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ABSTRACT The problem of image rain removal has drawn widespread attention as the blurry images
caused by rain streaks can degrade the performance of many computer vision tasks. Although exiting
deep learning-based methods outperform most traditional methods, there are still unresolved issues in
terms of performance. In this paper, we propose a novel enhanced attentive generative adversarial network
named EAGAN to effectively remove the rain streaks and restore the image structural details at the same
time. As rain streaks have different sizes and shapes, EAGAN utilizes a multiscale aggregation attention
module (MAAM) to produce an attention map to guide the subsequent network to put conscious attention
to rain regions. A symmetrical autoencoder with long-range skip-connections, squeeze-and-excitation (SE)
modules, and non-local operation is further utilized to enhance the representation of the network. Finally,
spectral normalization and a relativistic generative adversarial network (GAN) are further applied to improve
the training stability and deraining performance. Both qualitative and quantitative validations on synthetic
and real-world datasets demonstrate that the proposed approach can achieve a competitive performance in
comparison with the state-of-the-art methods.

INDEX TERMS Image deraining, attentive module, relativistic GAN.

I. INTRODUCTION
As a common weather condition, rain streaks not only bring
pool visual perception for multimedia applications but also
significantly degrade the performance of many computer
vision algorithms, which are performed on high quality and
reliable images, such as object tracking [1], semantic segmen-
tation [2], and outdoor surveillance [3]. Under rainy weather,
rain streaks with various orientations and scales accumulate
and present undesirable impairment on the qualities of cap-
tured images. Therefore, it is necessary to explore effective
rain removal methods before executing regular algorithms to
ensure a high performance in images.

In the past decade, image deraining has drawn widespread
attention and several approaches have been proposed to
address the problem. Existing techniques can be roughly
divided into two categories according to their nature, i.e.,

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Forouzanfar .

video-sequence based methods and single-image based
methods. As the same background can be available in the
successive frames, video sequence-based methods [4]–[9]
attempt to handle the problem by exploiting the tempo-
rary correlation information and frequency properties of
rain streaks. Due to the lack of temporal information,
single-image based methods are more challenging than the
video sequence-based. However, single-image based meth-
ods have attracted considerable research attention due to its
greater practicality and time-efficiency.

For single image deraining, several traditional
optimization-based algorithms, such as nonlocal means fil-
ter [10], sparse coding [11], low rank approximation [12],
representation learning [13] and pre-trained Gaussian mix-
ture models (GMM) [14] have been proposed to deal with
the problem. These traditional methods attempt to explore
certain prior information on texture characteristics to model
the rain streaks and then separate them from the back-
ground [11]–[14], or directly restore the image with nonlocal
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mean smoothing [10]. However, these predefined models
have a limited capability to represent the real rain streaks,
resulting in that they are only effective for certain patter
and fail to restore image details of the same nature as rain
streaks. Furthermore, due to a large number of parameters that
need to be optimized, these optimization-based algorithms
are usually time-consuming.

Recently, deep learning-based methods have achieved a
great success in many computer vision problems due to its
powerful ability of high-level feature representation. There
are also several deep learning-based methods [15]–[28]
addressing the single-image rain removal problem by directly
establishing an end-to-end projection between the rainy
images and the clean ones.

Although these deep learning-based approaches have
achieved better performance than traditional methods in
terms of time-efficient and deraining quality, there are still
two major challenges. One is that some methods [15]–[19]
focus on the entrance of the networks and decompose the
input image into low and high frequencies, which increases
the complexity of the algorithm and may introduce an incor-
rect luminance information [17]. Another challenge is that the
deraining performance needs to be improved. As rain streaks
are embedded in the background and the scene covered by
rain is seriously damaged, some methods tend to leave too
many rain streaks in the background, while other methods
tend to over-smooth the image details.

To avoid the risk of incorrect luminance information and
improve the deraining performance, we propose an enhanced
attentive generative adversarial network (EAGAN), which
can remove rain streaks and restore the realistic scenes
from the original image rather than the decomposed fre-
quency. In EAGAN, a multiscale aggregation attention mod-
ule (MAAM) is utilized to produce an attention map to
guide the subsequent network to put conscious attention to
rain regions, then the spatial contextual features extracted by
non-local neural module (NLNM) along with the attention
map is fed into a symmetrical autoencoder to produce the
rain-free image. Finally, a relativistic discriminator is uti-
lized to promote the generator to produce realistic scenes.
In summary, this work makes the following contributions:

(1) A novel enhanced attentive generative adversarial net-
work is proposed to deal with the single-image deraining
problem, which directly establishes an end-to-end projection
from the rainy images to the clean ones.

(2) To make the generator focus accurately on rain regions
in the spatial dimension, we design a multiscale aggrega-
tion attention module with various convolution kernel sizes
and self-adaptive residual manner to generate the rain atten-
tion map. A symmetrical autoencoder with long-range skip-
connections, squeeze-and-excitation block, and region level
non-local operation is applied for a better high-level feature
representation.

(3) The attention map is used as additional supervised
information for the discriminator to make it pay conscious
attention to the rain streaks. Meanwhile, a relativistic GAN,

rather than the conditional GAN, is applied to further improve
the performance.

(4) To enhance the training stability and produce realistic
images, spectral normalization is utilized both in the genera-
tor and discriminator. Experimental results on both synthetic
and real-world datasets have demonstrated the effectiveness
of the proposed EAGAN, which achieves superior perfor-
mance compared to the state-of-the-art methods.

The remaining sections are organized as follows:
In Section II, the related works on rain removal task are
reviewed briefly. In Section III, the details of the proposed
EAGAG, as well as the loss function are presented. Sub-
sequently, experimental settings, qualitative and quantita-
tive evaluations are presented in Section IV. Finally, the
conclusion and discussion are given in Section V.

II. RELATED WORK
In this section, we present a brief review of rain removal
methods in the past decade, including video sequence-based
and single-image based ones.

A. VIDEO-SEQUENCE BASED METHODS
Since rich temporal information can be derived from succes-
sive image frames to provide additional information for rain
streaks detection and removal, video sequence-based meth-
ods have been widely explored. Garg and Nayar [4], [5] were
the pioneers to focus on rain removal issue, they assumed the
background scene to be static, then detected rain streaks by
comparing the intensity change with an empirical threshold,
and finally removed them by averaging the intensity of rain
pixels with the previous and subsequent information. Kim
et al. [6] defined a rain map with the optical flow information
in successive frames and then removed rain streaks by utiliz-
ing a low-rank matrix completion technique. Jiang et al. [7]
combined total variation regularizer, tensor nuclear norm, and
time directional difference operator to remove rain streaks
directly without rain region detection. Li et al. [8] assumed
the rain streaks with multiscale configurations sparsely scat-
ted over different regions and removed them with multi-
ple convolutional filters. Li et al. [9] proposed a rain/snow
removal approach from surveillance videos, which fully con-
siders dynamic statistics of both rain/snow and background
scenes taken from a video sequence.

B. SINGLE-IMAGE BASED METHODS
Since the temporal information is unavailable, single-image
deraining is more challenging compared to the video
sequence-based. However, single-image deraining is more
practical than video sequence-based one, as sometimes there
are only images can be available in the daily life, rather
than the video data. In addition, image processing is more
time-efficiency than video processing.

Luo et al. [11] proposed a discriminative sparse coding
approach based on a strong mutual exclusivity property to
separate the rain layers from the background. Li et al. [14] for-
mulated the rain removal as a layer decomposition problem
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and proposed Gaussian mixture models (GMM) to rec-
ognize rain streaks with various orientations and scales.
Chang et al. [20] incorporated a low-rank prior transforma-
tion to separate rain streaks from images based on the fact
that the streaks have an extremely distinct low-rank structure.
Zhu et al. [29] introduced three image priors that first identify
rain regions by analyzing the local gradient statistics and
then remove them by predefined priors on the background
layer. Chen and Hsu [12] proposed a tensor structure model
to detect the spatiotemporally correlated rain streaks and then
remove them in a unified way.

In recent years, deep learning-based methods have been
utilized in rain streaks removal due to its powerful high-level
feature representation and superior ability to learn nonlinear
functions. Yang and Lu [24] applied hierarchy enhancement
units to fully extract local information and then utilized
recurrent enhancement units to remove rain streaks stage by
stage. Wang et al. [21] first provided a human supervision
rain/clean image pairs for training and then proposed a resid-
ual network with a spatial attention mechanism to remove
rain streaks in a local-to-global manner. Yang et al. [22], [41]
proposed a multi-task architecture that first learns a binary
rain streak map and then separates rain streaks with a contex-
tualized dilatedmodule, recently, they provided a comprehen-
sive survey of deraining methods over the last decade [42].
Li et al. [23] adopted a modified dilated convolutional neural
network to enlarge receptive field, and then remove rain
streaks by incorporating squeeze-and-excitation (SE) [32]
block and recurrent neural network. Zhang et al. [25] pro-
vided a widely used rain dataset and proposed a condi-
tional generative adversarial network to deal with dearining
issue. Qian et al. [26] synthesized a training dataset cov-
ered by raindrops and remove them from the background
by an attention GAN with a multiscale objective function.
Chai et al. [27], [46] proposed two recurrent networks to
remove rain streaks stage by stage. Yasarla and Patel [28]
adopted an uncertainty guided network to detect rain streaks
and then remove them with cycle spinning enhancement.
Zhang and Patel [38] proposed a multiscale dense network
to estimate rain density and then remove them with another
multiscale dense network. Du et al. [43] proposed a varia-
tional image deraining (VID) method by formulating image
deraining in a conditional variational auto-encoder frame-
work. Jiang et al. [44] proposed to decompose rain streaks

into multiple rain layers and individually estimate each of
them along the network stages to cope with the deraining
problem. Jiang et al. [45] applied the multi-scale collabo-
rative representation for rain streaks from the perspective of
input image scales and hierarchical deep features in a unified
framework to remove rain streaks.

All these deraining methods have achieved significant pro-
gresses in rain streaks removal, however, they tend to remain
too many rain streaks or miss image details in the results,
i.e., the deraining performance needs to be significantly
improved.

III. PROPOSED METHOD
In this section, the attentive network architecture of EAGAN
is presented, and then the spectral normalization relativistic
GAN is demonstrated in detail. At last, the loss function
for training EAGAN to restore realistic deraining scenes is
presented.

A. NETWORK ARCHITECTURE
The overall architecture of the proposed EAGAN is illustrated
in Fig. 1. It can be divided into twomain parts, i.e., a generator
and a discriminator.

The generator first applies a multiscale aggregation atten-
tion module (MAAM) to produce an attention map to guide
the subsequent network to put conscious attention to rain
regions. Compared with the multiscale aggregation module
in [22] and [38] which is just used to extract features, our
MAAM incorporates residual learning and integrates the
relationships between channels into the feature map. The
region level non-local neural module (NLNM) enhances the
representation capability by exploiting the abundant struc-
ture cues and spatial self-similarity information. Then the
feature maps generated by NLNM and the attention map
are fused in a self-adaptive residual manner. Afterward,
the deraining image is produced by a symmetrical squeeze-
and-excitation autoencoder module. Furthermore, long-range
skip-connections that bypass intermediate layers are applied
to keep the delivery of image details from low-level to
high-level.

The discriminator is utilized to differentiate the deraining
results from the ground-truths. Instead of the standard GAN,
we apply the relativistic GANcombinedwith an attention loss
for a better deraining performance.

FIGURE 1. The architecture of proposed EAGAN.
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FIGURE 2. The schematic illustration of multiscale aggregation attention
module.

B. GENERATIVE NETWORK
The generator first applies a multiscale aggregation attention
module with various convolution kernel sizes and learnable
residual to generate the rain attention map. A symmetri-
cal autoencoder with long-range skip-connections, squeeze-
and-excitation block, and region level non-local operation is
applied for a better high-level feature representation.

1) MULTISCALE AGGREGATION ATTENTION MODULE
The visual attention mechanism has been widely applied in
computer vision algorithms as its such excellent capability to
locate targeted regions. Rainy images may contain different
sizes and shapes of rain streaks, smaller rain streaks could
be captured by smaller receptive fields while the larger ones
could be captured by larger receptive fields. To this end,
we design a multiscale aggregation attention module that
combining features from different scales to locate the rain
regions.

The schematic illustration ofMAAM is presented in Fig. 2.
The input feature map is first fed into parallel convolutional
layers that consist of three channels with different filter sizes.
Secondly, the parallel outputs with abundant contextual infor-
mation are concatenated and fused further by a convolution
with the kernel size of 1 × 1, the output of this convolution
is a set of unnormalized attention weight {y1, y2, . . . yn} and
each weight represents a specific type of rain streaks, which
can be formulated as{

Xi = F (k)(X ), i ∈ {1, 2, 3}, k ∈ {1, 3, 5}
Y = F (1)([X1,X2,X3])

(1)

where X is the feature map generated from the preceding
layers,Xi is the output of the i’th channel andF (k)(·) represent
the convolution with the kernel size of k × k followed by an
activation function. Specifically, the kernel size of the three
channels is 1, 3, and 5, respectively. [X1, X2, X3] represents
the concatenation of feature maps generated by the multiscale
convolution channels.

Furthermore, a softmax layer is applied to normalize the
weights and the channel attention weights {b1, b2, . . .bn} can
be finally formulated as

bi,x =
exp(yi,x)∑n
c=1 exp(yi,x)

(2)

where yi,x is the output at pixel x of the i’th channel of the
fused convolution layer and bi,x is the calculated attention
weight.

Afterward, the attention weight is multiplied with a new
feature map Z generated by another bypass in an elementwise
manner. At last, the multiplied result is added to the input
feature map X by a learnable manner, and the operation can
be formulated as:

A = λ(B · Z )+ X (3)

where λ is the learnable parameter,B is the fused featuremaps
after softmax, and A is the final attention map which is used
for the subsequent network to put conscious attention to rain
regions.

Fig. 3 shows a rainy image and its attention maps gener-
ated by different kernel sizes. The rain streaks are shorter
in the upper image and longer in the lower image. As can
be observed, the smaller kernel size can acquire the shorter
rain streaks and other details but tend to blur the longer rain
streaks. Conversely, the larger kernel size has a stronger abil-
ity to obtain the longer streaks. Therefore, the incorporation
of different kernel size in MAAM can obtain both the small
and large streaks as well as the details.

FIGURE 3. The attention maps generated by different channels in MAAM, the red areas indicate a high probability
of rain. (a1-a2) Rainy image. (b1-b2) Results by ks = 1. (c1-c2) Results by ks = 3. (d1-d2) Results by ks = 5. (e1-e2)
Results by MAAM.
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2) NON-LOCAL NEURAL MODULE
Wang et al. [30] adopted convolutional neural networks
(CNN) to realize non-local operation for the task of video
classification. The non-local neural networks have an excel-
lent capability to capture long-range spatial dependencies
throughout the entire image, which is very useful for
high-level computer vision tasks.

FIGURE 4. The schematic illustration of non-local neural module.

The schematic illustration of NLNM is presented in Fig. 4.
We apply the extensional Gaussian function to compute the
similarity in an embedded space [30], and the non-local oper-
ation can be formulated as{

Y = softmax[(F (1)(X ))T · F (1)(X )]
Z = F (1)[F (1)(X ) · Y ]+ X

(4)

where X is the feature map generated from the preceding
layers, F (1)(·) represents the convolution with the kernel size
of 1× 1 followed by an activation function, and T represents
the matrix transpose.

The traditional global-level non-local operations may incur
an unacceptable computational burden, especially when the
size of a feature map is large. Besides, Liu et al. [31] has
demonstrated that non-local operations with an appropriate
neighborhood size have more advantageous for low-level
tasks, such as image deraining and super-resolution. There-
fore, the non-local operations are executed at a region level
in this work. To be specific, we first divide the input feature
map into a grid of regions (As shown in Fig. 4, k × k indicates
that the input feature map is divided into k2 sub-regions with
the same size), and then let the subsequent layers process the
feature map inside each region.

As analyzed above, the capability of feature representation
is enhanced by the region-level operation via exploiting the
spatial self-similarities.

3) SYMMETRICAL AUTOENCODER MODULE
The purpose of the symmetrical autoencoder is to restore an
image that is free from rain streaks and artifacts produced by
the previous stage.

The proposed autoencoder contains 12 convolution-ReLU
blocks and symmetrical skip-connections. The benefits of
these skip-connections can be described in the following two
aspects: first, they strengthen the feature propagation and
make sure that the low-level information is still available in
the very end of the whole architecture. Second, they alleviate
the vanishing-gradient problem and strengthen the robustness
of network.

To better model the interdependencies of the feature maps,
we add a SE block to each convolution layer. Compared to
the pure convolution operation which only considers the spa-
tial information in each channel, SE adaptively recalibrates
channel-wise feature responses by explicitly modeling inter-
dependencies between channels [32]. Specifically, SE uti-
lizes a self-gating learning mechanism based on the channel
dependence to produce different channel weights which are
further used to perform the recalibration of features.

Besides, a NLNM is applied after the autoencoder for a
better representation and a convolution layer without any acti-
vation function is added at the end to generate the deraining
image. As instance normalization (IN) and batch normal-
ization (BN) may generate unpleasant artifacts [17], [27],
we apply spectral normalization (SN) for all convolution
layers to enhance the training stability while improving the
deraining performance.

C. RELATIVISTIC DISCRIMINATOR NETWORK
Since it is usually the scene that covered by rain streaks suf-
fers from information damage seriously, we want to make the
discriminator pay more attention to these areas. To address
this problem, we use the attention map produced by MAAM
as the supervised information. Specifically, we extract the
features from the interior layers and feed them to a mask
convolution, then compute the pixel loss between the output
and the supervisedmap. Furthermore, the output ofmask con-
volution is utilized to recalibrate the features of the previous
layer by multiplying them in an elementwise manner. Finally,
a fully connected layer is used at the end layer to calculate the
probability that an image is a real scene. Meanwhile, similar
to the generator, we also apply SN for all the convolution lay-
ers in the discriminator to enhance the deraining performance.

In standard GAN, the discriminative network performs a
binary classification to distinguish whether an input image
is real or fake, and the generator is trained to generate a fake
image that can convince the discriminator that it is real.While
in relativistic GAN, the network is also trained to decrease the
probability that the real image is real, and the discriminator
tries to estimate the probability that a real sample is more
realistic than the fake one.

We utilize the relativistic average discriminator (RaD) pro-
posed in [33] to compare the realistic probability of the input
image to the average realistic probability of the opposite
image. The discriminator in a standard GAN can be described
as D(x) = σ (C(x)), where x donates a real or fake image,
C(x) is the output of non-transformed layer and σ donates the
sigmoid activation function. While in relativistic average dis-
criminator, the output depends on both real and fake images,
and it can be defined asDRa(xr , xf ) = σ (C(xr )−Exf [C(xf )]),
where Exf [C(xf )] donates the average of all the fake images
in a mini-batch. The GAN loss for the discriminator can be
expressed as:

LD_Ra = −Exr [log(DRa(xr , xf ))]

−Exf [log(1− DRa(xf , xr ))] (5)
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D. LOSS FUNCTION
To achieve a better deraining performance, we combine
the content loss, negative structural similarity (SSIM) [34]
loss, perceptual loss, attention loss, and GAN loss to train
the proposed EAGAN. Specifically, the content loss, which
can effectively evaluate the pixel-level differences between
deraining result and its corresponding ground-truth with a
Euclidean distance, can be expressed as:

Lc = Ex ||G(x)− y||22 (6)

where x is the rainy image, G(x) is the deraining result
generated by the proposed EAGAN, and y is the ground-truth.
Then, the negative SSIM loss, which can effectively mea-

sure the structural similarity between de-raining image and
the clean one, is indicated as

Lssim = 1− SSIM(G(x), y) (7)

where SSIM is the structural similarity index of two images,
and a bigger score indicates a higher similarity.

Besides, the perceptual loss which can improve the visual
quality of image processing results by minimizing the differ-
ence in high-level information [35] is indicated as

Lp =
∑

i=3,8,15,25

Ex ||Vi(G(x))− Vi(y)||22 (8)

where Vi(·) denotes the output feature maps of the i-th layer
of VGG16 [35] network pretrained on the ImageNet dataset.

Furthermore, the attention loss utilized both on the gener-
ator and discriminator can be respectively formulated as

LG_att = Ex ||MAAM (x)−M (x)||22 (9)

LD_Att = Ex ||D(x)mask −M (x)||22 (10)

where MAAM(x) and D(x)mask are the attention map pre-
dicted by the generator and discriminator, respectively, and
M(x) is a binary map of the rain streaks. In the binary map,
zero represents the clean area and one represents the rainy
area. In practice, the binary map is obtained by subtracting
the ground-truth from the rainy image and then comparing
the difference with a threshold.

The GAN loss for the relativistic generator is symmetric
with Eq. (5) and is defined as

LG_Ra = −Exr [log(1− DRa(xr , xf ))]

−Exf [log(DRa(xf , xr ))] (11)

Therefore, the total loss for the generator can be described
as

LG = λ1Lc + λ2Lssim + λ3Lp + λ4LG_Att + λ5LG_Ra (12)

where λ1 ∼ λ5 are the coefficients to balance different loss
terms and the total loss for the discriminator can be described
as

LD = LD_Att + LD_Ra (13)

Equations (12) and (13) are minimized alternately through
learning to optimize EAGAN to restore realistic scenes.

IV. EXPERIMENTS
In this section, the experimental settings and the quality
measures utilized to evaluate the effectiveness of the pro-
posed EAGAN are presented in detail, and then the deraining
comparations between the EAGAN and the state-of-the-art
methods on both synthetic and real-world datasets are exe-
cuted. Finally, ablation studies are conducted to validate the
improvements made by the main components in the proposed
method.

A. EXPERIMENT SETTINGS
1) EXPERIMENT DETAILS
In this study, the entire network of EAGAN is implemented
by the PyTorch framework on a Nvidia 1080Ti GPU. The
Adam optimizer policy and the rectified linear unit (ReLU)
are used as the loss optimization and the nonlinear operation,
respectively. The learning rate is initialized as 5 × 10−4 and
decayed by multiplying 0.2 when reaching the 30, 50 and
80 epochs. Besides, we set λ1 = λ2 = λ3 = λ4 = 1, λ5 =
0.01 as the coefficients to balance different loss terms in the
experiments.

2) TRAINING DATASET
Considering that it is impossible to gain a large number
of rainy images and the corresponding rain-free images in
the real world, we apply three frequently used synthesized
benchmark datasets, i.e., Rain100H [22], Rain100L [22], and
Rain800 [25] to evaluate the proposed approach. Specifi-
cally, Rain100L consists of 200 image pairs for training and
100 image pairs for testing, the rainy images are synthetic
with one type of rain streak direction in a single image, and
the density of the rain is low. The rainy images in Rain100H
are synthetic with five types of rain streak directions, the den-
sity of the rain is high and the background texture is badly
damaged. Compared with Rain100L, Rain100H is more chal-
lenging, and its image pairs for training and testing are
1800 and 100, respectively. Rain800, whose rain-free images
are randomly chosen from the UCID [36] and BSD-500
[37] and rainy images are synthesized by Photoshop, consists
of 700 image pairs for training and 100 image pairs for
testing. The background in Rain800 is more diverse and the
density of rain is moderate compared with Rain100L and
Rain100H.
Furthermore, Zhang et al. [25] and Yang et al. [22] provide

abundant of real-world rainy images, whose rain streaks are
varied in intensity and orientation. We use these datasets for
objective evaluation to assess the generalization ability of the
proposed EAGAN.

3) QUALITY MEASURES
Benefiting from that the ground-truth of synthesized datasets
are available, we apply two frequently used reference met-
rics, i.e., structural similar index (SSIM) and peak signal to
noise ratio (PSNR) to evaluate the deraining performance of
different methods on synthetic images. However, the rain-free

VOLUME 9, 2021 58395



G. Chai et al.: Enhanced Attentive Generative Adversarial Network for Single-Image Deraining

TABLE 1. Average PSNR/SSIM of various methods on synthetic datasets. Bold values indicate the best results.

images of real-world datasets are not available, the deraining
performance on these images can only be evaluated visu-
ally or subjectively. We compare the proposed EAGAN with
two traditional optimization-based methods, i.e., DSC [11]
and GMM [14], and several learning-based methods, i.e.,
ReHEN [24], RESCAN [23], SPANet [21], UMRL [28],
PReNet [40], JORDER-E [41], and IAND [44].

B. EFFECTIVENESS ON SYNTHETIC DATASETS
Table 1 shows the quantitative comparison results of differ-
ent methods on three synthetic datasets with different sizes
and complexities. As can be seen, the deraining results of
traditional methods are significantly lower than those of other
learning-based methods in all metrics. Furthermore, the pro-
posed EAGAN achieves a competitive performance on all
datasets compared to other learning-based methods.

To visually illustrate the improvements obtained by
EAGAN, deraining results of three images are presented
in Fig. 5. As can be observed, DSC and GMM can hardly
remove rain streaks and the background is still indistinguish-
able for all images. RESCAN, ReHEN, and PReNet can
remove most rain streaks, but tend to blur image details and
generate some unpleasant artifacts under difficult conditions,
for example, the sky and cloud are heavily fused in the second
deraining image. SPANet tends to remove image detail and
remain rain streaks. UMRL can almost completely remove
the rain streaks but tends to blur image details, for example,
the branches in the second image and the windows in the third
image are blurred heavily. Compared with other approaches,
the proposed EAGAN can produce the best visual deraining
performance by effectively removing the rain steaks while
perfectly restoring the image structural details. Note that we
choose the difficult sample images to test themodels in Fig. 5,
indicating that the proposed method performs well under
difficult conditions.

In addition to the quantitative measures and visual effects,
the proposed method is also efficient. Table 2 shows the total
number of parameters involved in the evaluation and average
running time on a rain image with a resolution of 320× 640.

TABLE 2. Comparison of parameters number and average running time.

For the two traditional optimization-based methods, GMM
andDSC, they either need to learn the Gaussianmixture mod-
els or dictionary, which is very time consuming. In contrast,
the learning-based methods are highly efficient benefiting
from the fact that the pre-trained models are available. Due to
the use of multi-channel, our EAGAN and JORDER-E have
more parameters than the others, but they don’t take much
time, because other methods have some extra operations, for
example, network reuse in ReHEN, RESCAN, SPANet, and
PReNet, spatial recurrent neural network (RNN) in SPANet,
and cycle spinning in UMRL.

C. EFFECTIVENESS ON REAL-WORLD DATASETS
To evaluate the generalization ability of the proposed
EAGAN, the performance of different deraining methods on
real-world rainy images are also compared. Fig. 6 represents
the deraining results of all the mentioned methods on three
real-world rainy images. As can be seen, DSC and GMMcan-
not effectively remove rain streaks and there are still residual
rain streaks in the results. ReHEN, SPANet and PReNet have
some improvements on rain streaks removal but tend to blur
structural details, such as the gap between branches in the first
image. RESCAN, UMRL, and JORDER-E tend to remain
artifacts and cannot thoroughly remove rain streaks under
difficult conditions. Comparedwith the above sevenmethods,
the proposed EAGAN achieves the best performance on

58396 VOLUME 9, 2021



G. Chai et al.: Enhanced Attentive Generative Adversarial Network for Single-Image Deraining

FIGURE 5. Visual quality comparison of various methods on synthetic images. (a1-a3) Rainy images. (b1-b3) Results by GMM.
(c1-c3) Results by DSC. (d1-d3) Results by ReHEN. (e1-e3) Results by RESCAN. (f1-f3) Results by SPANet. (g1-g3) Results by
UMRL. (h1-h3) Results by PReNet. (i1-i3) Results by EAGAN. (j1-j3) Ground-truths (Please enlarge the images for better
visualization).

rain streaks removal by restoring the most realistic texture
information.

D. EFFECTIVENESS ON REAL RAINY VIDEOS
Furthermore, we evaluate the proposed EAGAN on real
rainy videos and compare the performance with two state-of-
the-art video deraining approaches, i.e., FastDerain [7] and
MSCSC [8]. Since videos can be decomposed into succes-
sive frames, EAGAN processes videos in a frame-by-frame
manner.

We downloaded a rainy video from the Internet and cap-
tured 1,000 successive frames for processing. The deraining
results of frames 141, 153, 250, and 251 are shown in Fig. 7.
Note that six frames adjacent to the 153th frame are out of
order. As can be seen, for frame 141, FastDerain, MSCSC,
and EAGAN can thoroughly remove the rain streaks, indi-
cating that our EAGAN is effective even the temporal infor-
mation is not available. However, the performance of both
FastDerain and MSCSC degrade when dealing with the
switched frames. Specifically, their deraining results of 153th
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FIGURE 6. Visual quality comparison of various methods on real-world images. (a1-a3) Rainy images. (b1-b3) Results by
GMM. (c1-c3) Results by DSC. (d1-d3) Results by ReHEN. (e1-e3) Results by RESCAN. (f1-f3) Results by SPANet. (g1-g3)
Results by UMRL. (h1-h3) Results by PReNet. (i1-i3) Results by JORDER-E. (j1-j3) Results by EAGAN. (Please enlarge the
images for better visualization).

frame contain residual rain streaks. Besides, we notice
that when the video content was switched, i.e., the fol-
lowing frame described different content from the previ-
ous one, the performance of FastDerain and MSCSC are
severely degraded. As shown in the fourth row of Fig. 7,
FastDerain contains many residual rain streaks in the result
while MSCSC generates unpleasant ghost of the previous
frame. Compared with FastDerain andMSCSC, the proposed

EAGAN is highly efficient and is not affected by the confused
frame order or the changed content in adjacent frames.

E. ABLATION STUDIES
In this section, we conduct ablation studies to validate the
main components of the proposed method. To this end,
three variants of EAGAN are trained on Rain100H with
the same strategy. The quantitative and qualitative results
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FIGURE 7. Visual quality comparison on a real rainy video. The deraining results of frames 141, 153, 250 and 251 are
from top to bottom. (a) Rainy images. (b) Results by FastDerain. (c) Results by MSCSC. (d) Results by EAGAN.

TABLE 3. Average PSNR/SSIM of the network with different settings. Bold
values indicate the best results.

of all the related variants are shown in Table 3 and Fig. 8,
respectively.

1) EFFECTIVENESS ON ATTENTION MODULE
AND AGGREGATION OPERATION
According to the subsections network architecture, the atten-
tion map can guide both the generator and discriminator
to put conscious attention to rain regions. To validate the
effectiveness of attentionmap, we remove the attentionmodel
from EAGAN. From Table 3, one can see that EAGAN gets
a considerable margin both on the SSIM and PSNR metrics

than EAGAN without attention module (EAGAN-w/o-ATT).
In addition, visual quality comparisons in Fig. 8 also present
that EAGAN can restore more image details. This demon-
strates that the attention models enhance the deraining ability
of the proposed EAGAN. Besides, we have studied a variant
of EAGAN by removing the aggregation operation in the
attention module (EAGAN-w/o-AGG), Table 3 shows that
the aggregation operation can further improve the perfor-
mance, which is consistent with the inference in Section B.

2) EFFECTIVENESS ON SPECTRAL NORMALIZATION
To validate the improvements obtained by spectral normal-
ization, we have the variant EAGAN-w-IN, which introduces
instance normalization for all convolution layers instead of
spectral normalization.

From Table 3, one can see that EAGAN with instance nor-
malization seriously degrades the SSIM and PSNR. Similarly,
Fig. 8 presents the same result, in which EAGAN-w-IN pro-
duces a large number of unpleasant artifacts, the main reason
is that instance normalization can easily make some impact
on high-frequency feature information and cause some unde-
sired artifacts. Therefore, we apply spectral normalization
both in the generator and discriminator to ensure the training
stability and restore realistic scenes, simultaneously. We also

VOLUME 9, 2021 58399



G. Chai et al.: Enhanced Attentive Generative Adversarial Network for Single-Image Deraining

FIGURE 8. Visual quality comparison of the network with different network architecture settings. (a) Rainy
images. (b) Ground-truths. (c) Results by EAGAN-w/o-Att. (d) Results by EAGAN -w-IN. (e) Results by EAGAN
-w/o-Re. (f) Results by EAGAN -w/o-NLNM. (g) Results by EAGAN -w/o-SE. (h) Results by EAGAN.

test a variant of EAGAN by removing spectral normalization,
i.e., EAGAN- w/o -SN in Table 3, one can see that spectral
normalization can further improve the performance, besides,
spectral normalization can enhance the training stability [39].

3) EFFECTIVENESS ON RELATIVISTIC GAN
AND DISCRIMINATOR
The effectiveness of relativistic GAN in EAGAN is studied.
To this end, the deraining comparisons of traditional GAN
(EAGAN-w/o-Re) with EAGAN are shown in Table 2 and
Fig. 8, respectively. From Table 3, one can see that EAGAN
can further improve the performance both on PSNR and
SSIM metrics. Besides, Fig. 8 illustrates that EAGAN can
restore more image details than EAGAN-w/o-Re, indicat-
ing the benefit of relativistic GAN in the proposed method.
Furthermore, the discriminator is removed from the net-
work, leaving only the generator to remove rain streaks.
From Table 3, one can see that the deraining performance
without discriminator (EAGAN-w/o-D) is severely degraded,

indicating that the discriminator can promote the generator
greatly.

4) EFFECTIVENESS ON NLNM AND SE MOUDLE
Finally, the effectiveness of NLNM and SE module in gener-
ator is studied. From Table 3, one can see that the deraining
performance of EAGAN-w/o-NLNM and EAGAN-w/o-SE
suffer some degradation compared to EAGAN, Fig. 8 shows
the same results, indicating that both NLNM and SE mod-
ules can improve the representation ability of the deraining
network.

V. CONCLUSION
In this work, we have proposed an enhanced attention gen-
erative adversarial network named EAGAN to remove rain
streaks from a single image. In EAGAN, a multiscale aggre-
gation attention module (MAAM) with various convolu-
tion kernel sizes is developed to locate the rain regions,
and then non-local neural networks are embedded to cap-
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ture long-range spatial dependencies and structural informa-
tion. Furthermore, symmetrical autoencoder with long-range
skip-connections and SE modules enhance the representa-
tion power of the network. Besides the improvement in the
generator, we adopt the relativistic discriminator to further
improve the performance. Meanwhile, spectral normaliza-
tion is utilized in both the generator and discriminator to
enhance the training stability and produce realistic derain-
ing scenes. Extensive experiments on both synthetic and
real-world datasets have shown the effectiveness of the pro-
posed EAGAN in terms of quantitative and qualitative com-
parisons.
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