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ABSTRACT Identity spoofing attacks pose one of the most serious threats to wireless networks, where the
attacker can masquerade as legitimate users by modifying its own identity. Channel-based physical-layer
security is a promising technology to counter identity spoofing attacks. Although various channel-based
security technologies have been proposed, the study of channel-based spoofing attack detection in 5G
networks is largely open. This paper introduces a new channel-based spoofing attack detection scheme
based on channel virtual (or called beamspace) representation in millimeter wave (mmWave) massive
multiple-input and multiple-output (MIMO) 5G networks. The principal components of channel virtual
representation (PC-CVR) are extracted as a new channel feature. Compared with traditional channel features,
the proposed features can be more sensitive to the location of transmitters and more suitable to mmWave
5G networks. Based on PC-CVR, we offer two detection strategies to achieve the spoofing attack detection
tackling static and dynamic radio environments, respectively. For the static radio environment where the
channel correlation is stable, Neyman-Pearson (NP) testing-based spoofing attack detection is provided
depending on the `2-norm of PC-CVR. For the dynamic radio environment where the channel correlation is
changing, the problem of spoofing attack detection is transformed into a one-class classification problem.
To efficiently handle this problem, an online detection framework based on a feedforward neural network
with a single hidden layer is presented. Simulation results evaluate and confirm the effectiveness of the
proposed detection schemes. For the static radio environment, the detection rate can be improved around
25% with the help of PC-CVR under the NP testing-based detection, and the detection accuracy can reach
99% with the machine learning-based scheme under the dynamic radio environment.

INDEX TERMS Physical layer security, spoofing attack detection, mmWave communication, virtual
channel.

I. INTRODUCTION
Due to its extensive applications, the fifth-generation (5G)
wireless networks will have a significant impact on people’s
modern lives. Smart city, autonomous driving, and mobile
payment, etc., which are supported by 5G wireless net-
works, are changing peoples’ lifestyles [1]. In the meantime,
the security and privacy of 5G wireless networks are of the
utmost importance. In these applications, the privacy infor-
mation and key control commands would be transmitted by
5G wireless techniques, such as millimeter Wave (mmWave)
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communications and massive multiple-input and multiple-
output (MIMO). However, owing to the broadcast character-
istics of wireless communications, 5G wireless networks are
vulnerable to physical layer security threats, such as identity
spoofing attacks [2], [3]. In this attack, the attacker can
pretend to be a legitimate user using a faked identity, such
as media access control (MAC) address and internet proto-
col (IP) address, then it may gain illegal benefits to further
perform advanced attacks, likeman-in-the-middle attacks and
denial-of-service attacks [4].

For this security threat, channel-based physical-layer secu-
rity techniques can provide a countermeasure to identity
spoofing attacks [2], [4]–[6]. Resorting to the inherent
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features of wireless channels, the channel-based spoof-
ing attack detection can detect different transmitters with
different locations [7]–[11]. Most existing channel-based
physical-layer security schemes exploit traditional channel
features to achieve detection, e.g., received signal strength
(RSS) and channel state information (CSI) [4], [11]. When
the detection mechanism indicates that there are some sig-
nals with the same identity but from different transmitters,
the spoofing attack can be flagged. Then, the spoofing attack
alarm is raised and follow-up countermeasures could be
applied by legitimate users, such as restarting communication
and updating the key.

However, these existing channel-based spoofing attack
detection methods struggle to be desirable solutions in 5G
wireless networks. Taking the unique characteristics of 5G
communications into account, the conventional channel fea-
tures used on existing detection schemes are difficult to
support high detection performance. Take mmWave massive
MIMO communications as an example. MmWave massive
MIMO channels possess high directionality, which is highly
sensitive to transceivers’ positions. This unique characteristic
can be seen as a blessing for prompting the channel-based
detection performance in 5G networks. Nevertheless, tra-
ditional channel features, e.g., RSS and CSI, are hard to
reflect this unique property of 5G channels. Besides, most
existing channel-based spoofing attack detection schemes use
Neyman-Pearson (NP) testing as the detection strategy, which
is based on the analysis of sample distribution and requires
a reasonable threshold [7]–[11]. However, when the sample
distribution is hard to obtain and the channel correlation
parameter is changing due to the dynamic radio environment,
to gain a desirable detection performance based on NP testing
is struggling.

To fill this gap, in this paper, we propose to introduce
a channel virtual/beamspace representation in mmWave
Massive MIMO to achieve the spoofing attack detection
in 5G wireless networks. The principal components of chan-
nel virtual representation (PC-CVR) are extracted as the
employed channel feature. In particular, to achieve a desirable
spoofing attack detection based on PC-CVR, two detec-
tion strategies are proposed to tackle static and dynamic
radio environments, respectively. For the static radio envi-
ronment where the channel correlation is stable, an NP
testing-based spoofing attack detection is presented based
on the observation of PC-CVR. For the dynamic radio
environment where the channel correlation is dynamically
changing, the problem of spoofing attack detection is formu-
lated as a one-class classification machine learning problem.
Furthermore, to address this dynamic learning problem,
an online updating detection framework based on a
single-hidden layer feedforward neural network (SLFN) is
presented, named SLFN-framework. Simulation results val-
idate the effectiveness of the proposed detection schemes
based on NP testing and SLFN-framework, respectively.
The detection rate can approach 97% with 10−2 false alarm
rate under the NP testing-based scheme in the static radio

environment, while the detection rate of the traditional
scheme is around 70% under the same conditions. The detec-
tion accuracy under the proposed machine learning-based
scheme can reach 99% in the dynamic radio environment.

The main contributions of this work lie in four aspects:
• We propose to introduce a new channel feature,
i.e., channel virtual representation, to counter spoofing
attacks inmmWavemassiveMIMO5G communications.

• We provide an NP testing-based spoofing attack detec-
tion based on the `2-norm of PC-CVR under the static
radio environment.

• For the dynamic radio environment, the problem of
spoofing attack detection is formulated as a one-class
classification machine learning problem, which is free
from the requirements of sample distribution and
threshold choice.

• An SLFN-framework with the capacity of online updat-
ing is proposed to address machine learning-based
spoofing attack detection based on PC-CVR.

It is worth noting that this paper is the extended version of
our conference paper [12], which developed a basic solution
to counter the spoofing attacks under a static radio envi-
ronment based on channel virtual representation. Compared
with our earlier work, the extension of this paper contains
these four aspects: 1) A detailed analysis of channel virtual
representation is given; 2) The virtual channel-based spoofing
attack detection for dynamic radio environment is considered,
and the problem of the spoofing attack detection is trans-
formed into a one-class classification problem; 3) A new
SLFN-framework is proposed to address the problem of the
one-class classification machine learning based on PC-CVR;
4) More simulation results are provided.

The rest of this paper is organized as follows. Section II
introduces related works. Section III describes the system
model, its motivation and challenges, and Section IV shows
the analysis of channel virtual representation. In Section V,
the NP testing based on PC-CVR is provided. Machine
learning-based spoofing attack detection based on PC-CVR is
proposed in Section VI. Section VII provides the simulation
and evaluation results, and Section VIII concludes this paper.

II. RELATED WORK
In this section, we will introduce the related work involving
identity spoofing attack detection and channel virtual repre-
sentation.

A. SPOOFING ATTACK DETECTION
Identity spoofing attacks have recently been gaining signifi-
cant attention from researchers. The authors in [9] provided a
survey study on this physical layer threat. For identity spoof-
ing attacks, the attacker can transmit a deceiving signal with a
fake identity to the receiver so that the receiver would accept
the spoofer as a legitimate user. Channel-based physical layer
security techniques can be used to counter this physical layer
threat. It is worth noting that physical layer authentication
schemes are not to replace the cryptography-based security
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mechanism. Instead, they are a supplement and enhancement
approach for current cryptographymechanisms. In contrast to
traditional cryptography-based authentication, physical layer
authentication can fill the gap of the security mechanism
in the physical layer. Furthermore, since the secure funda-
mental is based on physical properties, the physical layer
authentication is free from key distribution and manage-
ment, which is more suitable for heterogeneous networks,
dense networks, low-complex IoT devices and other 5G
networks [7], [13]–[16].

Resorting to channel features, such as RSS [4], [11], power
spectral densities (PSD) [10], channel frequency response
(CFR) [4], and channel impulse response (CIR) [17],
channel-based spoofing attack detection methods can detect
the locations of transmitters. In most existing channel-based
security technologies, NP testing is the most commonly
used detection strategy, in which it requires the analysis
of signal distribution and a reasonable threshold. Once the
detection mechanism detects that received packets with the
same identity information are from different transmitters with
different locations, the spoofing attack alarm will be raised.
Then the legitimate users in the wireless network will take
follow-up countermeasures to this security threat. The most
relevant work to this paper is [4], where the authors consider
the channel-based spoofing attack detection in a dynamic
ratio environment, and a dynamic threshold selection scheme
that uses reinforcement learning techniques and game the-
ory was presented to obtain the optimal threshold for NP
testing.

However, the unique characteristics of 5G communications
have not been noticed in these existing works. Compared
with these existing works, there are two main differences
between them and our work: (i) we introduce a new chan-
nel feature, i.e., PC-CVR, to achieve channel-based spoof-
ing attack detection, rather than traditional channel features;
(ii) we propose a newmachine learning-based spoofing attack
detection strategy to tackle the dynamic radio environment,
instead of NP testing that requires sample distribution and a
reasonable threshold.

In addition, deep learning approaches have been used in
cyber security intrusion detection [18]. For examples, a fed-
erated deep learning scheme was proposed to detect the
date intrusion in the industrial cyber-physical system [19],
the authors in [20] proposed a feed-forward deep neural
network using a Wrapper based feature extraction unit, and a
cloud-based cyber-physical intrusion detection scheme using
deep learning was presented in [21]. However, it is worth
noting that intrusion detection and physical layer spoof-
ing attack detection are two different problems. The differ-
ences can be reflected in two aspects: (1) Intrusion detec-
tion mainly focuses on the high layer data characteristics of
the software and network, such as data package and Net-
flow data; while spoofing attack detection mainly focuses
on the physical layer features of wireless channels. (2) Most
intrusion detection schemes can employ intrusion datasets as
the training samples to establish detection models, such as

UNSW-NB15 and AWID intrusion detection datasets [20].
For spoofing attack detection, it is hard to build a spoofing
attack dataset since the wireless channel is random and the
wireless channel of the attacker is unpredictable. Therefore,
the detection approaches used in cyber security intrusion
detection are struggling to be directly applied to the physical
layer spoofing attack detection.

B. CHANNEL VIRTUAL REPRESENTATION
Channel virtual (or beamspace) representation was first dis-
cussed in [22] and has been applied in mmWave and MIMO
communication systems [23]. Virtual channels are composed
of virtual angle-of-arrival (AoA), virtual angle-of-departure
(AoD), and channel gains. It can be seen as a mapping of the
real channel in a special space. The authors in [24] have given
a fast estimation method to obtain the related parameters.
Channel virtual representation has been used to detect pilot
contamination attacks in NOMA communications [25]–[27].

Generally speaking, when the number of antennas is suffi-
cient, such as the massive MIMO scenario, different channel
paths can be represented by several concentrated path gains
with different virtual angles [22]. In practice terms, supported
bymmWave andmassiveMIMO 5G communication, the tiny
wavelengths allow for dozens to hundreds of antenna ele-
ments to be placed in an array on a relatively small physical
platform [28]. Under this case, the virtual channel matrix
will become a sparse matrix in mmWave massive MIMO
5G communications. Thus, compared to traditional channel
features, the characteristics of the virtual channel are more
sparse and concentrated, and the channel differences caused
by different locations are easier to distinguish. Therefore,
the feature of the virtual channel could beat the traditional
channel features in the channel-based spoofing detection
under mmWave massive MIMO 5G communications.

III. SYSTEM MODEL, MOTIVATION AND CHALLENGES
This section will introduce the system model, motivation and
challenges of this study.

A. SYSTEM MODEL
1) SYSTEM SETUP
We consider a 5G wireless network that consists of a base
station (BS) and users including N legitimate users (LU) and
potential spoofing attackers (SA) that impersonate another
node with a fake identity. Fig. 1 illustrates a typical applica-
tion scenario. Once the BS has received a packet, it can esti-
mate the channel states associated with the packet. The pilots
or the preambles of this packet can be used to estimate the
channel of the corresponding transmitter. Transmitters and
receivers would equip with mmWave and massive MIMO.
The communications between BS and LUs obey normal 5G
communication standards, where the beamforming technique
can be used to benefit communication. Moreover, the loca-
tions of all LUs are fixed in the network, and the location of
SA is arbitrary but cannot be the same as LUs.
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FIGURE 1. A typical mmWave massive MIMO application scenario.

2) THREAT MODEL
We assume that SA is a powerful spoofing attacker who can
masquerade the legitimate user by modifying its own identity.
The SA can manipulate arbitrary fields in a frame, such
as the source and destination IP/MAC addresses, sequence
number, frame check, and so on. It may even compromise the
authentication key after sniffing the communication between
the BS and legitimate users for enough time. The SA could
enjoy the same mmWave massive MIMO beam as the victim,
as shown in Fig. 1, but cannot replace the victim. During the
communication period, the attacker could launch the attack
at any time with a fake identity and send a fake packet in any
time slot.

3) DETECTION MODEL
In general, for the channel-based spoofing detection study,
the hypothesis testing is performed to determine whether the
packet with the identity information is indeed sent by the
transmitter which the identity information relates [4], [29].
Let ζ (H ) denote the real transmitter that sends a packet
with the channel information H , and ξ be the identifica-
tion information related to the legitimate transmitter which
the packet declares. Thus, according to the detection of H ,
the channel-based spoofing attack detection can be formu-
lated as follow,

1)T0 : ζ (H ) = ξ ;
2)T1 : ζ (H ) 6= ξ.

(1)

where the null hypothesis T0 represents that the real trans-
mitter of this packet is indeed ξ . The alternative hypothesis
T1 indicates that the packet is not sent by the transmitter ξ .
The detection of H is based on the uniqueness of chan-

nel states. According to the propagation theory, the channel
decorrelation will occur rapidly as the transmitter’s loca-
tion changes by the order of a wavelength [30]. Thus, the-
oretically, as long as the distance between the transmitters
exceeds the wavelength, which is 5mm for systems working
at 60GHz, their channel states will be significantly different.

As a result, if the receiver can record the channel state of last
communication and the channel information of the received
packets and the channel record are similar, the transmitter of
these received packets is considered unchanged. Otherwise,
the received packets could come from different transmitters,
and the spoofing attack can be flagged. When the spoofing
attack detection works, the spoofing attack alarm is raised and
follow-up countermeasures could be applied by legitimate
users, such as restarting communication and updating the key.

It is worth noting that even the channel record might be the
spoofing attacker’s channel, the detection strategy still works
because the received packets and the channel record would
have significantly difference when the legitimate user sends
packets. BS can establish a machine learning-based detection
model to detect the received signal, and the machine learning
algorithm can be executed in the application layer protocol
while the training samples and the target signals are from
the physical layer. Moreover, we will consider a static radio
environment and a dynamic radio environment, respectively.
Under the static radio environment, the channel correlation
between the received packet and the recorded packet is stable,
and it will be constantly changing under the dynamic radio
environment.

B. MOTIVATION
Inspired by the emerging signal processing technology in
mmWave communication, i.e., channel virtual representa-
tion, we propose to introduce PC-CVR to achieve the
channel-based spoofing attack detection in 5G communica-
tions. Compared to traditional channel features in existing
channel-based detection schemes, the unique characteristics
of PC-CVR lie in two aspects:
• PC-CVR is more sensitive to the location of transmitter.
Channel virtual representation consists of virtual AoA,
virtual AoD, and the corresponding path gain. The vir-
tual channel can be seen as a projection of real AoA/AoD
on the space of virtual AoA/AoD. The occupied posi-
tions by PC-CVR on the virtual AoA/AoD vector can
be regarded as the result of sampling the real AoA/AoD.
Thus, PC-CVR can represent the characteristics of
the real AoA/AoD, which can outperform traditional
channel features on localization [31].

• PC-CVR is more suitable for 5G communication sys-
tems. For channel virtual representation, the resolution
of virtual AoA/AoD depends on the number of antennas
at the transceiver. Specifically, more antennas can help
channel virtual representation to accurately recognize
transmitters. Also, channel virtual representation can
indicate the high directionality of mmWave, which can
be used to promote beamforming in 5G communica-
tions [32]. With the development of 5G networks, there
would be more antennas and higher frequency, which
can benefit PC-CVR in giving it the ability to detect the
different transmitters at different locations. As a result,
PC-CVR is better applied to the development of 5G
networks compared with traditional channel features.
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The detailed analysis of the channel virtual representation
will be provided in Section IV.

C. CHALLENGES
To achieve a desirable spoofing attack detection based on
PC-CVR for 5G wireless networks, we have to tackle the
following two issues:

1) Achieving NP testing-based spoofing attack detec-
tion without the probability distribution function of
PC-CVR. In channel-based spoofing attack detection
schemes, NP testing is a commonly used detection
strategy that depends on the distribution function of
samples. For the static radio environment where the
channel correlation is stable, the PC-CVR should
follow a certain probability distribution function.
However, due to the complex signal processing and
multiple analog/digital combiners in 5G communica-
tions, it is hard to exactly estimate the real probability
distribution function of PC-CVR. As a result, it is
a challenge to achieve an effective NP testing-based
spoofing attack detection without the accurate proba-
bility distribution function of PC-CVR.

2) Effectively tackling dynamic radio environment. In a
dynamic radio environment, the channel correlation is
changing due to the randomness and variation of the
communication surrounding. However, it is not clear
whether this change could impact the probability distri-
bution of PC-CVR. For the NP testing-based detection
strategy, it will not work if the probability distribution
function is not clear. For this issue, a detection scheme
that does not rely on the analysis of the probability
distribution function may be a better solution. In this
case, machine learning models that achieve classifi-
cation only depending on training data would be a
reasonable alternative way. Based on PC-CVR in the
dynamic radio environment, it is an open problem to
achieve an effective machine learning-based spoofing
attack detection.

For the first issue, Section V will provide a reasonable solu-
tion based on the observation of PC-CVR, and Section VI
will focus on the second issue and propose a one-class clas-
sification machine learning-based solution. To make these
solutions easy to follow, we will first review and analyze the
channel virtual representation in mmWave massive MIMO
communications in the next section.

IV. ANALYSIS OF CHANNEL VIRTUAL REPRESENTATION
Channel virtual representation is developed from a mmWave
geometry channel model for mmWave communications.
Considering the sparse multipath structure in mmWave,
the channel can be represented by a geometry channel model
with scatters formed by ray tracing [33], i.e.,

H =

√
NtNr
ρ

L∑
l=1

αlar (φr,l)a∗t (φt,l), (2)

where Nt and Nr are the antenna number of transmitter and
receiver, respectively. ρ indicates the average path-loss. L
denotes the number of scatters and αl is the corresponding
fading coefficients with zero mean complex Gaussian distri-
bution. φr,l ∈ (0, 2π ] and φt,l ∈ (0, 2π ] denote the physical
AoD and AoA angles at the transmission and reception sides.
Vectors ar (φr,l) ∈ Nr×1, and at (φt,l) ∈

Nt×1 are the antenna
array responses.

Channel virtual representation is applied to represent the
mmWave massive MIMO channel by fixed virtual receive
and transmit directions [22], [32]. If there is a antenna array
consisting of an Nv dimensional uniform linear array, the vir-
tual representation corresponds to system representation with
respect to uniformly spaced spatial angles ϑi = i/Nv,
i = 0, . . . ,Nv−1. The corresponding steering vectors can be
defined by θi = arcsin(λϑi/d), where d denotes the antenna
spacing and λ indicates the wave-length of operation [32].
Thus, a unitary Discrete Fourier Transform (DFT) matrix
Nv × Nv can be obtained,

U =
1
√
N v

[
a(θ0), . . . , a(θNv−1)

]T
, (3)

where U∗U = UU∗ = I , and U∗ is the conjugate transpose
of U .
Based on this unitary DFT matrix, we have the channel

virtual representation,

H = UrHVU∗t =
Nr∑
q=1

Nt∑
p=1

HV (q, p)ar (θr,q)a∗t (θt,p), (4)

where Ur ∈ CNr×Nr and Ut ∈ CNt×Nt are unitary DFT
matrices, which can reflect the fixed virtual receive and
transmit angles that uniformly sample the unit angle space.
HV ∈ CNr×Nt is the virtual channel matrix, in which the entry
HV (q, p) capture the gains of the corresponding paths.

{
θr,q

}
and

{
θt,p

}
denote virtual AoAs and AoDs, respectively.

Based on Eq. (2) and Eq. (4), the relationship between
channel virtual representation and the physical channel model
can be represented by

HV (q, p) =
L∑
l=1

αl f (Nr , φr,l −
q
Nr

)f ∗(Nt , φt,l −
p
Nt

), (5)

where the function f (ε, δ) is defined as

f (ε, δ) =
1
ε

ε−1∑
l=0

e−j2πδl . (6)

From Eq. (5), we can see that the virtual representation
HV (q, p) are samples of a smoothed version of scatters at
virtual angles. Thus, the position of the PC-CVR on the
virtual angle vectors will indicate the characteristics of the
angles of all main scatters.

For a visual description of channel virtual representation,
we provide an example of mmWave massiveMIMO channels
in Fig. 2. A 60GHz mmWave massive MIMO channel with
128 × 128 antennas is considered and the number of main
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FIGURE 2. An example of mmWave massive MIMO channel with 128 ×
128 antennas. (a) The raw channel; (b) The corresponding channel virtual
representation.

scatters is 7. Fig. 2(a) shows a traditional channel feature,
i.e., RSSI, which is used commonly in existing channel-based
spoofing attack detection schemes [4], [4], [11], and Fig. 2(b)
gives the corresponding channel virtual representation under
the same channel model. We can see that the traditional
channel features show a disordered state, which is hard to
reflect the directionality and sparsity of mmWave channel.
By contrast, the channel virtual representation can indicate
the characteristics of scatters, where each scatters with a
unique angle can be represented by the PC-CVR with a
corresponding group of virtual AoA/AoD bins. All scatters
can be distinguishable as long as the antenna space (Nr ×Nt )
is sufficient. These characteristics would be more beneficial
to the recognition of mmWavemassiveMIMO channels com-
pared with the traditional channel features.

V. NP TESTING-BASED DETECTION UNDER
STATIC SCENARIO
In this section, we will address the first issue mentioned in
Section III-C. To tackle this problem, we transform the prob-
ability statistical problem of PC-CVR into the problem of the
`2-norm of PC-CVR. Furthermore, we found that the `2-norm
of PC-CVR can be fitted by a normal distribution. In this way,
NP testing can be achieved even without the exact probability
distribution function of PC-CVR. It is worth noting that
compared with machine learning-based schemes, the advan-
tages of the NP testing-based detection schemes lie in high
execution efficiency without training phases. This method
can be applied in scenarios where the statistics distribution
of samples is clear.

A. BINARY HYPOTHESIS TESTING
After obtaining channel virtual channel based on Eq. 4,
we can use a filter with a threshold τ (e.g., τ ∈ [0.5, 1]) to
extract PC-CVR. Thus, the channel values less than τ will
become zero and that higher than τ are retained. Let ĤV

denote the record of the channel andHV indicate the received
channel. Thus, the `2-norm between the two channels can be
given by

D(HV , ĤV ) =
∥∥∥HV − ĤV∥∥∥

2
, (7)

where ‖·‖2 indicates `2-norm.
Under the normal case, there is a high correlation between

HV and ĤV , since they have the same transmitter with the
same propagation path. Hence, the distance between HV and
ĤV is small. In contrast, under the case of spoofing attacks,
the consistency betweenHV and ĤV is broken since they have
different propagation paths even during the channel coher-
ence time. Thus, the distance between HV and ĤV will be
larger than that of the normal case. As a result, the hypothesis
testing in Section III-A3 becomes:

1) T0 : D
(
HV , ĤV

)
≤ η,

2) T1 : D
(
HV , ĤV

)
> η.

where η denotes a threshold used to separate the distance
between T0 and T1.

B. DISTRIBUTION AND THRESHOLD
By observing D(HV , ĤV ), we found that the value of the
distance under the normal case and spoofing attack case could
approximate a normal distribution. Fig. 3 shows the results of
normal distribution fitting for the distances under the normal
case and the spoofing case, respectively. In this example,
the Monte Carlo simulation count is 10,000, and the channel
correlation coefficient is 0.9.We can see that the fitting curves
based on normal distributions can fit the data well under both
the normal case and the spoofing case.

FIGURE 3. The results of normal distribution fitting for the Euclidean
distances under the normal case and spoofing case.

Based on this observation, we provide a strategy to obtain
the threshold η by using NP testing, where the detection mini-
mizes the miss rate subject to a maximum tolerable constraint
on a given false alarm rate.

When obtaining D(HV , ĤV ), two random normal distribu-
tions can be used to fit these values under the spoofing attack
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case and the normal case, respectively. LetCN (µa, σ 2
a ) fit the

values ofD(HV , ĤV ) under the normal case, and CN (µb, σ 2
b )

fit the values of D(HV , ĤV ) under the spoofing attack case.
Here, we use the difference in the mean to distinguish

between hypothesis T0 and T1. According to NP testing [34],
we have

P(D;T1)
P(D;T0)

> η, (8)

where D denotes the distance between two channels, and η is
the threshold we want.

The threshold η can be represented by the given false alarm
rate,

PFA = P{D > η;T0}. (9)

Then, we have

PFA =
∫
∞

η

PT0 (D)dTn = Q
(
η − µa

σa

)
, (10)

where Q(∗) is the tail distribution function of the standard
normal distribution, i.e.,

Q(x) =

+∞∫
x

1
√
2π

exp(−
1
2
t2)dt. (11)

Thus, we have

η = Q−1 (PFA) · σa + µa, (12)

where Q−1(∗) indicates the inverse function of Q(∗).
In this way, according to a given false alarm rate, we can

obtain the corresponding threshold to separate hypothesis T0
and hypothesis T1.

VI. MACHINE LEARNING-BASED DETECTION FOR
A DYNAMIC RADIO ENVIRONMENT
This section focuses on the second issue mentioned in
Section III-C, where the probability distribution function
of PC-CVR is not clear. For machine learning-based algo-
rithms, with sufficient positive and negative training samples,
machine learning models can train a discriminator to achieve
classification. Nevertheless, for the spoofing attack detec-
tion based on PC-CVR under a dynamic radio environment,
we must handle two issues: (i) how to obtain the negative
training sample. In practical applications, legitimate users

struggle to gain the sample of spoofing attackers since it is dif-
ficult to predict the action and location of spoofing attackers;
(ii) how to efficiently update the classification mode to adapt
to the dynamic radio environment where the channel corre-
lation parameters are changing. To overcome these issues,
we propose to transform the problem of spoofing attack
detection into a one-class classification problem and present
a novel online SLFN-framework to address this problem.

A. ONE-CLASS CLASSIFICATION DETECTION MODEL
One-class classification recognizes the target signals based
on a machine learning model which is trained by the positive
training samples only. In other words, the machine learning
model has only one type of training data. For the spoofing
attack detection, the training samples would be from the
normal case only.

Formally, letDTR = [xi, yi] be a set of training vectors, xi ∈
Rn where i = 1, . . . ,M and M is the number of the training
samples. The corresponding state only has the target label,
i.e., y = [yi] = [1, . . . , 1]1×M . Thus, the one-class classifier
aims to use the discriminant function f : χ ⊆ Rn

→ R
to train a corresponding machine learning model. For a set of
testing dataDTE,x = [̂x1, . . . , x̂k ], the one-class classifier can
give the corresponding predictive values, i.e., ŷ = [̂y1, .., ŷk ],
where ŷk ∈ {0, 1}.

Let ŷk = 0 indicate the normal case and ŷk = 1 denote
the spoofing attack case. The problem of spoofing attack
detection shown in Eq. (1) can be represented as

f (̂xk ) =
{
ŷk = 0 for
ŷk = 1 for

Normal
Spoofing Attack.

(13)

Next, we will introduce a feedforward neural network
based framework to achieve this machine learning-based
spoofing attack detection.

B. SLFN-FRAMEWORK
The presented SLFN-framework consists of three steps: data
preprocessing, training process and online update. Fig. 4
shows an overview of this framework. In the data prepro-
cessing, the raw data is normalized and measured. Then,
these samples are used to build the generator and discrimi-
nator in the training step. In the detection process, the dis-
criminator can be updated according to the changes in the

FIGURE 4. One-class detection framework overview.
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communication environment. In the following, we will intro-
duce these steps in detail.

1) DATA PREPROCESSING
There are two main data preprocessing processes:
normalization and measurement.
• The normalization is to transform the channel matrix of
virtual channels into a vector and map the relevant data
into a fixed data range. Similar to Section V, a filter
with the threshold τ is exploited to extract PC-CVR.
The matrix of the channel can be transformed into a
vector and mapped into a fixed data range, i.e., HV ∈
CNr×Nt → h ∈ RNrt×1, where Nrt = Nr × Nt .

• Two different metrics are utilized to measure the dis-
tance between the received channel and channel record,
respectively.
The Euclidean distance (ED) is employed as the first
metric:

M (ED) (h, h1) = ‖h− h1‖2, (14)

where ‖·‖2 is the Frobenius norm, h denotes received
channel and h1 is the channel record.
The Pearson correlation coefficient (PCC) is as the sec-
ond metric, given by

M (PCC)(h, h1) =

Nrt∑
i=1

(
hi−h

)(
h1i−h1

)
√
Nrt∑
i=1

(
hi−h

)2√Nrt∑
i=1

(
h1i−h1

)2 , (15)

where hi and h1i denote the element of the channel vec-
tor, and h and h1 indicate the mean values, respectively.

2) TRAINING PROCESS
The training process includes generator training and discrim-
inator training. The generator is to generate the negative
training data resorting to the target data (i.e., positive training
samples), and the discriminator is to distinguish the spoofing
attack case from the normal case.
• The generator training is based on the characteristics of
the positive training data. According to the analysis in
Section III-A3, the channel correlation under the spoof-
ing attack case is smaller than that of the normal case.
That means that the PCC between the record data and the
negative training data (spoofing attack case) should be
lower than that between the record data and the positive
training data (normal case). Moreover, the ED under the
normal case should be higher than that of the spoofing
attack case. Based on this observation, we can establish
a model to generate the negative training data according
to the characteristics of positive training data.
Formally, let DG denote the negative training data and
� indicate a irregular region where can randomly select
the negative training data. DG = [M (ED)

G,i ,M
(PCC)
G,i ]2×nG ,

where i = 1, . . . , nG and nG is the number of the
negative samples. Thus, the generation of the negative

FIGURE 5. An example of the training positive data and the generated
negative training data. The channel correlation coefficient a for positive
training data is 0.7, and a = 0 for the data under spoofing attack case.

training data can be represented by

DG = [M (PCC)
G,i ,M (ED)

G,i ]
2×nG
∈ �

� subject to


0 ≤ M (PCC)

G,i < M (PCC)
C

χ ≥ M (ED)
G,i > M (PCC)

C

‖DG − DC‖2 ≤ RG
RG = RC + ψ,

(16)

where [M (ED)
C ,M (PCC)

C ]1×2 is the center of the positive
training data, DC denotes the center of the sample of the
positive data and RC denotes the area radius of the posi-
tive training data. RG indicates the margin area between
the positive training data and the negative training data.
χ is the possible upper bound of the generated negative
training data and can be simply designed as an empirical
value, e.g., χ = 10 × M (PCC)

C . ψ is a soft margin
slack variable and can be optimized in the discriminator
training process. Fig. 5 illustrates an example of the
negative training data where the positive training data is
from the channel correlation condition a = 0.7, and such
parameter in spoofing attack case is a = 0 (The define
of the channel correlation condition a will be given in
Eq. 22 and Eq. 23 in Section VII.).

• The discriminator is based on a fast forward propagation
neural network with single hidden layer. Training a neu-
ral network with single hidden layer for classification
can be seen as a minimization problem, which is to
obtain input weights W , output weights Z , and bias b,
i.e.,

min
W ,b,Z

Eloss =
N∑
i=1

(
K∑
j=1

Zjg(Wj · xi + bj)− yi), (17)

where x denotes the training samples, j = 1, ..,K , i =
1, ..,N , and K and N = nP + nG denote the number of
neurons in the hidden layer and the number of training
samples, respectively. In addition, y ∈ {0, 1} is the label
of the training data.
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If the active function in the neural network is g(∗),
the output matrix 2 of the hidden layer can be repre-
sented as

2 =

 g(W1, b1, x1) . . . g(WK , bK , x1)
...

. . .
...

g(W1, b1, xN ) · · · g(WK , bK , xN )

 . (18)

Thus, training the single hidden layer neural network can
be transformed into the problem to solve a linear system,

2Z = Y ,

where Y = [y1, y2, .., yN ] is the label of the training
data.
Then, according to [35], if the matrix 2 is determined
by initialization and training data, the output weights of
the neural network can be solved by

Z = 2+Y ,

where 2+ is the Moore-Penrose generalize inverse of
2. Thus, if the prediction label is Ŷ under the training
samples, the training accuracy 8 can be represented as

8 =

∥∥∥Y − Ŷ∥∥∥
0

N
,

where ‖·‖0 indicates `0-norm that counts the number of
non-zero values.
Furthermore, to optimize the discriminator and genera-
tor, there is a trade-off between 8 and RG,

min
ψ

1−8+ RG (19)

subject to

 1−8 ≥ 0.99
RG = RC + ψ
ψ ∈ [0,∞).

This optimization problem can be solved by a simple linear
programming.

3) DETECTION PROCESS
In the detection process, the proposed detection scheme can
achieve discriminator update according to the changes in
environment.

Let x̃ indicate the new positive training samples that have
been authenticated, Ñ be the size of the training samples,
Z(0) denote the original hidden layer output weights, and Z(1)
denote the new ones. 2(0) is the original output matrix, then
the new one 2(1) can be obtained from the new samples,

2(1) =

 g(W1, b1, x̃1) . . . g(WL , bK , x̃1)
...

. . .
...

g(W1, b1, x̃Ñ ) · · · g(WL , bK , x̃Ñ )

 (20)

Thus, according to [35], the new output weights Z(1) can
be solved by

Z(1) = Z(0) + γ−12T
(1)(Y(1) −2(1)Z(0)), (21)

where γ = 2T
(0)2(0) +2

T
(1)2(1).

The pseudo-code of the proposed SLNF-framework is pro-
vided in Algorithm 1.

Algorithm 1 SLFN-Framework
Require: Training sample HV .
Repeat (for each episode)
Preprocessing:
1) Normalization;
2) Calculate the positive training data according to

Eq. (14) and Eq. (15);
Training process:
1) Obtain the negative training data according to

Eq. (16);
2) Train discriminator based on Eq. (17);
3) Optimization based on Eq. (20);

Detection process:
1) Calculate the predictive value based on the dis-

criminator.
2) If ŷ = 0
3) Accept this message x̃.
4) Else
5) Raise alarm.
6) End If
7) Update the discriminator according to Eq. (21).
End Repeat

VII. SIMULATION RESULTS
In this section, we provide numerical results to verify the
proposed channel-based spoofing attack detection schemes.

A. SIMULATION METHOD
We used MATLAB to evaluate the Monte Carlo experiment
data on a general computer, which operates on a 64-bit system
with a 16G memory and an i7-7700 CPU. Without loss of
generality, according to [32], the physical AoD/AoA, i.e., φt,l
and φr,l are randomly generated with uniform distribution in
(0, 2π ). The number of scatters is set as L and each scatter
is assumed to contribute to a single propagation path [36].
Furthermore, according to Section III-A3, under the spoofing
attack case, the channel of the legitimate channel and that of
the attacker are independent. For the normal case, based on
Jakes model [30], the channel correlation can be represented
by

HA(k + 1) = aHA(k)+ ω(k), (22)

where HA(k + 1) and HA(k) denote the channel information
extracted from two successive packets with the same trans-
mitter. a is the channel correlation parameter, and ω(k) indi-
cates an i.i.d. zero-mean complex Gaussian process, which is
independent of HA(k). The variance of ω(k) is defined as

σ 2
ω = (1− a2)σ 2

A . (23)

In practical terms, the channel correlation coefficient a can be
identified as the term J0(2πvT

/
λ), where λ is the RF wave-

length, ν is the moving speed of the node and J0 represents
the Bessel function of the first kind and zero-th order [30].
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B. NP TESTING-BASED SPOOFING ATTACK
DETECTION SCHEMES
Here, we mainly consider three key factors which may influ-
ence the performance of detection scheme: (1) The number of
multipaths L = {5, 10, 15, 20}, (2) the number of antennas,
i.e., Nt = Nr = {16× 16, 32× 32, 64× 64, 128× 128}, and
(3) the signal to noise ratios SNRs = {−5, 0, 5, 10}. For the
proposed virtual channel-based detection scheme, the detec-
tion scheme is based on Section V. Meanwhile, the com-
petition detection scheme is commonly used in existing
spoofing attack detection schemes, where the channel model
(i.e., Eq. (2)) is directly used to achieve NP testing-based
spoofing attack detection [4].

In Fig. 6, the detection performance of the proposed
scheme is represented by the receiver operating character-
istic (ROC) curve, where PD denotes the detection rate and
PFA is the false alarm rate. In this example, the proposed
spoofing detection shows a better performance than that of
the traditional detection scheme. For instance, when the false
alarm rate is PFA = 0.03, all of the detection rates PD on the
channel virtual representation based curves can surpass 90%.
Under the same conditions, the PD of the traditional detection
scheme is less than 70%. Moreover, Fig. 6 shows that more
antennas result in a better detection performance under both
the proposed and traditional schemes.

FIGURE 6. Simulated false alarm rate PFA vs. PD under different antenna
numbers Nt = Nr = {16× 16,32× 32,64× 64,128× 128}. In this
example, the signal to noise ratio is SNR=10dB; carrier frequency is
28GHz; the multipaths condition L = 10, and the number of Monte Carto
simulations is 10,000.

Fig. 7 shows the detection performance under different
multipath conditions. We notice that all of the curves of the
proposed detection schemes are higher than those of tradi-
tional schemes. Moreover, even in a complex environment
that leads to a great number of multipaths, the detection based
on the channel virtual representation based scheme can show
better detection performance. For example, as the multipath
number L = 20, the detection rate PD of the proposed
detection can reach 95% with a false alarm rate PFA = 0.05.
Whereas, under the same conditions, the detection rate PD of
the traditional detection scheme is around 60%.

FIGURE 7. Simulated false alarm rate PFA vs. PD with different multipath
conditions L = {5,10,15,20}. In this example, the signal to noise ratio is
SNR = 10dB; carrier frequency is 28GHz; the antenna number of
transmitter and receiver is Nt = Nr = 32, and the number of Monte Carto
simulations is 10,000.

FIGURE 8. Simulated false alarm rate PFA vs. PD under different SNRs
{−5,0,5,10}dB. In this example, the carrier frequency is 28GHz; the
multipaths condition L = 5; the antenna number of transmitter and
receiver is Nt = Nr = 32× 32, and the number of Monte Carto
simulations is 10,000.

The detection performances under different SNRs are illus-
trated in Fig. 8. We can see that higher SNR will result in
better detection performance. Furthermore, the detection per-
formance of the proposed scheme can achieve a good detec-
tion performance even under a lower SNR. For instance, when
SNR = −5dB, the detection rate under the proposed scheme
is higher than 90% as the false alarm rate isPFA = 0.04, while
it is lower than 60% under the traditional detection scheme.
These simulation results show that the spoofing detection
scheme based on PC-CVR can receive a significant boost
with the help of channel virtual representation under a static
radio environment.

C. MACHINE LEARNING-BASED SPOOFING
ATTACK DETECTION SCHEMES
To evaluate the effectiveness of the proposed machine
learning-based scheme, we consider various environment
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and communication conditions that may impact the detec-
tion performance, including channel correlations, SNRs,
the numbers of antennas and training sample sizes. Here,
the proposed one-classification detection framework is based
on Section VI, i.e., SLFN-framework. While, the competi-
tion detection schemes are various popular one-class clas-
sifiers, including support vector data description (SVDD)
with RBF kernel, Parzen density estimator (Parzen), linear
programming data description (LPDD), k-nearest neighbor
data description (KNNDD).1

Besides, for consistency, we consider the detection accu-
racy PDA as a performance criterion, given by

PDA = 1− (PMD + PFA), (24)

wherePMD = 1− PD denotes themiss detection rate andPFA
is the false alarm rate.

1) STATIC SCENARIOS
In static scenarios, since the communication environment
changes slowly, the channel correlation parameters are set
to a constant when training and testing the machine learning
model.

FIGURE 9. Simulated detection accuracy PDA vs. channel correlation
parameter α under different classifiers. In this example, the antenna
numbers is Nt = Nr = {32× 32} the signal to noise ratio is SNR=0dB;
carrier frequency is 28GHz; the multipaths condition L = 10, and the
number of Monte Carto simulations is 10,000.

Fig. 9 illustrates the detection performances with different
channel correlation parameters α under different classifiers.
We can see that the proposed scheme, i.e., SLFN-framework,
shows a better performance under different channel corre-
lation parameters than that of other classifiers. For exam-
ple, when the channel correlation parameter is α = 0.2,
the detection accuracy of the SLFN-framework can reach
above 90%. Under the same conditions, the detection per-
formance of other detection classifiers is around 85%. For
the higher channel correlation parameter such as α = 0.8,
the detection accuracy of all detection schemes can approxi-
mate 97%. From Fig. 9, we notice that for different channel

1Supported by: http://www.prtools.org

FIGURE 10. Simulated detection accuracy PDA vs. SNR under different
classifiers. In this example, the antenna numbers is Nt = Nr = {32× 32}
the channel correlation coefficient is α = 0.5; carrier frequency is 28GHz;
the multipaths condition L = 10, and the number of Monte Carto
simulations is 10,000.

correlations, the proposed detection scheme outperforms the
other detection methods under the same training samples.

In Fig. 10, the fluctuation of detection performance under
different SNRs is presented. The proposed detection scheme
has a better detection performance than other schemes at a
lower SNR. For instance, when SNR =−15dB, the detection
accuracy of the SLFN-framework approximates 67%, while
for other classifiers, the detection accuracy is below 50%.
Meanwhile, as the SNR becomes higher such as SNR= 0dB,
all detection schemes can have similar detection perfor-
mance (the detection accuracy is around 97%). This implies
that the proposed detection scheme has a better anti-noise
performance.

Fig. 11 shows the training efficiency under different
machine learning schemes with different training sizes of the
samples. We notice that the training time of the proposed

FIGURE 11. Simulated training time vs. the number of training sample
under different classifiers. In this example, the antenna numbers is
Nt = Nr = {32× 32} the channel correlation coefficient is α = 0.5; the
carrier frequency is 28GHz; the multipaths condition L = 7, and the
number of Monte Carto simulations is 10,000.
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scheme does not increase significantly as the training sample
size gets larger. The training time of the proposed scheme
is less than 0.1s when the size of the training samples is
1500. In other words, the training time required in the pre-
sented SLFN-framework in the detection process is very
short. By contrast, the other one-class classification schemes
are significantly impacted by the size of the training samples,
especially SVDD whose kernel is SVM.

The effect of the number of antennas on the detection
performance with different classifiers is described in Fig. 12.
In this simulation, we take the different numbers of antennas
into account, i.e., Nt = Nr = {8, 16, 32, 64, 128, 256}.
From Fig. 12, we can see that the detection performance
of the proposed detection scheme with SLFN-framework is
very close to that of most other detection schemes (SVDD,
Parzen, LPDD, KNNDD). Meanwhile, we also notice that
the presented detection scheme beats other detection schemes
when the number of antennas is low. For example, whenNt =
Nr = {8}, the detection accuracy of the SLFN-framework
is 80%, while it is below 75% under the other detection
schemes.

FIGURE 12. Simulated detection accuracy PDA vs. the number of
antennas. In this example, SNR= 0dB; the channel correlation coefficient
is α = 0.5; the carrier frequency is 28GHz; the multipaths condition L = 7,
and the number of Monte Carto simulations is 10,000.

2) DYNAMIC SCENARIOS
In the dynamic scenarios, due to the changing communication
environment, the training sample and the detection data in
the machine learning model may come from different com-
munication environments. For this case, we consider that the
channel correlation parameters in the testing phase of the
machine learning model are changing. For example, the train-
ing channel correlation coefficient is α = 0.4, while the
testing channel correlation coefficient is from α = 0.2 to
α = 0.9.
Fig. 13 provides the detection performances with differ-

ent classifiers under a dynamic radio environment. We can
see that the detection accuracy of the proposed detection
scheme (i.e., SLFN-framework) is stable and can reach 99%
even the channel correlation parameter α is dynamically

FIGURE 13. Simulated detection accuracy with different classifiers under
changing environment. In this example, the antenna numbers is
Nt = Nr = {64× 64}; SNR= 5dB; the training channel correlation
coefficient is α = 0.4, the testing channel correlation coefficient is from
α = 0.2 to α = 0.9; the carrier frequency is 28GHz; the multipaths
condition L = 5, and the number of Monte Carto simulations is 10,000.

changing. It implies that the online update mechanism in
SLFN-framework can adjust the classifier to adapt to the
changes in the communication environment. In contrast,
the detection performance of other detectionmethods shows a
significant decrease as the channel correlation changes. Even
if the channel correlation is high, for example, when α = 0.9,
the detection accuracy with these detection schemes (SVDD,
Parzen, LPDD, KNNDD) is hard to reach 95%. The reason
for this phenomenon is that the testing samples are gradually
different from the initial training samples, and these com-
monly used one-class classification schemes cannot handle
this case.

Fig. 14 shows the detection performance under different
SNRs. To simulate a dynamic radio environment, the initial
training sample is based on the channel condition α = 0.4,

FIGURE 14. Simulated detection accuracy with different SNRs under
changing environment. In this example, the antenna numbers is
Nt = Nr = {64× 64}; the training channel correlation coefficient is
α = 0.4, the testing channel correlation coefficient is from α = 0.2 to
α = 0.9; the carrier frequency is 28GHz; the multipaths condition L = 5,
and the number of Monte Carto simulations is 10,000.
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while the channel correlation coefficient for the testing sam-
ples is gradually changing from α = 0.4 to α = 0.9 dur-
ing the detection process. The traditional detection scheme
based on the NP testing is considered under this environment,
where the channel features are based on Eq. (2) and the
optimal threshold is assumed.We notice that higher SNRwill
result in better detection performance. For instance, when
SNR = 0dB, the detection accuracy under the proposed
scheme is higher than 95%, while it is lower than 70% under
the traditional detection scheme.

FIGURE 15. Simulated detection accuracy with different antennas under
changing environment. In this example, SNR= 5dB; the training channel
correlation coefficient is α = 0.5, the testing channel correlation
coefficient is from α = 0.2 to α = 0.9; the carrier frequency is 28GHz; the
multipaths condition L = 5, and the number of Monte Carto simulations is
10,000.

In Fig. 15, the detection performance under the dynamic
scenario with different antennas is illustrated. The training
samples are based on the channel condition α = 0.5, and
the channel correlation coefficient for the testing samples is
gradually changing from α = 0.4 to α = 0.9 during the
detection process.We can see that the number of antennas can
affect the detection performance of traditional schemes based
on NP testing. For example, the detection accuracy under the
condition of Nt × Nr = {128 × 128} is higher than that of
Nt×Nr = {64×64}. For the proposed method, the difference
caused by the number of antennas becomes very small, and all
three curves under the proposed scheme are very close. These
simulation results show that the spoofing detection scheme
can receive a significant boost with the help of channel virtual
representation and the online SLFN framework.
Remarks: From these simulation results, we can see that:

(i) Channel virtual representation can help NP testing to
significantly improve the detection performance in the spoof-
ing attack detection; (ii) Compared with these existing pop-
ular one-class classifiers, the presented SLFN-framework
has remarkable advantages in detection performance, train-
ing efficiency, and anti-noise performance. With the online
update mechanism, the proposed SLFN-framework scheme
can tackle the change of channel correlation parameters in
the dynamic radio environment.

VIII. CONCLUSION
In this paper, we provided a new channel-based spoofing
attack detection scheme based on channel virtual represen-
tation in mmWave massive MIMO communications 5G net-
works. Resorting to the `2-norm of PC-CVR, we proposed
a spoofing attack detection scheme based on NP testing for
the static radio environment where the channel correlation
parameter is stable. For the dynamic radio environment where
the channel correlation parameter is changing, we presented
a machine learning-based spoofing attack detection scheme.
The problem of spoofing attack detection was transformed
into a one-class classification problem, and a novel online
detection scheme, i.e., SLFN-framework was proposed. Sim-
ulation results demonstrated that the detection performance
of the proposed channel virtual representation based schemes
obviously outperforms that of the traditional methods. The
detection rate can approach 97% with 10−2 false alarm rate
under the NP testing-based scheme in the static radio envi-
ronment, while the detection rate of the traditional scheme
is around 70% under the same conditions. The presented
SLFN-framework is superior to existing popular one-class
classifiers on training efficiency and detection performance,
and the detection accuracy can reach 99% in the dynamic
radio environment.
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