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ABSTRACT Graph convolutional networks (GCNs) have achieved remarkable performance on
skeleton-based action recognition. Existing GCN-based methods usually apply the fixed graph topology and
one fixed temporal convolution kernel to extract the spatial features of joints and temporal features, which is
from a single-scale perspective. Actually, human actions are coordinated by various body parts in the spatial
domain, and exhibit different characteristics in the temporal domain. Therefore, it is appropriate to model
the multi-scale information that can enhance both the explainability and stability, which is ignored in current
literatures. To address this issue, we propose amulti-scale spatial-temporal graph neural network (MSTGNN)
to discover multi-scale discriminative features from spatial and temporal aspects simultaneously. Our
contributions are three-folds: 1) For the spatial domain, inspired by the kinematics of the human action, we
develop a three-scale graph data structures in a fine-to-coarse way. A novel hybrid spatial pooling module is
then proposed to dynamically exploit the global and comprehensive information step-by-step. 2) For the
temporal domain, we design a multi-scale temporal convolution module adaptively fusing the temporal
features extracted by different scale convolution kernels. 3) As utilizing one-stream architecture instead of
multi-stream architecture, the proposed model can be trained in an end-to-end manner. MSTGNN achieves
state-of-the-art performance with less computation complexity. Experimental results conducted on two large
datasets (NTU-RGB+D and NTU-RGB+D-120) demonstrate the superiority of MSTGNN.

INDEX TERMS Skeleton-based action recognition, multi-scale, spatial-temporal network, graph convolu-
tional network, adaptive fusion.

I. INTRODUCTION
Human action recognition attracts considerable attention due
to their potential advantages for many applications in intel-
ligent video surveillance, human-machine interaction and
virtual reality [1]–[3]. With the continuous development
of depth sensor technology [4] and pose estimation algo-
rithms (e.g., Openpose [5], Alphapose [6]), the skeleton
based action recognition methods have been widely studied
in recent years. Compared with traditional RGB-based video
action recognition, skeleton-based human action recognition
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can provide more detail position and movement information
which is essential for action understanding.Moreover, human
skeleton and joint trajectory are robust to backgrounds inter-
ference and sense changes.

Previous action recognition methods [7]–[9] usually rely
on hand-crafted features which cannot effectively capture
the discriminative spatial and temporal information from
skeletons. Due to the rapid progress of deep learning,
models based on convolutional neural networks (CNNs)
[10]–[15] and recurrent neural networks (RNNs) [16]–[22]
have become the mainstream, which normally regard the
coordinates of human joints as pseudo-images or vec-
tor sequences. Although these methods have made great
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progress, they are only suitable for dealing with the regular
data in Euclidean space, and are not suitable for explor-
ing the crucial spatial correlations among joints for action
recognition. The human skeleton is naturally structured as
a graph with the characteristic that the joints as vertexes
and the bones in the human body as edges. Recently, graph
convolution networks (GCNs), with their superior capability
in dealing with graph structural data, have been introduced to
skeleton-based action recognition. Yan et al. [23] propose the
Spatial Temporal Graph Convolutional Network(ST-GCN)
for skeleton-based action recognition. The ST-GCN include
two important components, the GCN and 1D temporal con-
volution. The former is used to extract the spatial features of
human skeleton and the latter is applied to the temporal edges
between the corresponding joints in consecutive frmmes.
Shi et al. [24] propose the two-stream adaptive graph convo-
lution network (2s-AGCN) to adaptively learn the co-relation
between non-local joints for various tasks. Moreover, the
2s-AGCN further boost the performance through modeling
both the joint and the bone data simultaneously. Afterward,
many methods [25]–[31] based STGCN and AGCN have
been proposed to gain unprecedented performance for skele-
ton based action recognition.

Although GCN-based methods make great improvements
in accuracy of action recognition, from a careful review, there
are two drawbacks in the methods mentioned above: (1) Most
existing methods only consider the predefined relationships
among individual joints but ignore the body-parts correc-
tions which include a lot of fine-grained information. Every
movement of the human body is completed by the interaction
and coordination of various parts of the body. For example,
the action of ‘‘walking’’ tends to be understand based on the
collaborative movements of abstract arms and legs, rather
than the detailed locations of fingers and toes [32]. There-
fore, such a single-scale graph is still insufficient to reflect
the high-level representations for different action sequences.
(2) Most existing methods utilize only one fixed convolution
kernel 9×1 to extract temporal context, resulting in the fact of
duration differences of different actions is considered insuf-
ficient in existing researches. To be specific, some actions
such as ‘‘writing’’ can be recognized in a very short time,
some actions such as ‘‘wear a shoe’’ should take a relatively
long time to judge. Thus, only apply one fixed convolution
temporal kernel is inadequate for feature extraction of diverse
human actions.

In light of preceding analysis, for different actions, dif-
ferent parts of the human body have different degrees of
correlations and their movement speed is also very different.
Therefore, we argue that taking multi-scale spatial-temporal
correlations into account could enhance the explainabil-
ity and stability of the classification results. Consequently,
in this paper we propose a network named multi-scale spa-
tial temporal graph neural networks (MSTGNN) to obtain
the multi-scale discriminative spatial-temporal features for
skeleton-based action recognition. For the spatial domain, we
firstly develop a multi-scale graph data structure to establish

a more comprehensive body-part relationship model hierar-
chically. A novel hybrid spatial pooling module combining
graph convolution operation and attention mechanism is pro-
posed to exploit the global and comprehensive information
step-by-step. The graph convolution operation can merge
body-parts features adaptively and the attention mechanism
can enhance the expressiveness of features. For the tempo-
ral domain, we design a multi-scale temporal convolution
module. In this module, we employ multiple convolution
kernels with different sizes to capture temporal features for
actions with different durations. Inspired by the success of
SKNet [33], we utilize it to aggregate all the temporal fea-
tures adaptively to get more plentiful features. Moreover,
our proposed model fuse two complementary data branches
including position branch and motion branch at the early
stage, which lead to one-stream architecture and can be
trained in an end-to-end manner. The bottleneck structure is
introduced to alleviate the amount of parameters tuning costs.
Overall, our model has fewer parameters and less computa-
tion complexity. We evaluate the proposed method on two
large-scale datasets, NTU-RGB+D and NTU-RGB+D 120.
The proposed model achieves excellent performance with the
state-of-the-art on both datasets. The main contributions of
our work are summarized as follows:
(1) In the spatial domain, inspired by the kinematics of

the human action, we develop a three-scale graph data
structures in a fine-to-coarse way. A novel hybrid spatial
pooling module is then proposed to dynamically exploit
the global and comprehensive information step-by-step.

(2) In the temporal domain, we design a multi-scale tempo-
ral convolution module adaptively fusing the temporal
features extracted by different scale convolution kernels.

(3) The proposed MSTGNN belonging to one-stream archi-
tecture can be trained in an end-to-end manner, which
achieves state-of-the-art performance with less compu-
tation complexity on two real-world large scale datasets,
NTU-RGB+D and NTU-RGB+D 120.

II. RELATED WORK
In this section, we provide a brief overview of the previous
methods. Earlier handcrafted-feature based methods [7]–[9]
mainly employ shallow architecture for learning the features
designed on the basis of human knowledge, which cannot
effectively capture the discriminative spatial and temporal
information from skeletons. Recent advances in deep learning
make it possible to model more complicated spatial-temporal
dependency and achieve best results at present. Considering
whether or not the spatial features are captured by graph con-
volution network (GCN), we can classify the deep learning
basedmethods into two categories: Non-GCN-basedmethods
and GCN-based methods.

A. NON-GCN-BASED METHODS
The Non-GCN-based methods mainly applied Convolutional
neural Networks (CNNs) and Recurrent Neural Network
(RNNs) for human action recognition. The RNN-based
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methods [16]–[22] treat the 3D coordinates of all joints of
human body in time sequence as a vector sequence and
then use RNN to extract temporal information. For example,
Wang and Wang [22] propose a novel two-stream RNN
architecture to model both temporal dynamics and spatial
configurations for skeleton data. Song et al. [19] combined an
LSTMmodel with a spatial-temporal attention mechanism to
automatically select highly discriminative joints and learn the
particular attention for each frame on the timeline. However,
affected by gradient explosion and disappearances problems,
RNN-based methods are difficult to train, computationally
heavy and less effective to learn long-term periodic temporal
dependencies. Compared with the RNN, the CNN is easier
to train and parallelize. The CNN-based methods [10]–[15]
manually convert skeleton sequences into pseudo-images
according to the fixed designed transformation rules, which
encoder temporal dynamics and skeleton joints into rows
and columns respectively, and then input the pseudo-images
into CNN for classification. Although the schemesmentioned
above have achieve high accuracies, joint vector sequences
and pseudo-images are inadequacy to express the correction
of the human body structure. Therefore, they fail to make
an effective use of the skeleton structure of human body to
capture complex spatial correlations, resulting in no further
performance improvement.

B. GCN-BASED METHODS
In recent years, methods which represent skeletons as a graph
and apply GCN to capture structural feature provide a good
solution for human action recognition task. Yan et al. [23]
first propose a general GCNmethod ST-GCN to model skele-
ton data and construct a predefined graph according to the
physical connections of human body. But as the fixed topol-
ogy constraint, the dependencies of non-physically connected
joins which be crucial for action recognition are not well
exploited. Subsequently, substantial research on the basis of
ST-GCN are generated gradually. Shi et al. [24] propose the
two-stream adaptive graph convolution network (2s-AGCN)
which employe an adaptive adjacency matrix to exploit the
co-relation between global joints. Furthermore, the 2s-AGCN
adopts two-stream architecture to promote the recognition
accuracy. Some works such as [28], [30] further add more
complicated spatial and temporal attention mechanisms to
capture the dynamic spatial and temporal correlations. In the
above GCN-based methods, they take the skeleton graph as
a whole, and neglect an important aspect that most of human
actions are performed by the co-movement of various parts
of the body. The relations or constraints between different
body-parts are not well exploited in these methods. After-
ward, a recent work [34] propose a part-based skeleton model
(PL-GCN) which apply graph pooling to explore the features
of body parts and unpooling operation to reconstruct the joint-
level graph. Another work [31] propose a part-wise attention
module (PartAtt) to focus on discovering the importance of
different body parts and restore the body-parts features to
joint-level features. Essentially, only a single-scale graph is

used in the two methods, which is still insufficient to reflect
the abundant information for different action sequences.
Different from the previous work, our model develop a multi-
scale skeleton graph in a fine-to-coarse way, and extract
global and high-level semantic discriminative information
hierarchically.

III. METHODS
In this section, we illustrate the proposed model MSTGNN.
Firstly, we formulate the problems to be resolved in this paper.
Next, we illustrate the overall architecture of the framework.
And then we introduce important components of the frame-
work in detail.

A. PROBLEM FORMULATION OF SKELETON
BASED ACTION RECOGNITION
Since the skeleton is abstracted as graphs, skeleton-based
action recognition can be formulated as a graph modeling
problem. Following previous studies, we defined theN skele-
ton joints as a graph G = (V, E,A), where V is the set of N
joints, E is a set of several bones, and A ∈ {0, 1}N×N is pre-
defined adjacency matrix representing the joins’ connections.
Given a skeleton sequence S = [s1, s2, . . . , sT ], st is the
group of 3D coordinates of all the N joints at time t . T is
the total number of frames in sequence S. The join data can
be directly obtained from the original skeleton coordinates,
which is represented as:

Ji,t = (xi,t , yi,t , zi,t ), ∀i ∈ N , t ∈ T (1)

where i = 1, 2, . . . ,N , t = 1, 2, . . . ,T . Our goal is to pro-
pose efficient model M to exploit both the spatial structural
information and temporal dynamics embedded in the skeleton
sequence. Then map the sequence to a certain action class l:

l =M([s1, s2, . . . , sT ] ,G) (2)

B. MODEL OVERVIEW
An overview of our proposed MSTGCN is illustrated in
Figure 1. The whole model employ a backbone named
Spatial-Temporal Bottleneck Block (STBB) including a
graph convolution module and a multi-scale temporal con-
volution module. The graph convolution module is used to
explore spatial features between joints or parts of body, fol-
lowing by a multi-scale temporal convolution convolution
module which is used to aggregate the contextual features
embedded in adjacent frames. Both modules apply bottleneck
structure to alleviate the amount of parameters tuning costs.
We fuse two branches features including the position branch
and motion branch at the early stage of the model. The
position branch considers the locations information while
the motion branch is designed to model the action dynamic
cues. The two branch are complementary to each other. Each
branch contains three layer STBBwhich the number of output
channels are all 64. The extracted features of each branch
are concatenated and feed into a main stream which contains
a six-layer STBB to extract discriminative features. In the

58258 VOLUME 9, 2021



D. Feng et al.: MSTGNN for Skeleton-Based Action Recognition

FIGURE 1. The illustration of our proposed MSTGNN architecture. STBB is the spatial-temporal bottleneck block, which
contains a sequential execution of one graph convolution module and one multi-scale temporal convolution module.
HSPM denotes the hybrid spatial pooling module. The numbers inside and at the bottom of STBB represent the number
of module and output channels, respectively. BN means Batchnorm layer, GAP means global average pooling. Maxpooling
is the max pooling layer which both the kernel and stride are 2× 1.

main stream, two hybrid spatial pooling modules (HSPM)
which can hierarchically capture high-level and comprehen-
sive information are embedded behind the 2-th and the 4-th
STBB. The output channels of the six-layer STBB in themain
stream are 128, 128, 256, 256, 256 and 256, respectively. The
data batch normalization (BN) layer is added at the beginning
to normalize the input data. The maxpooling layer is used
to reduce the feature map’ temporal size by half. Finally,
the extracted features are processed by global average pooling
(GAP) and full connected layer (FC) successively to obtain
the softmax score of each action. In this way, the whole model
can be trained in an end-to-end manner.

C. HYBRID SPATIAL POOLING MODULE
Most of the current existing methods take the skeleton graph
as a whole, and ignore the fact that the human body is coordi-
nated by several parts in the process of movement. Therefore,
existing methods using a single-scale graph miss high-level
semantic features which are essential to discriminate action
representations. To solve the problem, we first develop a
multi-scale graph structure to establish amore comprehensive
body-part relationship model. Then, we propose a hybrid spa-
tial pooling module to capture richer fine-grained informa-
tion. The hybrid spatial pooling module can reduce the spatial
size of inputs, summarize all the representations and reduce
redundant features, thus giving rise to better generalization
and performance.

Firstly, we describe how to construct the multi-scale graph
Gp, where p = 3 is the number of graph. SGCN [35] attempts
to manually design the partition strategies according to the
natural human skeleton joints’ semantics properties and the
principle of gradual progress. As show in Figure 2 and 3,
we similarly partition body into eleven parts and six parts
at the two-level graph G2 and G3, which both partition one
more sub-part than SGCN. The reason is that we argue the
head and torso should be distinguished. For example, some
actions such as ‘‘put on/take off a hat or glasses’’ are more

FIGURE 2. The illustration of the partition strategies for human skeleton
graph of NTU-RGB+D.

relevant to ‘‘head’’, while other actions such as ‘‘hugging
other person or torch chest’’ are more relevant to ‘‘torso’’.
According to the partition strategies, we can get masked
grouping/pooling matrix Zp ∈ RV×U to represent how we
manually group V nodes into U groups. The element in
Zp ∈ {0, 1} indicates whether or not the v-th joint belongs
to the next level u-th pooling group. Here, we can see that
Z2
∈ R25×11 and Z3

∈ R11×6. Then, we use Ap to denote
the adjacency matrix of the p-th hierarchical graph Gp. A1 ∈
R25×25 is the adjacency matrix of predefined skeleton graph
G1 according to physical connections of human articulations.
Following [36], we can get the new adjacency matrix Ap for
the pooled graph Gp using Ap−1 and Zp in the following
manner:

Ap = (Zp)TAp−1Zp (3)

The formulation ensures that any two sub-parts i and j in Gp

are connected if any of the constituent joints are neighbors
in the up-level graph Gp−1. It is noticed that the diagonal
elements of Ap are needed to set to 1 manually. We use Ẑp ∈
RU×V to denote the normalized matrix of pooling matrix Zp.
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FIGURE 3. The illustration of the partition strategies for human skeleton
graph of NTU-RGB+D.

FIGURE 4. The illustration of hybrid pooling module. � denotes the
element-wise multiplication, ⊗ denotes the matrix multiplication and
⊕ denotes the element-wise addition.

As show in Figure 4, we propose a hybrid pooling module
to realize the efficient merging operation of the multi-scale
skeleton graph. The module can be divided into two com-
ponents, the one based on graph convolution is for merging
body-parts features adaptively, and the other based on the
attention mechanism is for features refinement. In the first
component, given skeleton features X ∈ RC×T×V , we pool
these V joints into U groups via graph convolution, which
can be formulated as:

Ygcn = (Ẑp �M ′)XW ′ (4)

where � is element-wise multiplication, M ′ ∈ RU×V is
the trainable weight for contribution of joint v in group u,
W ′ ∈ RC×C is the weight of the convolution operation.
In the second component, we employ the Part-wise Attention
(PartAtt) [31] to work on the average features of each group.
The PartAtt based on the global contextual feature maps
can discover the importance of different groups and enhance
the downsample spatial-temporal features. The second

component can be formulated as:

Xg = XẐp

Yatt = Xg � δ(σ (pool(Xg)W1)W2) (5)

where Xg is the average feature of each group, pool means
the average pooling of all frames and joints in each channel,
W1 ∈ RC×(C/r) and W2 ∈ R(C/r)×(C×U ) are the weights of
two fully connected layers, respectively. r is reduction ratio,
σ and δ represent the ReLU and Softmax activation function.

Finally, we fuse the features of two components in a sum
manner. Two pooling modules are embedded between STBB
in our model, which can broaden the spatial receptive fields
and extract useful discriminative information.

D. SPATIAL GRAPH CONVOLUTION MODULE
According to Equation (3), we can obtain the corresponding
adjacency matrix Ap of the hierachical graph Gp. Following
the PA-ResGCN [31], we employ the graph convolution layer
based on a distance sampling function to extract spatial fea-
tures, the spatial GCN operation is formulated as:

fout =
D∑
d=0

W p
d fin((3

p
d )
−

1
2Apd (3

p
d )
−

1
2 �Mp

d ) (6)

where D is the predefined maximum graph distance, fin and
fout denote the input and output feature maps, � means
element-wise multiplication, Apd represents the d-th order
distance sampling of the adjacency matrix Ap that marks the
pairs of joints with a graph distance d , and 3p

d is used to
normalized Apd . W

p
d and Mp

d are both learnable parameters,
the former is utilized to implement the convolution operation
and the latter is utilized to tune the importance of each edge.
In order to reduce the parameters and calculation, we apply
the bottleneck structure, which inserts two 1×1 convolutional
layers to adjust the number of feature channels before and
after the graph convolution layer.

E. MULTI-SCALE TEMPORAL CONVOLUTION MODULE
In most of existing methods [23], [24], [27], [31], the tem-
poral convolution module applies a fixed 0 × 1 convolution
filter to extract high-level temporal features, where 0 denotes
the kernel size. Then the temporal convolution can be formu-
lated as:

ftemporal(vt ) =
∑

vq∈R(vt )

fin(vq)w(vq)

R(vt ) =
{
vq| −

0

2
≤ q− t ≤

0

2

}
(7)

where R the sampling region for the temporal convolution
along the temporal dimension. vt denotes the joints in time t .
wq denotes the weight for vq.

However, considering the characteristics of different
actions, the classification depends on data at different time
scales. Some actions require only a few frames of data, while
the others may do not. Therefore, merely use fixed kernel size
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FIGURE 5. The illustration of our proposed SGCN architecture.

is insufficient for different action classification. The work
in literature [30] employs Inception-Resnet TCN (IR-TCN)
layer with three diverse temporal convolution kernel sizes
to obtain more discriminative temporal features. However,
IR-TCN directly concatenates all the output from different
kernels for temporal dynamics, which brings a lot of redun-
dant features that is not conducive to build an efficient model.
To address the issue, we employ SKNet [33] to fuse different
scales of information and enhance the expressiveness of the
model. Here, we introduce a multi-scale temporal module as
shown in Figure 5. In detail, there are two parts: multi-scale
feature extraction and adaptive feature fusion.

Similar to the spatial graph convolution module, the tem-
poral module also applies the bottleneck structure to reduce
the number of parameters. Given the input X ∈ RF×T×V

and the down-sample output X ′ ∈ RF ′×T×V through 1 × 1
convolution of the bottleneck structure, where F ′ = F/r is
the number of reduction feature channels with a reduction
rate r . In the part of multi-scale feature extraction, suppose
there are m continuous temporal convolution with different
kernel sizes, in which each temporal convolution takes X ′

as input and produces output fm ∈ RF ′×T×V according to
Equation (7). Moreover, we set f0 = X ′, which preserves
the intrinsic feature maps from a 1 × 1 convolution layer.
The second part is adaptive feature fusion which is similar
to the PartAtt aforementioned. Specifically, we firstly fuse
the results from all feature maps fm via an element-wise
summation. Then we reduce the resolutions and compress
the channels through a global pooling layer and a 1 × 1
convolution layer, respectively. Finally, the softmax operator
works channel-wise after another 1 × 1 convolution layer,
which generates a re-weighting matrix Q ∈ R(m+1)×F ′ . The
final fusion feature Yfusion is aggregated from different scale
features, as follows:

Yfusion =
m+1∑
i=0

(Qi � fi) (8)

At the end, we restore the channels F ′ of Yfusion to output
channels F through a 1 × 1 convolution layer. The intro-
duction of residual connection is to eliminate the problem

of gradient disappearances or explosion, Through this kind
of dynamic weight distribution, the model can automatically
respond and select features from different scale inputs.

F. ONE-STREAM ARCHITECTURE
Multi-stream architecture is widely adopted to boost
the classification performance in many current methods.
However, the multi-stream architecture has two disadvan-
tages. On the one hand, the multi-stream architecture shares
the same network, which doubles or even quadruples the
number of parameters. On the other hand, due to the net-
work is trained independently, the training time and mem-
ory consumption is growing when increase the number of
stream. To solve this issue, motivated by Multiple Input
Branches (MIB) [31] architecture, we fuse two branches
including position branch denoted as Pbranch and motion
branch denoted as Mbranch at the early stage, leading to
a one-stream architecture, as shown in Figure 1. In this
way, the parameters are dramatically reduced, resulting in
less training time and memory consumption. To be specific,
position branch is Pbranch = {Ji,t ,Bi,j,t } and motion branch is
Mbranch = {J -Mi,t ,B-Mi,t }. Formally, given the source joint
Ji,t and the target joint Jj,t = (xj,t , yj,t , zj,t ), the bone data can
be calculated as:

Bi,j,t = (xi,t − xj,t , yi,t − yj,t , zi,t − zj,t ) (9)

Moreover, joint motions which can provide kinematic cues
are calculated by the joint coordinates differences between
two adjacent frames:

J −Mi,t = Ji,t+1 − Ji,t , ∀i ∈ N , t ∈ T (10)

The bone motions are also obtained in the same way:

B−Mi,t = Bi,t+1 − Bi,t , ∀i ∈ N , t ∈ T (11)

Note that the two branches are complementary and we
will show that the fusion can achieve better results in our
experiments.

IV. EXPERIMENTS
To verify the efficiency of our proposed MSTGCN, we
conduct our experiments on two real-world datasets: NTU-
RGB+D [17] and NTU-RGB+D 120 [37]. To investigate
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the contributions of each important component in MSTGNN,
we perform exhaustive ablation experiments on the smaller
dataset NTU-RGB+D. Finally, we compare the performance
of MSTGCN with other state-of-the-art approaches.

A. DATASETS
(1) NTU-RGB+D Dataset. NTU-RGB+D is the most

widely used dataset for skeleton action recognition
tasks. It consists of 56,800 action clips(samples) from
60 action classes. The samples are performed by 40 dif-
ferent subjects in a lab environment and captured by
three cameras with different view angles. There are
25 joints with 3D coordinates in each human skeleton,
and one or two subjects in each sample. For classifica-
tion task, we follow the benchmark evaluations in the
original work, which are cross-subject (X-Sub) and
cross-view (X-View) evaluations. For X-Sub evalua-
tion, 40 subjects are divided into training group and
testing group. There are 40,320 samples performed by
20 subjects in training set and 16,560 samples performed
by the rest subjects in test set. For X-view evaluation,
the dataset is divided into training group and testing
group according to camera views. The training and test-
ing set have 37,920 and 18,960 samples, respectively.

(2) NTU-RGB+D 120Dataset. NTU-RGB+D 120 dataset
is an extended version of NTU-RGB+D. It contains
114,480 skeleton samples which are categorized into
120 action classes. These samples are performed by
106 subjects and captured from 32 different camera
setups. Similar to NTU-RGB+D, the evaluation metrics
for this dataset are suggested under two settings:
(1) cross-subject (X-sub120), the samples performed
by 53 subjects are used for training, and the rest are used
for testing. The training and testing set have 63,026 and
50,922 samples, respectively.
(2) cross-setup (X-set120), the samples captured from
the camera setups with even IDs are used for training,
and the rest are used for testing. The training and testing
set have 54,471 and 59,477 samples, respectively.

B. IMPLEMENTATION DETAILS
Our experiments are carried out on the Pytorch deep learning
framework with two NVIDIA GTX 2080Ti GPU. In our
experiments, the maximum graph distance D is set to 2, and
the temporal kernel sizes are set 5 and 9. All experiments use
stochastic gradient descent (SGD) with Nesterov momentum
(0.9) as the optimization strategies of our method. The batch
size is 32, the weight decay is 0.0002 and the initial learning
rate is 0.1. The training process include 50 epochs in total.
A warmup strategy is utilized at the first 5 epochs to make
the training procedure more stable. We adopt the cosine
annealing scheduler to reduce the learning rate gradually. The
cross-entropy is applied as the loss function.

C. STRATEGIC ANALYSIS AND ABLATION STUDY
There are three key points in our model, i.e., two-branch
input, multi-scale temporal convolution module and hybrid

TABLE 1. The comparison of accuracies(%) with different input data on
NTU-RGB+D datasets.

TABLE 2. The comparison of accuracies(%) with multiple temporal
convolution kernels with different sizes on NTU-RGB+D datasets.

TABLE 3. The comparison of accuracies(%) with using HSPM on
NTU-RGB+D datasets. The G1, G2, G3 refer to the three-scale graph
introduced in Figure 2.

spatial pooling module. In this section, we verify the effec-
tiveness of each component. The experiments are conducted
on the NTU-RGB+D dataset under the cross-subject (X-sub)
protocol.

1) THE INFLUENCE OF THE INPUT BRANCH
As shown in Figure 1, MSTGNN is designed to fuse the
position branch and motion branch at the early stage of
the model. The position branch containing joints and bones
data considers the locations information, while the motion
branch containing their second-order features for the tempo-
ral dimension is designed to model the action dynamic cues.
Table 1 presents the ablation studies of MSTGNN with the
different input data. Note that the one-branch architecture
which only contains the position branch can be divided into
two group: 1) one-branch architecture with only joins data.
2) one-branch architecture with joins and bones data. As show
in the table, the one-branch architecture only with joints data
obtains the worst accuracy, and the one-branch architecture
with joins and bones data obtain the mediate accuracy. The
two branches architecture achieve the best accuracy than
the others. The results reveal that the position branch and
motion branch are necessary and complementary to each
other.
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TABLE 4. Comparison with the GCN-based state-of-the-art methods on NTU-RGB+D and NTU-RGB+D 120 datasets in top-1 accuracy (%) and parameters
number (million).

2) THE INFLUENCE OF MULTI-SCALE TEMPORAL
CONVOLUTION MODULE
As the typical kernel size 0 = 9 has been proven effec-
tive in many methods, we keep it in our proposed methods.
At the same time, considering larger kernel sizes and themore
kernels both bring more parameters and heavier calculation,
we employ no larger than 9 in kernel sizes and no more than
three kernels to keep the efficiency of our model. We choose
two or three kernels from the sizes of 3,5,7,9 to evaluate the
performance, which are shown in Table 2. We can see that
using only one kernel 0 = 9 achieve the worst performance
(90.4%). Increasing the number of kernels brings a certain
amount of improvement, ranging from 0.2% to 0.8%.Overall,
using three kernels is generally better than using two kernels.
However, compare to using three kernels, the settings of
5 and 9 achieve the best performance (91.3%). We argue that
using three kernels silghtly cause overfitting due to bring
more parameters. Finally, considering that kernel setting of
5 and 9 achieve the best performance and reduce the number
of parameters by about 0.12M, we adopt this combination.

3) THE INFLUENCE OF HYBRID SPATIAL POOLING MODULE
As introduced in Section 3.2, we apply two hybrid spatial
pooling module (HSPM) after the 2nd and 4th STBB in
the main stream. To evaluate the efficiency of the HSPM,
we design three other version of MSTGCN which manually
remove one or two pooling module. To simplify, we utilize
the G1,G2,G3 to denote the different version of MSTGNN.
For example, theG1,G2 represent only using one first HSPM
and removing the second HSPM, and the G1 indicates that
no any HSPM is used. The results are listed in Table 3, we
can see that the version of no HSPM (the first row) achieves
the worst accuracy, while using one HSPM (the second and
third row) is beneficial to improve accuracy. The version
using two HSPM (the fifth row) achieves the best accuracy
which proves the necessity of HSPM. To further verify the
efficiency of HSPM, we remove the PartAtt of HSPM in the
architecture of using three graph, and its performance is also
shown in Table 3 (the fourth row). Specifically, compared to
the former three version, the version without the PartAtt still

boosts the performance by 0.5% at least. When integrating
PartAtt into the pooling module, the model obtains the best
performance (91.3%), which implies the PartAtt can help
to extract discriminate features. Therefore, from the above
experiments, we can infer that the HSPM can capture diverse
features and enhance the explainability and stability for the
classification results of action recognition.

D. COMPARISONS TO OTHER STATE-OF-THE-ART
METHODS
To further verify the superiority and generality of our
proposed method MSTGCN, we compare with other state-
of-the-art methods on both the NTU-RGB+D dataset and
NTU-RGB+D 120 dataset. The methods which we selected
for comparison are all recent GCN-based methods, in which
STIGCN [39], MV-IGNet [40] and PA-ResGCN [31] are
one-stream-architecture based methods, while other methods
are multi-stream-architecture based models. Note that the
MSTGCN can be viewed as an one-stream-architecture based
approach. The results are reported in Table 4. We obtain three
important observations. First, the multi-stream-architecture
based models such as 2s-AGCN [24] and NAS-GCN [27],
bring more parameters than one-stream-architecture based
models. Obviously, the parameter size of MSTGCN is the
smallest.

Second, in terms of X-sub and X-sub120, MSTGCN
achieves the best accuracies, 91.3% and 87.4% respectively.
In terms of X-view and X-set120, MSTGCN obtains compet-
itive performance 95.9% and 87.6%, respectively. For exam-
ple, alough MSTGCN is 0.4% lower than MV-IGNet [40],
the parameter size of our model is almost half of MV-IGNet.

Third, MSTGCN is similar to PA-ResGCN in architecture
structure. We can also observe that MSTGCN outperforms
PA-ResGCN (Bottleneck) on both two datasets, and is com-
parable with PA-ResGCN (Basic) with less parameters. This
is because, 1) We reduce the input features branch, which
reduces the time and memory consumption and makes the
training procedure easier to converge. 2) We propose a hybrid
spatial pooling module to extract multi-scale and high-level
discriminative information, while PA-ResGCN just focus on
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the single-scale information on the level of joints graph.
3) For the temporal aspects, we apply multiple convolution
kernels instead of one kernel to extract temporal discrimina-
tive features adaptively.

V. CONCLUSION
In this paper, we propose a multi-scale spatial temporal
graph neural network (MSTGNN) for the skeleton-based
action recognition task. In the spatial domain, we develop a
multi-scale graph structure to establish a more comprehen-
sive body-part relationship model. A hybrid pooling module
combining graph convolution and attention mechanism is
then proposed to dynamically exploit the global and com-
prehensive information step-by-step. In the temporal domain,
we design a multi-scale temporal convolution module to fuse
the temporal features extracted by different scale convolution
kernels adaptively. In addition, we fuse two branches includ-
ing position branch and motion branch at the early stage,
leading to a one-stream architecture. In this way, the param-
eters are dramatically reduced, resulting in less training time
and memory consumption. Due to the contribution of above
three key points, our MSTGNN achieve the state-of-the-art
performance with less computation complexity on two large-
scale action recognition datasets.
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