncertainties, and external disturbances in
control laws design.

In [36], the control of a spherical rolling robot is presented
via adaptive neuro-fuzzy control using a learning algorithm
based on the theory of Sliding Mode Control (SMC). The
proposed control architecture is composed of a neuro-fuzzy
network and a conventional controller that is employed to
guarantee the asymptotic system stability.

3) GREENHOUSE CONTROL
The regulation of climate in greenhouses is commonplace
since this is a complex non-linear system that provides suit-
able environmental conditions for plant growth. The climatic
control issue is creating a favorable crop environment to
achieve high performance, quality, and low-cost predeter-
mined results. In this regard, document [37] displays a system
control for a greenhouse that utilizes geothermal energy as
energy source for a heating system. It contemplates four
techniques: Proportional Integral (PI) control, fuzzy con-
trol, control with an artificial neural network, and adaptive
neuro-fuzzy control employed to adjust the indoor temper-
ature to the value required. Equally, reference [38] presents
the application of an ANFIS system to face numerous uncer-
tainties in such systems; also, to improve the performance,
a Genetic Algorithm (GA) is employed for adapting control
parameters like the number and the form of the membership
functions and scale factors.

4) SLIDING MODE CONTROL
The development of adaptive neuro-fuzzy sliding mode
controls has been relevant. In this regard, reference [39]
researched the issue of adaptive neuro-fuzzy sliding mode
control of fractional order (Fractional Order - FO) for a
type of fuzzy system perturbed subjected to uncertainties
and external disturbances. This work presents a fuzzy slid-
ing mode surface FO employing a Lyapunov function for
analyzing the robust stability of the sliding mode; besides,
it proposes aHybridNeuro-FuzzyNetwork System (HNFNS)
for estimating uncertainty. The FO adaptive fuzzy sliding
mode control is designed to propel the state trajectories of
singular disturbed fuzzy systems to the predetermined FO
sliding mode’s surface in a finite time system.

A sliding mode control called Adaptive Fuzzy Slid-
ing Mode Control (AFSMC) is seen in [40] for issues
like chaos synchronization between two different uncertain
fractional-order chaotic systems. For the synthesis approach
using the definitions of fractional derivatives and integrals,
a fuzzy Lyapunov design process is presented to tune
online the parameters of the AFSMC considering the output
feedback.

Another application is displayed in [41] using an adap-
tive control method to regulate induction motors’ speed.
The scheme employed is online learning based on a train-
ing algorithm in sliding mode and fuzzy systems type
2. By control parameters adjustment, it is possible to
address the issue associated with parametric uncertainties and

disturbances. The adaptive mechanism of sliding mode
adjusts the parameters of the type 2 membership functions
according to inputs of speed error and its derivative. Since
the induction motor parameters may vary and the information
to build the membership functions and systems’ fuzzy logic
rules are uncertain, it is then selected the neuro-fuzzy type 2
structure as a controller.

5) NON-LINEAR SYSTEM CONTROL
In general, neuro-fuzzy control systems are used in non-linear
plants. In this regard, document [42] suggests a neuro-fuzzy
adaptive control for dynamic systems’ follow-up with
non-linearities unknown. A Takagi-Sugeno is used to
describe local sub-models obtained using non-linear input
and output dynamic mapping. This scheme is based on
approximating specific terms involving the Lyapunov func-
tion’s derivative with non-linearities of the unknown system.
Besides, it is proposed a restart scheme to ensure the control
input validation. The stability analysis provides the control
law and adaptation rules for the network weights.

Another work is observed in [43] that presents an adaptive
predictive control method for non-linear systems through
an adaptive neuro-fuzzy inference system. The model pro-
posed employs a non-linear Generalized Predictive Con-
troller (GPC), while the plant’s model is achieved using
an adaptive system. The dynamic is classified as linear
and non-linear. The linear part is approximated using the
least-squares estimation technique, while the non-linear
employs an ANFIS-based identifier. The controller is updated
using the prediction obtained in an adaptive form. Themethod
can be used in real-time with no stage of network’s pre
training required. A liquid level control system is consid-
ered an application case with a Continuous Stirred Tank
Reactor (CSTR).

Meanwhile, reference [24] proposes a neuro-fuzzy
adaptive controller based on quaternionics to reduce the issue
associated with the number of extensive rules using quater-
nionic Back Propagation. Moreover, they are employed for
reinforcement, which is achieved by evaluating the response
with a system evaluation. As an application case, it is used to
control a chaotic spinning disk.

In addition, paper [44] develops a dynamic Fractional
Order Backstepping Dynamic Surface Control (DSC) for
facing the problem of stabilization of non-linear systems of
fractional order with uncertainties and external disturbances.
Each adaptive step employs a neuro-fuzzy network sys-
tem to approximate the unknown non-linear function exist-
ing in the fractional-order sub-system. A modified filter of
fractional-order is also designed to avoid the complexity
explosion issue caused by the recursive procedure. Based on
Lyapunov’s theory of fractional order, it is proposed a DSC
controller of adaptive backstepping to ensure closed-loop
systems stability.

Finally, in [45], a hybrid non-linear controller is dis-
played for the follow-up of speed and height based on the
increase of dynamics and kinematics of spacecraft. It is
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derived from pseudo-linear formulation to develop the con-
troller, which follows a Modified State-Dependent Riccati
Equation (MSDRE) scheme. Here, a neuro-fuzzy controller
is designed using ANFIS that also employs out of line of
MSDRE solutions. The combined control scheme is applied
according to long time intervals of MSDRE solutions to
acquire optimal control torques. In contrast, along with each
time interval, the controller ANFIS provides the input sig-
nal needed. Global asymptotic stability is investigated uti-
lizing Lyapunov’s theorem and is verified by Monte Carlo
simulations.

6) ENERGY MICROGRIDS
Considering the uncertain nature of Renewable Energy
Resources (RERs) and its integration into Micro Grids
(MGs), adaptive control is a suitable option for power
management. In this regard, in [46], using a neuro-fuzzy
controller is proposed a Home Energy Management Sys-
tem (HEMS) to carry out day ahead management and
real-time regulation; according to the inputs and outputs,
this approach is considered a MIMO application. Another
work can be seen in [47], where it is developed an
adaptive neuro-fuzzy system based on Power Oscillation
Damping (POD) controller to damp Low-Frequency Oscilla-
tions (LFOs) in hybrid AC/DC microgrids. Finally, in [48] an
adaptive neuro-fuzzy control power is proposed to regulate
the voltage in a distribution network when there is a variation
in the load. A SISO case is considered for the connection
of one generator while a MIMO case is regarded for three
generators.

7) MIMO CONTROL SYSTEMS
About MIMO systems, document [49] displays a research
made of multiple inputs and multiple outputs musculoskele-
tal model of the human arm with six muscles. It proposes
an optimal adaptive neuro-fuzzy controller to control the
endpoint of the arm. The adaptability and optimization of
the muscular force are essential features of the neuro-fuzzy
controller proposed.

Another MIMO application is found in [50] presenting
three control strategies to regulate ammonia and urea reac-
tors. The first is the Adaptive Model Predictive Controller
(AMPC); the second is an Adaptive Neural Network Model
Predictive Control (ANNMPC). The third is the Adaptive
Neuro-Fuzzy Sliding Mode Controller (ANFSMC). The pri-
mary purpose of the controllers is to stabilize the output con-
centration of ammonia and urea, obtaining a stable speed of
carbonmonoxide (CO) conversion into carbon dioxide (CO2)
to reduce the contamination effect, and a rise in ammonia and
urea, keeping the relation NH3/CO2 equal to 3 to reduce both
CO2 and NH3 unreacted. Lastly, the controller is also used
to keep a suitable temperature in both reactors in the correct
ranges of operation when an external disturbance occurs or
the reactor parameters change.

Meanwhile, reference [51] presents a Terminal Sliding
Mode Control (TSMC) using fuzzy logic for a rigid robotic

manipulator of two links. The TSMC is developed for faster
convergence and higher accuracy than the linear sliding
control based on the hyperplane. The proposed controller
combines a continuous TSMC with an adaptive learning
algorithm and one fuzzy logic system to measure the plant’s
dynamic. In this way, the purpose is to ensure the stability
in closed-loop and the convergence in finite time of tracking
errors.

Finally, in [52] is presented an adaptive state-space neuro-
fuzzy control scheme that combined a quadratic state feed-
back controller and eight-layer neuro-fuzzy model used to
approximate the dynamics of non-linear plants. Both the
neuro-fuzzy model and the controller are updated online. The
control scheme is tested in a MIMO plant composed of three
coupled tanks.

B. PROPOSAL APPROACH AND DOCUMENT
DISTRIBUTION
This document describes the proposal for a MIMO adaptive
neuro-fuzzy control system based on Boolean relations used
for filling control of a MIMO non-linear hydraulic system.
The adaptation process is carried out using the data taken
during the control system’s operation with which the plant
is identified; later, the model is employed to optimize the
controller. The plant corresponds to the MIMO hydraulic
system presented in [53], consisting of two tanks fed by a
pump and a three paths valve.

A compact fuzzy inference system based on Boolean rela-
tions is employed for the structures of the neuro-fuzzy sys-
tems facilitating the inference process calculations [6]–[8].
Moreover, the compact systems allow analogies with linear
and non-linear systems in such a way that it is possible to
establish their initial structure and configuration.

The main contributions of this work are described as
follows.
• For the non-linear MIMO plant, the structure and ini-
tial configuration of the neuro-fuzzy systems used for
identification and control are determined. For this, com-
pact fuzzy systems based on Boolean relations are used,
which allow the analogy with linear systems as a starting
point for the design of neuro-fuzzy systems.

• Different MIMO structures are presented that use
neuro-fuzzy subsystems based on Boolean relations.
Considering the functional parts of the MIMO plant,
the configuration used for identification is chosen.
In this way, the structure of the neuro-fuzzy MIMO
system is selected based on preliminary knowledge of
the plant.

• Considering the structure of a zero, pole, and gain con-
troller, the structure of SISO neuro-fuzzy subsystems
based on Boolean relations is determined, which are
used to implement the MIMO controller architecture.

• Since the employed neuro-fuzzy MIMO systems have
feedbacks, it is shown the deduction of the recurrent
equations used for the parameters adaptation. Consid-
ering these equations, the steps of the algorithms used
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for plant identification and controller optimization are
described.

Regarding the challenges addressed for the control of the
non-linear MIMO plant, it is worth mentioning that in this
application there is no prior offline training of the neuro-fuzzy
systems, this is why it was of importance to determine an
adequate structure of the MIMO neuro-fuzzy systems for the
plant and controller. In this way, using the data taken during
the plant operation, the adjustment of the plant model and
the controller is carried out in a way that the adaptive control
system achieves the references tracking as observed in the
results.

The document is distributed as follows: Section II shows
the structure of the hydraulicMIMOplant to know the parts of
this system; Section III describes the general architecture of
the adaptive neuro-fuzzy control system employed, present-
ing the adaptive strategy used to control the plant (some key
aspects are described); then, a detailed design of a compact
neuro-fuzzy system based on Boolean relations is shown
in Section IV, where first the configuration of the compact
system used is described, and how it can be configured to
achieve the analogy with dynamic systems in discrete time
obtaining neuro-fuzzy subsystems. Using these subsystems
as a basis, different neuro-fuzzy MIMO configurations are
presented in Section V. With the MIMO structures defined
for the controller and the plant identification, the equations
for controller training are deduced in Section VI, and for
plant identification in Section VII, where, the algorithms used
for parameters adaptation of the MIMO neuro-fuzzy sys-
tems are also described. Later, the application for the MIMO
non-linear hydraulic system considering different controller
configurations is presented in Section VIII, where the opera-
tion of the adaptive process can be appreciated considering
different references, in a way that after several identifica-
tion and optimization processes of the controller, the system
outputs reach the desired values. Finally, the conclusions are
displayed in Section IX.

II. MIMO HYDRAULIC SYSTEM
This section focuses on showing the characteristics of the
plant to be controlled, where the model of the system is
presented in a block diagram used as a reference to build the
MIMOneuro-fuzzy system employed for plant identification.

TheMIMO system consists of two tanks fed by a three-way
valve connected to a hydraulic pump for distributing the
flow in both tanks [53]. The design is aimed at the sim-
ulation of liquids’ transport and storage and handled by a
Programmable Logic Controller (PLC) connected to an OPC
server (OLE for processes control). The plant is located at
the Department of Systems Engineering of the Universidad
de Oviedo. The MIMO system includes two lower tanks
(D1 and D2) and two upper tanks (D3 and D4) that operate
using a cascade drainage system. The lower tanks release the
flow into a collector tank that works as a source for pumping
the flow to each tank employing pumps (P1 and P2), and two
three-way valves (V1 and V2) [53].

This work employs the operationmethod called 2×2where
pump P1 proportionally supplies flow to tanks D1 and D4
through the three-way valve V1. In this configuration, if the
set point of V1 is equal to 0% all the liquid is sent to tank
D4, but if the set point is equal to 100%, it implies that all the
liquid is sent to tank D4. Both pumps present maximum and
minimum flows. The tank capacity goes between lower and
upper levels, continuously oscillating given the uninterrupted
liquid supply and the three liquid outlets in each tank: lower
outlet, upper outlet (defined as a relief), and controllable
outlet [53].

The three-way valve’s opening percentage u2 = s(t) and
the power of the pump u1 = p(t) are considered as the inputs
of the system, while the liquid levels in both tanks y1(t) = D1
and y2(t) = D4 are outputs; all the variables oscillate between
0% and 100%. As observed, the plant constitutes a MIMO
system. Fig. 2 shows the parts of the system’s physical dispo-
sition, while Fig. 3 displays the schematic representation.

FIGURE 2. MIMO plant [53].

FIGURE 3. Representation of the MIMO hydraulic system.
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The differential equations associated with the plant model
are obtained performing mass balances [54], [55]. In a sim-
plified way, the equations that represent the hydraulic MIMO
system are:

dh1
dt
= −B1

√
h1 + C1q1(t) (1)

dh2
dt
= −B2

√
h2 + C2q2(t) (2)

q1(t) = u1(100− u2) = p(t)(100− s(t)) (3)

q2(t) = u1u2 = p(t)s(t) (4)

Considering the reported in [54] and [55], the plant param-
eters are: B1 = a1

√
2g/A1, B2 = a2

√
2g/A2, C1 = k1/A1,

C2 = k2/A2, where, Ai and ai are cross-section areas of
the i-th tank and its outlet pipeline, respectively; g is the
gravitational acceleration. Also h1 and h2 are water levels
of tanks D1 and D4, finally, q1 and q2 represent the input
ratios of mass flows; where k1 and k2 are the respective gains
associated to the input flows.

Fig. 4 shows the block diagram of the MIMO hydraulic
system composed of two tanks.

FIGURE 4. MIMO hydraulic system schematic.

Fig. 5 and 6 show examples of the behavior of the plant in
open loop using different values of the pump and the position
of the three-way valve. Fig. 6 shows that the settling time of
the plant is 100 seconds.

FIGURE 5. Plant response in open loop.

Using the data of Fig. 5 and the MATLABr optimization
function ‘‘fminunc’’ [56], taking X = [C1,C2,B1,B2] as

FIGURE 6. Behavior of the plant in open loop.

FIGURE 7. Plant simulation in open loop.

the variables of the fitness function (5) where NT is the total
amount of data, yr,1, yr,2 real data, and ys,1, ys,2 as simulated
data, then it is established that C1 = 2.95× 10−4, B1 = 0.2,
C2 = 2.95× 10−4 and B2 = 0.2. The simulation results can
be observed in Fig. 7.

Js(X ) =
1
NT

NT∑
n=1

[
(yr,1 − ys,1)2 + (yr,2 − ys,2)2

]
(5)

III. ADAPTIVE NEURO-FUZZY CONTROL SYSTEM
ARCHITECTURE
This section describes the general architecture of the
neuro-fuzzy adaptive control system utilized, presenting the
adaptive strategy employed to control the non-linear MIMO
plant.

Adaptive control consists of techniques that provides a sys-
tematic approach for automatic adjustment of control settings
in real-time to achieve or maintain the required performance
when the system parameters change. In this way, the adaptive
control technique through the adaptation law can cope with
disturbances, uncertainties in the system dynamics, as well as
variations in operating conditions [57].

According to [57], regarding the techniques for adaptive
control: direct methods for adaptive control combine the
control objective and the parameter estimation in one step,
whereas the indirect methods used here separate the param-
eter estimation and control into two steps. Direct methods
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generally rely on developing techniques for the parameter
estimation, such that the estimation error and the trajec-
tory error are driven to zero simultaneously. In this way,
the parameter estimation and control method are separated,
and the control is based on the Certainty Equivalence Princi-
ple (CEP).

Besides, for the strategy used to control the MIMO plant,
Model Reference Adaptive Control (MRAC) is one of the
most important adaptive control designmethods that provides
feedback controller structures and adaptive laws for plant
controlled to guarantee output tracking for a given reference
model system and closed-loop signal boundedness, in the
presence of system uncertainties [58].

The architecture uses two neuro-fuzzy systems, one as a
controller and another for the plant model. The first aspect
is the identification of the plant, then the training of the
controller is performed. Fig. 8 shows the systems employed.

The identification of the plant can be done in two ways:
one offline by collecting the data in an open loop, including
various input signals to characterize the plant’s behavior.
The second option is online and is represented by Fig. 8,
where the training data are collected, during the control sys-
tem’s operation in closed loop. The block of the reference
model corresponds to the expected system’s behavior.

FIGURE 8. Neuro-fuzzy adaptive control system.

In Fig. 8, after identifying the plant, the control loop
is incorporated to train the controller using the Real-Time
Recurrent Learning (RTRL) algorithm [59]. In an adaptive
scheme, the identification and training processes are executed
iteratively, aiming at the control system’s adaptability.

A. DESCRIPTION OF THE ADAPTIVE CONTROL
Identifying the plant and later the training of the neuro-fuzzy
controller are performed to carry out the adaptive control
system. This approach integrates the loop control to train the
controller. The adaptive neuro-fuzzy system control process
is seen in Fig. 9.

The first step defines initial configurations for the con-
troller and the neuro-fuzzy model (plant); these can be
obtained from previous knowledge or by offline training.
In the second step plant’s input-output data are acquired
during the operation in a close loop; then, new plant identi-
fication is made with the data collected. Next, the training of
the controller is made employing plant’s updated model. The
next step is to operate the optimized controller to correct the

FIGURE 9. Adaptive control process algorithm.

variation in the system. This process is repeated from step 2
for the next time interval until it meets a stopping criterion.

Considering the limited amount of data produced during
controller operation, the plant identification and controller
training process occurs iteratively. The relevance of estab-
lishing an initial search point to identify the plant and opti-
mize the controller is noticeable, which is achieved with the
neuro-fuzzy systems designated in the first process.

IV. FUZZY INFERENCE SYSTEMS BASED ON BOOLEAN
RELATIONS
This section shows the design of a SISO compact neuro-fuzzy
system based on Boolean relations, first providing a general
description of the fuzzy inference process, followed by the
design of the compact fuzzy system. Finally, it is shown how
this compact system can be configured to achieve the analogy
with discrete time dynamic systems.

In automation applications, tools based on Boolean algebra
can be used since it is easy to represent a set of rules in a
true table [4], [5]. However, this type of system presents lim-
ited performance due to abrupt transitions of control actions.
Therefore, a way to improve the performance of these systems
is to replace the Boolean sets with fuzzy ones [6], [7]. In [7],
a methodology for the design of fuzzy systems based on
Boolean relations is proposed usingKleene algebra to achieve
a transition between a system that uses Boolean sets into
another with fuzzy sets. The essential aspects are described
below.

A. DESIGN OF FUZZY INFERENCE SYSTEMS BASED ON
BOOLEAN RELATIONS
The structure of the inference process in a fuzzy inference
system based on Boolean relations is given by the truth table
associated with the Boolean encoding of the rules. In order
to implement the FIS-BBR (Fuzzy Inference System Based
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on Boolean Relations) the two-element Boolean encoding
is extended to a three-element Kleene encoding. Table 1
presents the coding of the sets for each input Aj and the acti-
vation outputs Ym ∈ [0, 1]. In this table, each row represents
an inference rule; on the right side (output section), each
column represents an activation function. By multiplying
(weighting) the virtual actuators vm ∈ R using the activation
functions Ym are obtained the virtual outputs ym = vmYm;
the inference system output is obtained by adding all these
products [7], [8].

TABLE 1. Truth table with activation rules and functions.

In Table 1, the variables ak,j and fk,m allow representing
relationships between Aj and Ym. For the Boolean case, this
variable has values {0, 1}, while Kleene case has values
{0, u, 1}. In addition, Aj can be a Boolean or fuzzy set associ-
atedwith the input, and Ym is an activation function associated
with the output.

For the system implementation the m-th activation output
Ym, in Disjunctive Normal Form (DNF) can be expressed as:

Ym =
Q∨
k=1

P∧
j=1

Â(ak,j, fk,m) (6)

Considering the activation outputs of Table 1, the total
system output can be calculated as:

y =
M∑
m=1

Ymvm (7)

where vm corresponds to the m-th virtual actuator, obtaining
the m-th virtual output:

ym = Ymvm (8)

Function Â depends on ak,j and fk,m [60], Equation (9)
shows the values of Â(ak,j, fk,m).

Â(0, 0) = 0
Â(u, 0) = 0
Â(1, 0) = 0
Â(0, u) = Āj
Â(u, u) = Aj ∧ Āj
Â(1, u) = Aj
Â(0, 1) = Āj
Â(u, 1) = 1
Â(1, 1) = Aj

(9)

B. COMPACT FUZZY SYSTEM BASED ON BOOLEAN
RELATIONS
For the compact fuzzy system design used for identification
and control, it is considered that a set of the input allows
the action of an output activation function, an example of
the respective Boolean encoding of this case can be seen
in Table 2.

TABLE 2. Boolean encoding for the compact system.

In this way, Table 3 shows the extent of the table from
Boole to Kleene where X can be {1, u, 0}.

TABLE 3. Kleene extension of Boolean encoding.

According to [7], to have a regular table and maintain a
monotonous transition, Ym is 1 for any case that Am = 1, also
is u where Am = u and 0 for Am = 0. As observed, the cases
where there is a transition to Ym between 0 and 1 is assigned u.
Using the rules to establish the disjunctive normal form,

it can be seen that Am is common for the terms when Ym is 1
or u, therefore, Equation (10) describes Ym [8].

Ym = (Am ∧ FB) ∨ (Am ∧ FE ) ∨ Am = Am (10)

where:
• FB: It is the disjunction of all the conjunctions obtained
from the truth table for which Ym is 1 eliminating from
these Am.

• FE : It is the disjunction of all the conjunctions obtained
from the truth table for which Ym is u eliminating from
these Am.

As observed for all conjunctions, when Ym is 1 always
appear Am and when Ym is u always appear the conjunction
Am∧ Ām. In this way, when the variable Am is presented in all
terms, an absorption process occurs [8].

Considering an input variable x1 an activation output can
be encoded using Table 4, in this way, Y1,1 = A1,1(x1). In gen-
eral, by incrementing the columns, the activation outputs can
be written as:

Y1,l = A1,l(x1) (11)

Having for each set A1,l a membership function µ1,l , also,
using virtual actuators v1,l , it has an output f1 as presented
in Fig. 10.
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TABLE 4. Coding for one input and one activation function.

FIGURE 10. Configuration example for one output.

Extending Table 4 for more input variables x1, x2,. . . , xj is
obtained the coding shown in Table 5.

TABLE 5. Coding for the compact system for an input xj .

In this way, each activation function Yj,l directly depends
on a set Aj,l obtaining:

Yj,l = Aj,l(xj) (12)

Using the respective membership functions µj,l associ-
ated with sets Aj,l it is obtained the general scheme shown
in Fig. 11.

FIGURE 11. General diagram of the compact system.

The output of the inference process can be calculated as:

f =
M∑
j=1

N∑
l=1

vj,lµj,l(xj) (13)

Fig. 12 presents the Boolean sets considered (base) and the
respective membership functions used to implement compact
systems. In this way, the sigmoidal fuzzy setsµj,1 andµj,2 are
used to represent negative and positive values of the universe
of discourse xj.

FIGURE 12. Boolean sets and used membership functions.

Employing the fuzzy sets of Fig. 12 is found the diagram
of Fig. 13, which shows the proposed fuzzy system. This is
considered as a basic block to build the respective MIMO
models for the plant model and the controller.

FIGURE 13. Neuro-fuzzy control system scheme.

The membership functions of Fig. 12 are given by the
Equation (14).

µj,l(xj) =
(
1+ e−σj,l (xj−γj,l )

)−1
(14)

The set of parameters in Fig. 13 are h ∈ {vj,l, σj,l, γj,l}.
Finally, the inference process for this type of system can be
calculated as:

f =
M∑
j=1

fj(xj) =
M∑
j=1

2∑
l=1

vj,lµj,l(xj) (15)

V. MIMO CONFIGURATIONS USING SYSTEMS BASED ON
BOOLEAN RELATIONS
In order to implement the MIMO adaptive control system,
for the plant model and controller different configurations
of first-order BBR subsystems are considered. Seeing the
described in [53], first-order BBR subsystems are used for
the identification of theMIMOhydraulic system.Meanwhile,
considering the structure of a zero, pole, and gain controller,
the structure of a neuro-fuzzy subsystem based on Boolean
relations is determined, which are used to implement the
architecture of the MIMO controller.
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For plant identification the subsystems are established con-
sidering the analogy with a first-order linear system (discrete
time) with a transfer function as:

G(z) =
X (z)
W (z)

=
b0

1− a0z−1
(16)

The respective discrete time equation is:

x[n] = b0w[n]+ a0x[n− 1] (17)

In the case of the BBR subsystem, the previous equation can
be represented as:

x[n] = f1(w[n])+ f2(x[n− 1]) (18)

Thus, the scheme of a BBR subsystem used for the plant
identification can be seen in Fig. 14.

FIGURE 14. Equivalent first-order BBR-SISO system.

Meanwhile, for the controller is used the BBR configura-
tion shown in Fig. 15 to have an analogy with a zero pole and
gain compensator that has a transfer function:

C(z) =
W (z)
E(z)

=
b1 + b0z−1

1− a0z−1
(19)

FIGURE 15. BBR-SISO system used for the controller.

This controller in discrete time can be described as:

w[n] = b1e[n]+ b0e[n− 1]+ a0w[n− 1] (20)

For the BBR subsystem, it can be seen as:

w[n] = f1(e[n])+ f2(e[n− 1])+ f3(w[n− 1]) (21)

For the MIMO system, two possible configurations are
mainly considered depending on the relationship that can
be had between the outputs of the BBR subsystems. These
configurations correspond to:
• Sum of outputs.
• Product of the outputs.
Fig. 16 shows the configuration that adds the outputs of

the BBR subsystems. On the other hand, the diagram where
is used the product of the outputs of the BBR subsystems is
presented in Fig. 17.

FIGURE 16. BBR-MIMO system using sum of outputs.

FIGURE 17. BBR-MIMO system using output product.

A. MIMO CONFIGURATIONS USED FOR THE ADAPTIVE
CONTROL SYSTEM
The configuration shown in Fig. 18 (sum of the outputs)
is employed for implementing the controller. Meanwhile,
for plant identification it is employed the scheme presented
in Fig. 19, which consists of a cascade connection of the
configurations in Figs. 16 and 17. Using this structure,
an adequate plant identification is achieved since the structure
allows representing the connections of the block diagram of
Fig. 4 that describes the real plant.

VI. EQUATIONS AND ALGORITHM FOR CONTROLLER
TRAINING
This section displays the process to establish the equations for
the controller training and the steps involved in the training
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FIGURE 18. BBR-MIMO system used for the controller.

FIGURE 19. BBR-MIMO system used for plant identification.

algorithm implementation using these equations. To carry out
the controller training, the plant model is included in the
feedback loop, therefore, a set of recurrence equations are
used, which are described in this section.

In order to determine the training equations, both the
architecture of the MIMO controller and the neuro-fuzzy
plant model are employed. Integrating the diagrams of
Figs. 18 and 19 the diagram of the Fig. 20 is obtained. In this
way, the following equations associated with the controller
training are presented:

y1 = g1 + g3 u1 = x1 + x3
y2 = g2 + g4 u2 = x2 + x4
z1 = w1 · w3 e1 = r1 − y1
z2 = w2 · w4 e2 = r2 − y2 (22)

Taking into account the configuration shown in Fig. 14,
the output of each BBR subsystem is:

g1 = fg,1,1(z1)+ fg,1,2(g1)

g2 = fg,2,1(z1)+ fg,2,2(g2)

g3 = fg,3,1(z2)+ fg,3,2(g3)

g4 = fg,4,1(z2)+ fg,4,2(g4) (23)

w1 = fw,1,1(u1)+ fw,1,2(w1)

w2 = fw,2,1(u1)+ fw,2,2(w2)

w3 = fw,3,1(u2)+ fw,3,2(w3)

w4 = fw,4,1(u2)+ fw,4,2(w4) (24)

x1[n+ 1] = fx,1,1(e1[n+ 1])+ fx,1,2(e1[n])+ fx,1,3(x1[n])

x2[n+ 1] = fx,2,1(e1[n+ 1])+ fx,2,2(e1[n])+ fx,2,3(x2[n])

x3[n+ 1] = fx,3,1(e2[n+ 1])+ fx,3,2(e2[n])+ fx,3,3(x3[n])

x4[n+ 1] = fx,4,1(e2[n+ 1])+ fx,4,2(e2[n])+ fx,4,3(x4[n])

(25)

Taking the subscripts for each block s ∈ {g,w, x}, for the
subsystem i = 1, 2, 3, 4, for the inner connection j = 1, 2 and
for partial output l = 1, 2, then, a function fs,i,j corresponds
to:

fs,i,j(χ) =
2∑
l=1

fs,i,j,l(χ)

=

2∑
l=1

vsijl
(
1+ e−σsijl (χ−γsijl )

)−1
(26)

where:

fs,i,j,l(χ ) = vsijl
(
1+ e−σsijl (χ−γsijl )

)−1
(27)

namely:

fs,i,j(χ ) = vsij1
(
1+ e−σsij1(χ−γsij1)

)−1
+ vsij2

(
1+ e−σsij2(χ−γsij2)

)−1
(28)

The adaptation of the parameters is done using the
equation:

hc(k + 1) = hc(k)− η
dJc(k)
dhc(k)

(29)

where η is the learning rate and Jc is the fitness function
defined as:

Jc =
1
2

[
(yr1 − y1)

2
+ (yr2 − y2)

2
]

(30)

FIGURE 20. Integration of BBR-MIMO systems.
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where yr1 and yr2 are the desired outputs (obtained from the
reference model) and y1, y2 the outputs obtained from the
controller using the neuro-fuzzy plant model.

Considering an adjustment parameter hc, for controller
training, the derivative of Jc depending on the adjustment
parameters is:

dJc
dhc
= −e1

dy1
dhc
− e2

dy2
dhc

(31)

A. DERIVATIVES FOR THE PLANT MODULE
In this section, the respective derivatives of the plant compo-
nents are established with respect to the controller parame-
ters. For the first part (output) of the plant is obtained:

dy1
dhc
=

dg1
dhc
+
dg3
dhc

dy2
dhc
=

dg2
dhc
+
dg4
dhc

(32)

Considering that plant parameters are different from those
used in the controller, the function fg,i,j does not depend
directly on hc; however, the variables zi and gi depend implic-
itly on hc, then, the respective derivatives are:

dg1
dhc

[n+ 1] =
dfg,1,1
dz1

dz1
dhc

[n]+
dfg,1,2
dg1

dg1
dhc

[n]

dg2
dhc

[n+ 1] =
dfg,2,1
dz1

dz1
dhc

[n]+
dfg,2,2
dg2

dg2
dhc

[n]

dg3
dhc

[n+ 1] =
dfg,3,1
dz2

dz2
dhc

[n]+
dfg,3,2
dg3

dg3
dhc

[n]

dg4
dhc

[n+ 1] =
dfg,4,1
dz2

dz2
dhc

[n]+
dfg,4,2
dg4

dg4
dhc

[n] (33)

where is stated that:

dfg,i,j
dχ
=

2∑
l=1

vgijl
(
1+ e−σgijl (χ−γgijl )

)−2
e−σgijl (χ−γgijl )σgijl

(34)

For the second part (input) of the plantmodel, the equations
are:

dz1
dhc
= w3

dw1

dhc
+ w1

dw3

dhc
dz2
dhc
= w4

dw2

dhc
+ w2

dw4

dhc
(35)

It is noteworthy that function fw,i,j does not depend directly
on hc; however, the variables ui and wi depend implicitly
on hc, then:

dw1

dhc
[n+ 1] =

dfw,1,1
du1

du1
dhc

[n]+
dfw,1,2
dw1

dw1

dhc
[n]

dw2

dhc
[n+ 1] =

dfw,2,1
du1

du1
dhc

[n]+
dfw,2,2
dw2

dw2

dhc
[n]

dw3

dhc
[n+ 1] =

dfw,3,1
du2

du2
dhc

[n]+
dfw,3,2
dw3

dw3

dhc
[n]

dw4

dhc
[n+ 1] =

dfw,4,1
du2

du2
dhc

[n]+
dfw,4,2
dw4

dw4

dhc
[n] (36)

In a general way, the respective derivatives used in the
above equations can be represented as:

dfw,i,j
dχ
=

2∑
l=1

vwijl
(
1+ e−σwijl (χ−γwijl )

)−2
e−σwijl (χ−γwijl )σwijl

(37)

As seen, a set of recurrence equations is presented which
are associated with the neuro-fuzzy architecture employed
for plant identification. In this regard, Fig. 20 displays the
integration of the neuro-fuzzy controller and the plant model.

B. DERIVATIVES FOR THE CONTROLLER MODULE
In this section, the derivatives of the controller components
are calculated with respect to their parameters obtaining:

du1
dhc
=

dx1
dhc
+
dx3
dhc

du2
dhc
=

dx2
dhc
+
dx4
dhc

(38)

In this case, the function fx,i,j directly depends on hc and
implicitly of ei and xi; therefore, the respective derivatives
are:

dx1
dhc

[n+ 1]

=
dfx,1,1(e1)

dhc
[n+ 1]+

dfx,1,2(e1)
dhc

[n]+
dfx,1,3(x1)

dhc
[n]

dx2
dhc

[n+ 1]

=
dfx,2,1(e1)

dhc
[n+ 1]+

dfx,2,2(e1)
dhc

[n]+
dfx,2,3(x2)

dhc
[n]

dx3
dhc

[n+ 1]

=
dfx,3,1(e2)

dhc
[n+ 1]+

dfx,3,2(e2)
dhc

[n]+
dfx,3,3(x3)

dhc
[n]

dx4
dhc

[n+ 1]

=
dfx,4,1(e2)

dhc
[n+ 1]+

dfx,4,2(e2)
dhc

[n]+
dfx,4,3(x4)

dhc
[n] (39)

In order to establish the respective derivatives, it is note-
worthy that the set of controller parameters is hc = hxmnp ∈
{vxmnp, σxmnp, γxmnp}. There are different cases depending on
the variable with respect to which the derivative calculation
is made; therefore, firstly if m 6= i and n 6= j then:

dfxij
dhxmnp

=
dfxij
dχ

dχ
dhxmnp

(40)

where:

dfxij
dχ
=

2∑
l=1

vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl

(41)
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Second, when m = i and n = j, for parameter hxijp = vxijp
is obtained:

dfxij
dvxijp

=
dfxij1
dvxijp

+
dfxij2
dvxijp

(42)

In the case when l = p, the respective derivative corre-
sponds to:

dfxijp
dvxijp

=

(
1+ e−σxijp(χ−γxijp)

)−1
− vxijp

(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)(−σxijp)

dχ
dvxijp

(43)

dfxijp
dvxijp

=

[(
1+ e−σxijp(χ−γxijp)

)−1]
+ vxijp

(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp

dχ
dvxijp

(44)

dfxijp
dvxijp

= Fvxijp + Kvxijp
dχ
dvxijp

(45)

where:

Fvxijp =
(
1+ e−σxijp(χ−γxijp)

)−1
(46)

Kvxijp = vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp (47)

Meanwhile, when l 6= p then:

dfxijl
dvxijp

= vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl

dχ
dvxijp

(48)

dfxijl
dvxijp

= Rvxijl
dχ
dvxijp

(49)

where:

Rvxijl = vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl (50)

In general, considering l 6= p is obtained:

dfxij
dvxijp

= Fvxijp +
(
Rvxijl + Kvxijp

) dχ
dvxijp

(51)

In the same way, for the parameter hxijp = σxijp is stated
that:

dfxij
dσxijp

=
dfxij1
dσxijp

+
dfxij2
dσxijp

(52)

For the case when l = p then:

dfxijp
dσxijp

= −vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)

(
γxijp − χ − σxijp

dχ
dσxijp

)
(53)

dfxijp
dσxijp

= vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)

(
χ − γxijp

)
+ vxijp

(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp

dχ
dσxijp

(54)

dfxijp
dσxijp

= Fσxijp + Kσxijp
dχ
dσxijp

(55)

where:

Fσxijp = vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)

(
χ − γxijp

)
(56)

Kσxijp = vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(xi−γxijp)σxijp (57)

In the case when l 6= p, then is obtained:

dfxijl
dσxijp

= vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl

dχ
dσxijp

(58)

dfxijl
dσxijp

= Rσxijl
dχ
dσxijp

(59)

where:

Rσxijl = vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl

(60)

In general, considering l 6= p is stated that:

dfxij
dσxijp

= Fσxijp +
(
Rσxijl + Kσxijp

) dχ
dσxijp

(61)

Finally, for the parameter hxijp = γxijp is obtained:

dfxij
dγxijp

=
dfxij1
dγxijp

+
dfxij2
dγxijp

(62)

Considering the case l = p, then:

dfxijp
dγxijp

= −vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)

(
σxijp − σxijp

dχ
dγxijp

)
(63)

dfxijp
dγxijp

= −vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp

+ vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp

dχ
dγxijp

(64)

dfxijp
dγxijp

= Fγxijp + Kγxijp
dχ
dγxijp

(65)
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where:

Fγxijp = −vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp (66)

Kγxijp = vxijp
(
1+ e−σxijp(χ−γxijp)

)−2
e−σxijp(χ−γxijp)σxijp (67)

Meanwhile if l 6= p then:

dfxijl
dγxijp

= vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl

dχ
dγxijp

(68)

dfxijl
dγxijp

= Rγxijl
dχ
dγxijp

(69)

where:

Rγxijl = vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl (70)

In general, for the case l 6= p is obtained:

dfxij
dγxijp

= Fγxijp +
(
Rγxijl + Kγxijp

) dχ
dγxijp

(71)

In this way, the equations used for the training controller
are:

dx1
dhc

[n+ 1]

= Thx11
de1
dhc

[n+ 1]+ Thx12
de1
dhc

[n]+ Thx13
dx1
dhc

[n]

+Fhx11(e1[n+ 1])+ Fhx12(e1[n])+ Fhx13(x1[n]) (72)
dx2
dhc

[n+ 1]

= Thx21
de1
dhc

[n+ 1]+ Thx22
de1
dhc

[n]+ Thx23
dx2
dhc

[n]

+Fhx21(e1[n+ 1])+ Fhx22(e1[n])+ Fhx23(x2[n]) (73)
dx3
dhc

[n+ 1]

= Thx31
de2
dhc

[n+ 1]+ Thx32
de2
dhc

[n]+ Thx33
dx3
dhc

[n]

+Fhx31(e2[n+ 1])+ Fhx32(e2[n])+ Fhx33(x3[n]) (74)
dx4
dhc

[n+ 1]

= Thx41
de2
dhc

[n+ 1]+ Thx42
de2
dhc

[n]+ Thx43
dx4
dhc

[n]

+Fhx41(e2[n+ 1])+ Fhx42(e2[n])+ Fhx43(x4[n]) (75)

where:

Thxij(χ)=
2∑
l=1

vxijl
(
1+ e−σxijl (χ−γxijl )

)−2
e−σxijl (χ−γxijl )σxijl

(76)

In addition, Fhxij ∈ {Fγxijp,Fσxijp,Fvxijp}.

C. TRAINING ALGORITHM
In order to show the training process, the following are the
algorithm steps to adjust the neuro-fuzzy controller:

1) Establish the plant model (neuro-fuzzy) and choose the
initial configuration for the controller parameters.

2) Calculate the reference models response obtaining
(yr1 , yr2 ).

3) In the respective training iteration k , for the cur-
rent simulation step n, the close-loop control sys-
tem response (y1, y2) is calculated using the plant
neuro-fuzzy model and the reference values (r1, r2).

4) Adjust the neuro-fuzzy controller parameters using the
equations (29), (31), and subsequent. It is relevant to
point out that the adjusted parameters are stored into
temporary variables since the neuro-fuzzy system does
not employ such values in this step.

5) Return to step 3 for the next simulation step n = n+ 1
(where the control system output is calculated) until n
is equal to a defined value (simulation time).

6) When the simulation time is completed, the optimized
parameters are updated, then return to step 3 to a new
iteration k = k + 1 until error Jc(k) is less than a
defined ε, or until k is equal to a defined number.

VII. EQUATIONS AND ALGORITHM FOR PLANT
IDENTIFICATION
Considering the structure defined for the plant identification,
this section shows the deduction of the equations to carry
out the parameters adaptation. As the MIMO structure has
internal feedback in the neuro-fuzzy subsystems, a set of
recurrent equations is presented which are used in the training
algorithm. The steps of this algorithm are shown in the last
part of this section.

According to [61], [62], an approach to the system model
consists of estimating a neuronal structure that can perform
the same function of the plant. For the identification of the
plant with the neuro-fuzzy system, samples of the input and
output are taken in a way that the response of the neuro-fuzzy
system can be seen as a non-linear function of these signals.
The adaptation or training of the parameters is carried out as
follows:

hp(k + 1) = hp(k)− η
dJp(k)
dhp(k)

(77)

where η is the learning rate and Jp corresponds to the adjust-
ment function defined as:

Jp =
1
2
(yd1 − y1)

2
+

1
2
(yd2 − y2)

2 (78)

In this equation yd1 and yd2 are the measured data of the plant
and y1, y2 the data obtained from the neuro-fuzzy system.
Considering an adjustment parameter hp in order to imple-
ment the Equation (77), the derivative of Jp depending on the
adjustment parameters is:

dJp
dhp
= −(yd1 − y1)

dy1
dhp
− (yd2 − y2)

dy2
dhp

(79)
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A. TRAINING EQUATIONS FOR THE OUTPUT MODULE
For the first part of the plant (output) where the parameters
of this module are hg is stated that:

dy1
dhg
=

dg1
dhg
+
dg3
dhg

dy2
dhg
=

dg2
dhg
+
dg4
dhg

(80)

dg1
dhg

[n+ 1] =
dfg,1,1(z1)

dhg
[n]+

dfg,1,2(g1)
dhg

[n]

dg2
dhg

[n+ 1] =
dfg,2,1(z1)

dhg
[n]+

dfg,2,2(g2)
dhg

[n]

dg3
dhg

[n+ 1] =
dfg,3,1(z2)

dhg
[n]+

dfg,3,2(g3)
dhg

[n]

dg4
dhg

[n+ 1] =
dfg,4,1(z2)

dhg
[n]+

dfg,4,2(g4)
dhg

[n] (81)

For the function fgij considering the case where i 6= m and
j 6= n, this function does not depend on hgmnp, therefore:

dfgij
dhgmnp

= 0 (82)

Meanwhile, in the case i = m and j = n is obtained:

dfgij
dhgijp

=
dfgij1
dhgijp

+
dfgij2
dhgijp

(83)

For the respective calculation it must be borne in mind that
the inputs z1 and z2 do not depend on hg that is fgi1p depends
only on hgi1p, therefore, for each parameter is obtained:

dfgi1p
dvgi1p

=

(
1+ e−σgi1p(χ−γgi1p)

)−1
(84)

dfgi1p
dσgi1p

= vgi1p
(
1+ e−σgi1p(χ−γgi1p)

)−2
e−σgi1p(χ−γgi1p)(χ − γgi1p) (85)

dfgi1p
dγgi1p

= vgi1p
(
1+ e−σgi1p(χ−γgi1p)

)−2
e−σgi1p(χ−γgi1p)σgi1p (86)

For the case p 6= k , is stated that:

dfgi1k
dhgi1p

= 0 (87)

Considering the internal signals g1, . . . , g4, the function
fgi2p depends directly and implicitly on hgi2p, therefore:

dfgi2p
dvgi2p

=

(
1+ e−σgi2p(χ−γgi2p)

)−1
− vgi2p

(
1+ e−σgi2p(χ−γgi2p)

)−2
e−σgi2p(χ−γgi2p)(−σgi2p)

dχ
dvgi2p

(88)

dfgi2p
dσgi2p

= −vgi2p
(
1+ e−σgi2p(χ−γgi2p)

)−2
e−σgi2p(χ−γgi2p)

(
γgi2p − χ − σgi2p

dχ
dσgi2p

)
(89)

dfgi2p
dγgi2p

= −vgi2p
(
1+ e−σgi2p(χ−γgi2p)

)−2
e−σgi2p(χ−γgi2p)

(
σgi2p − σgi2p

dχ
dγgi2p

)
(90)

In addition, if p 6= k , the function fgi2k depends implicitly
on hgi2p then:

dfgi2k
dhgi2p

=

(
1+ e−σgi2k (χ−γgi2k )

)−2
e−σgi2k (χ−γgi2k )σgi2k

dχ
dhgi2p

(91)

In this way, in general terms, is stated that:

dg1
dhg

[n+ 1] =
dfg,1,1
dhg

+
dfg,1,2
dg1

dg1
dhg

[n]+
dfg,1,2
dhg

dg2
dhg

[n+ 1] =
dfg,2,1
dhg

+
dfg,2,2
dg2

dg2
dhg

[n]+
dfg,2,2
dhg

dg3
dhg

[n+ 1] =
dfg,3,1
dhg

+
dfg,3,2
dg3

dg3
dhg

[n]+
dfg,3,2
dhg

dg4
dhg

[n+ 1] =
dfg,4,1
dhg

+
dfg,4,2
dg4

dg4
dhg

[n]+
dfg,4,2
dhg

(92)

where the derivatives dfg,i,j/dhg corresponds to:

dfgijp
dvgijp

=

(
1+ e−σgijp(χ−γgijp)

)−1
(93)

dfgijp
dσgijp

= vgijp
(
1+ e−σgijp(χ−γgijp)

)−2
e−σgijp(χ−γgijp)(χ − γgijp) (94)

dfgijp
dγgijp

= vgijp
(
1+ e−σgijp(χ−γgijp)

)−2
e−σgijp(χ−γgijp)σgijp (95)

In the same way, for the derivatives dfg,i,2/dgi is obtained:

dfg,i,2
dχ
=

2∑
l=1

vgi2l
(
1+ e−σgi2l (χ−γgi2l )

)−2
e−σgi2l (χ−γgi2l )σgi2l

(96)

B. TRAINING EQUATIONS FOR THE INPUT MODULE
For the second plant part (input), having the parameters of
this module hw is obtained:

dy1
dhw
=

dg1
dhw
+
dg3
dhw

dy2
dhw
=

dg2
dhw
+
dg4
dhw

(97)

dg1
dhw

[n+ 1] =
dfg,1,1(z1)
dhw

[n]+
dfg,1,2(g1)

dhw
[n]

dg2
dhw

[n+ 1] =
dfg,2,1(z1)
dhw

[n]+
dfg,2,2(g2)

dhw
[n]

dg3
dhw

[n+ 1] =
dfg,3,1(z2)
dhw

[n]+
dfg,3,2(g3)

dhw
[n]

dg4
dhw

[n+ 1] =
dfg,4,1(z2)
dhw

[n]+
dfg,4,2(g4)

dhw
[n] (98)
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dz1
dhw
= w3

dw1

dhw
+ w1

dw3

dhw
dz2
dhw
= w4

dw2

dhw
+ w2

dw4

dhw
(99)

dw1

dhw
[n+ 1] =

dfw,1,1(u1)
dhw

[n]+
dfw,1,2(x1)

dhp
[n]

dw2

dhw
[n+ 1] =

dfw,2,1(u1)
dhw

[n]+
dfw,3,2(x2)

dhp
[n]

dw3

dhw
[n+ 1] =

dfw,3,1(u2)
dhw

[n]+
dfw,2,2(x3)

dhp
[n]

dw4

dhw
[n+ 1] =

dfw,4,1(u2)
dhw

[n]+
dfw,4,2(x4)

dhp
[n] (100)

For this module, given the connection of the blocks,
the function fgij depends implicitly on parameters hwmnp,
therefore:

dfgij
dhwmnp

=

2∑
l=1

vwijl
(
1+ e−σwijl (χ−γwijl )

)−2
e−σwijl (χ−γwijl )σwijl

dχ
dhwmnp

(101)

In this way is obtained:

dg1
dhw

[n+ 1] =
dfg,1,1
dz1

dz1
dhw

[n]+
dfg,1,2
dg1

dg1
dhw

[n]

dg2
dhw

[n+ 1] =
dfg,2,1
dz1

dz1
dhw

[n]+
dfg,2,2
dg2

dg2
dhw

[n]

dg3
dhw

[n+ 1] =
dfg,3,1
dz2

dz2
dhw

[n]+
dfg,3,2
dg3

dg3
dhw

[n]

dg4
dhw

[n+ 1] =
dfg,4,1
dz2

dz2
dhw

[n]+
dfg,4,2
dg4

dg4
dhw

[n] (102)

where:

dfgij
dχ
=

2∑
l=1

vwijl
(
1+ e−σwijl (χ−γwijl )

)−2
e−σwijl (χ−γwijl )σwijl

(103)

Meanwhile, for the function fwij must be taken into account
the dependency of the parameters hwmnp. Considering the case
where i 6= m and j 6= n is obtained:

dfwij
dhwnml

= 0 (104)

When i = m and j = n is stated that:

dfwij
dhwijp

=
dfwij1
dhwijp

+
dfwij2
dhwijp

(105)

For the respective calculation it must be considered that
the inputs u1 and u2 do not depend on hw, that is fwi1p only
depends on hwi1p, therefore, respectively for each parameter
is obtained:

dfwi1p
dvwi1p

=

(
1+ e−σwi1p(χ−γwi1p)

)−1
(106)

dfwi1p
dσwi1p

= vwi1p
(
1+ e−σwi1p(χ−γwi1p)

)−2

e−σwi1p(χ−γwi1p)(χ − γwi1p) (107)
dfwi1p
dγwi1p

= vwi1p
(
1+ e−σwi1p(χ−γwi1p)

)−2
e−σwi1p(χ−γwi1p)σwi1p (108)

For the case when p 6= k then:

dfwi1k
dhwi1p

= 0 (109)

Considering the internal signals g1, . . . , g4, the function
fwi2p depends directly and implicitly on hwi2p, therefore:

dfwi2p
dvwi2p

=

(
1+ e−σwi2p(χ−γwi2p)

)−1
− vwi2p

(
1+ e−σwi2p(χ−γwi2p)

)−2
e−σwi2p(χ−γwi2p)(−σwi2p)

dχ
dvwi2p

(110)

dfwi2p
dσwi2p

= −vwi2p
(
1+ e−σwi2p(χ−γwi2p)

)−2
e−σwi2p(χ−γwi2p)

(
γwi2p − χ − σwi2p

dχ
dσwi2p

)
(111)

dfwi2p
dγwi2p

= −vwi2p
(
1+ e−σwi2p(χ−γwi2p)

)−2
e−σwi2p(χ−γwi2p)

(
σwi2p − σwi2p

dχ
dγwi2p

)
(112)

In addition, if p 6= k , then, fwi2k depends implicitly on hwi2p
therefore:
dfwi2k
dhwi2p

=

(
1+ e−σwi2k (χ−γwi2k )

)−2
e−σwi2k (χ−γwi2k )σwi2k

dχ
dhwi2p

(113)

In this way, in general terms, is obtained:

dg1
dhw

[n+ 1] =
dfw,1,1
dhw

+
dfw,1,2
dg1

dg1
dhw

[n]+
dfw,1,2
dhw

dg2
dhw

[n+ 1] =
dfw,2,1
dhw

+
dfw,2,2
dg2

dg2
dhw

[n]+
dfw,2,2
dhw

dg3
dhw

[n+ 1] =
dfw,3,1
dhw

+
dfw,3,2
dg3

dg3
dhw

[n]+
dfw,3,2
dhw

dg4
dhw

[n+ 1] =
dfw,4,1
dhw

+
dfw,4,2
dg4

dg4
dhw

[n]+
dfw,4,2
dhw

(114)

The respective derivatives dfw,i,j/dhw correspond to:

dfwijp
dvwijp

=

(
1+ e−σwijp(χ−γwijp)

)−1
(115)

dfwijp
dσwijp

= vwijp
(
1+ e−σwijp(χ−γwijp)

)−2
e−σwijp(χ−γwijp)(χ − γwijp) (116)

dfwijp
dγwijp

= vwijp
(
1+ e−σwijp(χ−γwijp)

)−2
e−σwijp(χ−γwijp)σwijp (117)
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In the same way, for derivatives dfw,i,2/dgi is obtained:

dfw,i,2
dχ

=

2∑
l=1

vwi2l
(
1+ e−σwi2l (χ−γwi2l )

)−2
e−σwi2l (χ−γwi2l )σwi2l (118)

C. TRAINING ALGORITHM
As observed, there are internal feedbacks present in the struc-
ture of the plant model; therefore, a set of recurrence equa-
tions is utilized for parameters adjustment. The algorithm
steps used to identify the plant are the following:

1) Define an initial configuration of the parameters for the
plant’s model (neuro-fuzzy system).

2) In the respective training iteration k , for the current
simulation step n and employing the input data (u1, u2),
the output of the neuro-fuzzy system is calculated
(y1, y2).

3) Using input-output data pairs (u1, yd1 ) and (u2, yd2 ),
and the data obtained from the model (y1, y2),
the neuro-fuzzy system parameters adjustment is made
using equations (77), (79), and subsequent. Here, it is
important to point out that the adjusted parameters
are stored in auxiliary variables since the neuro-fuzzy
system does not employ such values in this step.

4) Return to step 2 for the next simulation step n = n +
1 (where the neuro-fuzzy system output is calculated)
until n is equal to a defined value (simulation time).

5) When completing the simulation time, the parameters
are updated and then return to step 2 to a new iteration
k = k + 1 until the error Jp(k) is less than a ε defined,
or until k is equal to a determined value.

VIII. EXPERIMENTAL RESULTS
To observe the behavior of the adaptive control system, a set
of experimental tests are carried out with the real MIMO
plant, in a way that the iterative adjustments can be appre-
ciated so that the plant output reaches the desired reference
value. First, the performance metrics used to evaluate the per-
formance of the controller considering different configura-
tions of the controller are described, then the results obtained
for different reference values are shown; finally some obser-
vations are presented considering these results.

The performance index considered to evaluate the system
response corresponds to the shown in the Equation (119),
where r1, r2 are the desired reference values, y1, y2 the outputs
of the control system and NT the total number of data.

J =
1
NT

NT∑
n=1

[
(r1[n]− y1[n])2 + (r2[n]− y2[n])2

]
(119)

Also, this equation can be expressed as J = J1 + J2, where:

J1 =
1
NT

NT∑
n=1

(r1[n]− y1[n])2 (120)

TABLE 6. Summary of the configurations, according to fj from Fig. 15.

J2 =
1
NT

NT∑
n=1

(r2[n]− y2[n])2 (121)

Taking into account the data obtained of the plant in open
loop (Fig. 5) and the results reported in [53], the desired
behavior corresponds to first-order systems with settling time
of 60 seconds; therefore, reference models are:

G1(s) =
1

15s+ 1
(122)

G2(s) =
1

15s+ 1
(123)

Using the reference values of Table 7, the respective
response of the reference models can be seen in Fig. 21.

For the experimental tests, three neuro-fuzzy configura-
tions shown in Table 6 are considered. Here, the presence or
absence of fj functions in Fig. 15 are considered to implement
the BBR subsystems based for the MIMO controller.
• CO1: is proposed as the equivalence with a transfer
function with one pole and gain.

Ci(z) =
b1

1− a0z−1
(124)

The equation for implementing the BBR subsystems is
w[n] = f1(e[n])+ f3(w[n− 1]).

• CO2: is considered as an analogy of a transfer function
with zero, pole, and gain.

Ci(z) =
b1 + b0z−1

1− a0z−1
(125)

The equation for the implementation of the BBR subsys-
tems is w[n] = f1(e[n])+ f2(e[n− 1])+ f3(w[n− 1]).

• CO3: is an analogy with a transfer function with pole,
gain, and a zero at the origin.

Ci(z) =
b0z−1

1− a0z−1
(126)

The equation for implementing the BBR subsystems is
w[n] = f2(e[n− 1])+ f3(w[n− 1]).

As previously mentioned, the fuzzy sets from Fig. 12
are considered for modeling positive and negative values.
In order to determine the parameters configuration of the
BBR subsystems, each function fj of Fig. 22 can be set to
obtain a behavior similar to the one displayed in Fig. 23.
Such approach allows defining the parameters to each BBR
subsystem through an analogy with the SISO linear system
considered as based. Taking into account the range of values
of the input variables, for this case [−100, 100], the BBR
subsystem is configured to get a similar behavior to the linear
system in this range.
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FIGURE 21. Simulation of the reference models.

FIGURE 22. Configuration for partial output fj .

FIGURE 23. Configuration for the positive slope.

Meanwhile, the values obtained from the parameter’s
identification shown in Section II are considered for the
neuro-fuzzy plant model initialization. The configuration
shown in Fig. 19 is proposed for having an equivalence
regarding the diagram of Fig. 4; whereby, the initial configu-
ration considers that g2 = 0 and g3 = 0. Besides, the inter-
mediate output z1 = w1w3 is equivalent to u1(100 − u2),
and the other partial output z2 = w2w4 is equivalent to u1u2.
The function 100− u2 is achieved through the configuration
of fj shown in Fig. 24. The configurations of BBR2,1 and
BBR2,4 allow equivalent behaviors to first order systems with
a settling time of 100 seconds similar to the real plant, in this
order, for these subsystems is used the configuration of fj
shown in Fig. 23.
The reference values shown in Table 7 are considered for

the experimental tests. In this order, all results (outputs) of
the system can be seen in Fig. 25, where the associated
control action can be also observed. To better observe the
results, these are presented in separated groups. Particularly,
in Fig. 26, the results are displayed for references R1, R3

FIGURE 24. Configuration for the negative slope corresponding
to 100 − u2.

TABLE 7. References used.

and R7. Meanwhile, Fig. 27 presents the results for references
R2,R6 andR8. Finally, Fig. 27 shows the results for references
R4 and R5.

In these results, it can be seen that the system presents
greater variation for high reference values, it can be also
observed that every 100 seconds plant identification and
adaptation process of the controller are carried out, the first
adaptation process being where the greatest variation occurs.
It can be also observed that as more adaptation processes
are carried out, the outputs approach the references. In these
results, it should be noted that the CO1 and CO3 configura-
tions are the ones that present the greatest variation in most
of the references taken.

Also, in these results is observed that the output y1 presents
more noise compared to y2, which is associated with the
location of tank D1 at the bottom (see Fig. 2). Despite the
above, the control system manages to reach the reference
values for both outputs y1 and y2.

Performing the respective error calculation for each ref-
erence, Table 8 shows the values for J1 and Table 9 the
results for J2; therefore, Table 10 shows the values of J for
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FIGURE 25. Adaptive control system results.

FIGURE 26. Adaptive control system results for references R1, R3 and R7.

FIGURE 27. Adaptive control system results for references R2, R6 and R8.

different controller configurations and references. In these
results, it can be seen that the best value of J1, J2 and J is
obtained for configuration CO2.

Considering the results of Table 10 and taking as a refer-
ence the total best value obtained for J , the difference of the
configuration CO2 in relation to CO1 is 11.5% and compared
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FIGURE 28. Adaptive control system results for references R4 and R5.

TABLE 8. Results obtained for J1 on a scale of 1 × 104.

TABLE 9. Results obtained for J2 on a scale of 1 × 104.

TABLE 10. Results obtained for J on a scale of 1 × 105.

to CO3 is 11.7%.Also, in Table 10 it is seen that CO1 presents
the best results for R2, and R4; the CO2 configuration obtains
the best result for R1, R5, R6, R7, and R8, meanwhile, with
CO3 the best result is achieved for R3.

IX. CONCLUSION
The proposed neuro-fuzzy MIMO control scheme allows
iterative adjustment of the controller to reach the reference
values. For this, progressive adjustments of the plant identi-
fication are also made.

In this work, BBR subsystems are proposed considering
the analogy with linear systems used for the implementation
of MIMO configurations. In this way, a MIMO system is
designed for the identification of the plant and another for
the controller; in addition, the training equations (DBP) for
these systems are deduced.

The identification of the plant is an essential aspect for
the functioning of the adaptive control system; therefore,
a progressive adjustment is made for the plant identification
and the controller optimization.

As observed, a limited amount of data is available for the
identification of the plant obtained during the operation of the
control system, which influences the fit of the plant model.
Consequently, the adjustment is carried out progressively in
an adaptive way.

By the experimental results it is possible to verify that
the proposed adaptive scheme allows reaching the desired
reference values. It is observed that in the first adaptation
process the largest variation occurs.

The experimental test was carried out considering vari-
ous configurations of the MIMO controller, based on BBR
subsystems. In future work, other possible configurations of
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these subsystems used to implemented the MIMO controller
can be considered.

In further work, compact fuzzy systems can be used in
other control strategies such as sliding mode control and
passivity-based control, where the adaptability of the con-
troller parameters could be included.
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