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ABSTRACT Optimal reactive power dispatch (ORPD) in a typical power system is a complicated
multi-objective optimization problem. The proper modeling of the multi-objective optimization problem
has a significant impact on system operation and control. In this paper, an Improved Heap-based opti-
mizer (IHBO) is proposed to improve the performance of a recently published technique called Heap-based
optimizer (HBO). In addition, two algorithms based on the original HBO and IHBO are developed for solving
OPRD problem. Pareto front approach is utilized in the proposed OPRD algorithm with the aim of solving
two or three objective functions simultaneously. The performance of HBO is improved by utilizing the
chaotic sequences with the aim of improving its global search capability and avoiding getting stuck in a
local optimum. Both original HBO and proposed IHBO are applied to determine the optimal settings of the
generator’s voltages, shunt capacitor reactive power, and tap settings of transformers. Therefore, this study
aims for minimizing three most objective functions of the real power loss, total voltage deviation (TVD) and
voltage stability index (VSI), with satisfying different operational constraints. The effectiveness of the IHBO
is tested on three test systems IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems. The results of the
proposed IHBO are compared with recently published algorithms in the literature. The simulation results
proven the superiority and robustness of IHBO in solving the ORPD problem.

INDEX TERMS Reactive power dispatch, optimization, heap-based optimizer, chaotic sequence.

I. INTRODUCTION
Nowadays, the existing power systems are imperative to
operate at entire capacity due to the imbalance investment
in power generation, transmission, and distribution sectors.
Often, due to the aforementioned situation the heavy cur-
rent flows in whole system tend to incur more losses and
threatening power system stability. At last, this may lead
to the risk of electricity interruptions in whole system of
various severity levels. Hence, there is unanimity amongst
the system operators to enhance the existing transmission
and distribution systems through installation of power grid
stations and new lines to make the system more smart, effi-
cient, and reliable [1]. To subtend the mentioned challenges,

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhouyang Ren .

there are two optional solutions which are mostly employed
by the operators. The first solution is associated to increasing
the current infrastructure of power system through adding the
new substations and lines. The second solution is regarding
to profiteering of the existent transmission and distribution
system without upgrading, through optimal setting of the
system parameters which results in improving the effective-
ness of the system. This can be accomplished by carrying
out technical study of power system that is called optimal
power flow (OPF). OPF is utilized in an interconnected
power system to obtain the optimized operating parameters
of the system in such a way to achieve the predictable load
dispatch with minimizing the total operating cost and real
power losses [2]–[6]. Furthermore, OPF is divided to two sub
problems, the first one is called economic dispatch problem
and the second sub-problem is recognized as ORPD. The two
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problems are implemented in different scenarios according to
the requirement of objective functions [7], [8].

ORPD planning is mandatory requirement for viable and
efficient operation of the power transmission and distribu-
tion systems. The solving ORPD problem has got attention
through researchers in power system planning and opera-
tions [9], [10]. Solving the ORPD plays an important role
in the system security, reliability, and economic operations.
This is because it supports the voltage of the network to
maintain it within desirable acceptable limits based on the
proper coordination of the equipment that adjusts the flow of
reactive power.

The objective of solving ORPD is minimizing a considered
objective function, such as real power transmission losses,
voltage deviation, and voltage stability index. These opera-
tional problems arise due to the complexity emerging in grid
modernization. ORPD is fundamental to assist maintain the
voltage level at the different loading state through reducing
the voltage deviation as well as power quality issues which
arise from the fluctuations of electrical power [11].

The considered objective function is achieved by adjusting
the system control variables within different operating con-
straints. From a mathematical model optimization point of
view, the problem of ORPD is a complex nonlinear problem,
due to its nonlinear objective function and various type of
constraints [12].

However, numerous efforts have been conducted for solv-
ing ORPD based on various classical optimization meth-
ods including linear and non-linear programming [13], [14],
interior point method [15], [16] and decomposition algo-
rithm [17], Regardless of the convergence characteristics of
the classical optimization methods, these techniques may
almost fail for obtaining the global solution due to difficulties
of nonlinearity, and nonconvexity.

The metaheuristic optimization algorithms are inspired
based on animals’ behavior and physical phenomena have
become widespread popular due to their flexibility, simplic-
ity, ability to get global solutions, and prevent local optimal
solutions [18]. The essence of metaheuristic techniques is
based on the iterative correction solutions concept through
generating new populations with implementing stochastic
search operators [19]. Over recent years, there are growing
attention on population-based and metaheuristics techniques
for solving different power system optimization problems.
These modern techniques have been extensively employed
to overcome the problems of the conventional gradient-based
optimization techniques [20], [21].

ORPD problem has been solved based on several meta-
heuristic optimization algorithms such differential evolution
(DE) [22], [23], differential search algorithm [24], grav-
itational search algorithm (GSA) [25], enhanced marked
algorithm [10], gray wolf optimizer [26], krill herd algo-
rithm (KHA) [27], cuckoo search (CS) algorithm [28],
ant-lion optimizer (ALO) [29], PSO with bat algorithm
(BA) [30], Sine-Cosine algorithm (SCA) [31] and frac-
tional order particle swarm optimization (FOPSO) [32].

Hybrid methods of more than one or two optimization
algorithms can extract a synergy of their advantages simul-
taneously. This approach has been applied to develop
several effective algorithms such as differential evolution
algorithm (DDEA) and modified teaching learning-based
algorithm (MTLBA) has been proposed in [33], hybrid fire-
fly algorithm (FFA) and Nelder-Mead simplex method [34],
modified imperialist competitive and invasiveweed optimiza-
tion (MICAIWO) [35], hybrid particle swarm optimization
and Imperialist competitive algorithm (PSOICA) [36], hybrid
chaotic (ABCDE) algorithm [37], hybrid PSO and GSA
algorithm (PSOGSA) [9], hybrid PSO with artificial physics
optimization (APO) (APOPSO) [38], and hybrid PSO and
multi verse optimizer algorithm (PSOMVO) [11].

It worth noting that, these techniques may stuck in local
optimal solution while solving complex multi-objective
problems. Also, the convergence speed depends on the
proper adjustment of the parameters of each meta-
heuristic [39], [40].

To improve the performance and effectiveness of meta-
heuristics techniques, various modifications maybe applied
to them. Until now, chaos theory has been implemented on
a broad of numerous metaheuristics and a wide range of
applications for improving their performance to get better
convergence and avoid getting stuck in a local minimum [41].
For example, of meta-heuristics that utilize chaos theory,
the GSA technique [42], GWO technique [43], butterfly opti-
mization algorithm (BOA) [44], salp swarm algorithm (SSA)
[45], moth-flame optimizer (MFO) [46]. The metaheuristics
based on chaos theory for solving the ORPD problem of dif-
ferent objective functions have been introduced in [47], [48]
and Chaotic Bat Algorithm (CBA) with two modified tech-
niques CBA_III andCBA_IV [49]. On the other hand, solving
multi-objective ORPD problems based on different objective
functions have been presented in the literature in [50] based
on Pareto evolutionary algorithm for minimizing both active
power loss and total voltage deviation. In [51], an improve
voltage stability has been included in multi-objective ORPD
problem with considering minimizing active power loss after
that the problem has been solved using chaotic PSO. The
modeling of ORPD as fuzzy goal programming for power
loss reduction, improving voltage profile and enhancing static
voltage stability then solved by genetic algorithm (GA) has
been proposed in [52].

These metaheuristic techniques have their own demerits
and merits in solving the ORPD problem, though definite
complications are continued due to multi modal, discrete and
nonlinear characteristic of power system that necessarily to
be achieved in more adequate manners. Moreover, a wider
set of utilized optimization techniques coverages towards sub
optimal problem solutions due to the complex non-linear
nature of the ORPD problems.

Therefore, solving ORPD problem is still a very important
hot research issue in the electrical engineering due to its
complexity, nonlinear characteristic of the system, and the
stricter requirements of power quality. Hence, it is important
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to develop new optimization methods that are capable of
overcoming these barriers and handle the ORPD difficulties.

In this paper, an ImprovedHeap-based optimizer (IHBO) is
proposed to solve ORPD for minimizing the most objective
functions of the real power loss and total voltage deviation
simultaneously based on the Pareto front technique. The orig-
inal HBO is improved using the chaos theory. A circle chaotic
map is employed to update the probability variable instead of
using the random update function. The main contributions of
this paper could be summarized in the following points:
• Proposing an improved version of the original HBO,
called IHBO, with the aim of improving its performance
and avoid getting stuck in a local optimum.

• Developing solution algorithms based on the original
HBO and proposed IHBO to solve ORPD problem.

• Solving the bi and tri multi-objective solve ORPD prob-
lem based on the proposed IHBO and Pareto Optimal
Front.

• Several objective functions such as minimizing the real
power loss, total voltage deviations, and voltage stability
index, are studied as single and multi-objective func-
tions.

• Validating the proposed IHBO using several standard
small and large test systems (IEEE 30-bus, IEEE 57-bus,
and IEEE 118-bus).

• The simulation results confirm that IHBO has better
performance or comparable superiority over other algo-
rithms utilized in the literature.

The paper is presented as follows: Section II introduces the
mathematical model of the ORPD problem. The IHBO algo-
rithm is presented in Section III. In Section IV, the IHBO
algorithm is implemented for solving the ORPD problem.
The obtained results are introduced and discussed in section
V. Finally, the conclusion is presented in Section VI.

II. THE MATHEMATICAL FORMULA OF ORPD
It is worth noting that, the ORPD problem is characterized
as a complicated nonlinear optimization problem, however,
it treated as a sub problem of optimal flow problem which
determines the optimal output power of generators with the
aim of minimizing a specific objective function considering
several equality and inequality operating constraints. The
objective functions in the present work are minimizing real
power loss, the voltage deviations, and voltage stability index
individually or simultaneously. The generator voltages, trans-
former tap settings, and reactive power of shunt capacitors are
considered the control variables of the ORPD problem while
the dependent variables are the load voltages, the flow of the
lines, and the slack bus power.

A. OBJECTIVE FUNCTIONS
Mathematically, the formulation problem of the ORPD is
expressed as follows [53], [35]:

minimize U (x, v) (1)

Subject to constraints

z (x, v) = 0 (2)

h (x, v) ≤ 0 (3)

where U is the objective function should be minimized, x is
the vector consists of the control variables which represent the
voltages of generators VG, reactive power of shunt capacitors
Qsc and transformer tap settings TS . However, x may be
expressed as follows:

xT =
[
VG1...,VGNG ,QSC ...,QSCNC ,TS1...,TSNT

]
(4)

where NG,NC and NT define the number of generators, shunt
Var compensators, and regulating transformers, respectively.
v is the state vector consisting of the dependent variables
which include the voltages at load buses VL , the generated
reactive powerQG, the loading of the transmission line SL and
the power at slack bus PGsl . The state vector v is expressed as
follows:

vT =
[
VL1...,VLNL ,QG...,QGNG , SL1..., SLnl ,PGsl

]
(5)

where, NL , and nl depict the total number of load buses
and transmission lines, respectively. Further, z (x, v)= 0 and
h (x, v) ≤ 0 represent the equality and inequality constraints,
respectively.

1) MINIMIZATION OF TOTAL REAL POWER LOSS
The most objective function U considered in ORPD is that
the total real power loss of the system. The ORPD solution
aims to minimize the total real system loss in the transmission
network. However, the minimization of real power loss acts
as an important target for system operators, which can be
formulated as follows [54]:

U1 (x1, v1) = min(PL) =
∑nl

k=1
Gk [V 2

i + V
2
j

− 2ViVjcos(θi − θj)] (6)

where, PL is the total real power loss, Gk is the conductance
of k’th branch, Vi,V j, θi and θj are the magnitudes and angles
of voltage at bus i and j, respectively.

2) MINIMIZATION OF (TVD) AT LOAD BUSES
One of the most important indices for achieving the security
of the system is minimizing the voltage deviations at load
buses, to prevent the appearance of an unaccepted voltage
profile. The voltage deviation is defined as the difference
between the nominal reference voltage and the actual volt-
age. The voltage deviations are mathematically expressed as
follows:

U2 (x2, v2) = min(TVD) =
NL∑
k=1

|Vk − V
Ref
K | (7)

where, TVD is the total voltage deviation, k is the element of
the total number of load buses, Vk is the voltage magnitude at
bus k , and V Ref

K is the reference of the voltage magnitude at
k th load bus and its value set to 1 p.u.
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3) ENHANCEMENT OF VOLTAGE STABILITY
It’s worth noting that, when the system subject to differ-
ent operating situations such as disturbance or sudden load
change, all buses should maintain acceptable bus voltage.
L-index is the voltage stability index that plays an important
role in voltage stability analysis. The values of the L− index
is ranged from 0 to 1, where the lowest value refers to more
stable system and vice versa [10]. The L-index of k’th bus is
formulated as follows:

U3 (x3, v3) = min[max(Lk )] k = 1, 2, 3...,NL (8)

where,

Lk =

∣∣∣∣∣1−
NG∑
i=1

Fik
Vi
Vk

∣∣∣∣∣ (9)

Fik = −[YA]−1[YB] (10)

where, i and k define the buses of generators and load,
respectively. YA and YB depict the system sub-matrices for
Y bus which obtained from the separation of generator and
load buses.

B. THE PROBLEM CONSTRAINTS
The ORPD subject to equality and inequality operational
constraints of the system as presented follows:

1) EQUALITY CONSTRAINTS
The following power balance equations are considered the
equality constraints of the studied optimization problem.

PGi − PDi − Vi
NL∑
j=1

Vj(Gijcosθij + Bijsinθij) = 0 (11)

QGi − QDi − Vi
NL∑
j=1

Vj(Gijsinθij − Bijcosθij) = 0 (12)

where, PGi andQGi are the output of active and reactive pow-
ers from the generator of bus i, respectively. PDi and QDi are
demand active and reactive powers of bus i, respectively. Gij
and Bij are the branch conductance and susceptance between
two buses, respectively.

2) INEQUALITY CONSTRAINTS
From (3), h represents the inequality constraints that includ-
ing:

a: GENERATOR CONSTRAINTS
The voltages and reactive power outputs at all generating
buses must be bounded within their upper and lower limits:

Vmin
Gi ≤ VGi ≤ Vmax

Gi , i = 1, 2, 3 . . . ,NG (13)

QminGi ≤ QGi ≤ QmaxGi , i = 1, 2, 3 . . . ,NG (14)

PminGsl ≤ PGsl ≤ PmaxGsl , i = 1, 2, 3...,NC (15)

where, Vmin
Gi ,V

max
Gi are the minimum and maximum gen-

erating voltages of bus generating i’th, QminGi ,Q
max
Gi are the

minimum and maximum generating reactive power of bus
generator i’th and PminGsl ,P

max
Gsl are the minimum and maximum

active power output of slack bus i’th.

b: CONSTRAINTS OF SHUNT VAR CAPACITORS
The upper and lower limits of the shunt reactive power com-
pensators are represented as:

QminSCi ≤ QSCi ≤ Q
max
SCi , i = 1, 2, 3...,NC (16)

where, QminSCi,Q
max
SCi are the minimum and maximum shunt

reactive power limits injected by the compensator i’th.

c: CONSTRAINTS OF TRANSMISSION LINE LOADING AND
VOLTAGES AT LOAD BUSES
The inequality constraints of transmission line loading and
voltages at load buses are represented as:

Sli ≤ Smaxli , i = 1, 2, 3..., nl (17)

Vmin
Li ≤ VLi ≤ Vmax

Li , i = 1, 2, 3...,NL (18)

where, Smaxli is the apparent power of the branch i’th, Smaxli
indicates the maximum apparent power limit of branch i’th
and Vmin

Li ,V
max
Li are the minimum and maximum load voltage

magnitudes of i’th bus.

d: TRANSFORMER CONSTRAINTS
The constraints of transformers in the system are represented
as:

Tmini ≤ Ti ≤ Tmaxi i = 1, 2, 3...,NT (19)

where, Tmini ,Tmaxi are the minimum and maximum tap trans-
former setting limits of i’th transformer.

The objective function including the inequality constraints
is given as:

Up=Ui+λv
∑NL

k=1

(
VLk−V lim

Lk

)2
+λs

∑nl

k=1
(Slk − S limlk )2

+ λq
∑NG

k=1
(QGk − QlimGk )

2 (20)

where, λv, λs and λq are the penalty factors. Further, the limit
values of any variable in (20) are given as follows:

Y lim =

{
Ymax Y > Ymax

Ymin Y < Ymin
(21)

where, Y lim define V lim
L , S liml and S liml .

III. ORIGINAL HBO
HBO is a human behavior based meta-heuristic that has
been developed in [55]. It is based on the corporate rank
hierarchy (CRH) in a very distinctive style. HBO’s mathe-
matical model is based on three pillars: (1) the relationship
between subordinates and their immediate supervisor; (2) the
relationship between colleagues; and (3) the employees’ self-
contribution. Heap data structure has been used in thismanner
to simulate the CRH. The using of the heap data structure
in the CRH mapping allows organizing the solutions based
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on their fitness in a hierarchy and using the arrangement in
the algorithm’s position-updating process in a very specific
way. In this article, the mapping of the whole concept is
divided into four steps: (i) modeling CRH, (ii) modeling
the relationship between the subordinates and the immediate
supervisor, (iii) modeling the interaction among colleagues,
and (iv) an employee’s self-contribution to executing a task.

A. IMPLEMENTATION OF THE CRH
Heap data structure has been used to implement the CRH
where the heap is a data structure shaped by a non-linear tree.
Hence, the entire CRH is considered as the population. In the
implementation process, a search agent corresponds to a heap
node. The search agent’s fitness is the key to the heap node,
and the population index of the search agent is the value of
the heap node.

B. IMPLEMENTATION OF THE INTERACTION WITH THE
IMMEDIATE BOSS
In a centralized organizational structure, laws and regulations
are applied from the upper levels and subordinates obey their
immediate supervisor. This can be mathematically modeled
by updating the search agent’s position as follows:

xki (t + 1)=Bk+

∣∣∣∣∣2−
(
t mod TC

)
T
4C

∣∣∣∣∣ (2r−1) ∣∣∣Bk−xki (t)∣∣∣ (22)

where, x is the position of the search agent, B is the parent
node, t and k are the current iteration and the number of
the component vector, respectively, r is a random number
between [0,1], T is the total number of iterations, and C is
a defined parameter which has been set to T

25 based on the
experimental study.

C. IMPLEMENTATION OF THE INTERACTION BETWEEN
COLLEAGUES
Officials of the same rank are colleagues. To achieve official
duties, they communicate with each other. In heap, it is
assumed that the nodes are colleagues at the same level, and
each search agent xi updates its location according to the
following equation about its randomly selected colleague Sr :

xki (t + 1)

=

{
Skr + γ λ

k
∣∣Skr − xki (t)∣∣ , f (Sr ) < f (xi(t))

xki + γ λ
k
∣∣Skr − xki (t)∣∣ , f (Sr ) ≥ f (xi(t))

(23)

D. IMPLEMENTATION OF THE SELF-CONTRIBUTION OF
AN EMPLOYEE
This implementation is very simple, where the position of
the employee is retaining the previous position in the next
iteration as follows:

xki (t + 1) = xki (t) (24)

E. OVERALL POSITION UPDATES
Based on the previous implementation, the position can
be updated using different equations. However, these

equations can bemerged into one equation using probabilities
parameters to balance exploration and exploitation phases.
A roulette wheel is utilized to balance between these prob-
abilities p1, p2, and p3.
Where, p1 can be calculated as:

p1 = 1−
t
T

(25)

and p2 is expressed as:

p2 = p1 +
1− p1

2
(26)

Finally, p3 is calculated as:

p3 = p1 +
1− p1

2
(27)

Hence, the overall position update equation can be written as
follows:

xki (t + 1)=



xki (t) ,
p ≤ p1

Bk + γ λk
∣∣Bk − xki (t)∣∣ ,

p > p1 and p ≤ p2
Skr + γ λ

k
∣∣Skr − xki (t)∣∣ ,

p > p2 and p ≤ p3 and f (Sr )< f (xi (t))
xki + γ λ

k
∣∣Skr − xki (t)∣∣ ,

p>p2 and p≤p3 and f (Sr )≥ f (xi (t))
(28)

where, p is a random number within [0,1].

F. OVERALL HBO IMPLEMENTATION
The overall steps of HBO are presented in this section. Firstly,
randomly initialize the population-based on control variables
number N and the number of populations n as follows:

X =

 x
1
1 · · · xN1
...

. . .
...

x1n · · · xNn

 (29)

where, the population X must be within the boundary limits
as:

Xlb ≤ X ≤ Xub (30)

Secondly, the heap is created using a d-array tree. In HBO, 3-
arries is used to implement the CRH based on the following
mathematical expression:

parent (i) =
⌊
i+ 1
d

⌋
(31)

Eq. (33) is used to give the index of the parent node i in the
heap array. A node can have up to 3 children in a 3-array
heap. Hence, in the CRH mapping, it has been assumed that
a supervisor cannot have more than 3 direct subordinates.
Therefore, the mathematical formulation of the child j for
node i can be written as:

child (i, j) = d × i− d + j+ 1 (32)
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In a 3-array heap, the depth of any node i can be calculated
as:

depth (i) = dlogd (d × i− i+ 1)e − 1 (33)

To describe the colleaguewhich are all nodes at the same level
of a node i, a colleague (i) is used to generate a random integer
in the range as follows:

colleague (i)=

[
d × ddepth(i)−1

d − 1
+1,

d × ddepth(i)

d − 1

]
(34)

Heapify_Up (i): it searches upward in the heap and inserts the
node i at its correct location to maintain the heap property.
Then, a heap is built for the population where heap_value
is used to store the indices of the search agents into the
population and heap_key is used to stores the fitness of the
corresponding search agents. Thirdly, search agents repeat-
edly update their positions following previously discussed
equations and try to converge on the global optimum. The
flowchart of the HBO is shown in Fig.1.

IV. PROPOSED HBO
Chaos maps have been used in many fields for forecasting
erratic behaviors such as atmosphere, brain conditions, or tur-
bulent movement of air or water. Recently, in optimization
algorithms, several chaotic maps have been used. The key
benefit of using chaotic maps in optimization is to increase
the algorithm’s convergence rate using various chaotic maps
as an alternative for using random variables. To improve the
performance of the original HBO, a chaoticmap is involved to
change the probability variable p instead of using the random
function as follows:

pk+1 = mod
(
pk + b1 −

(
b2
2π

)
sin (2πpk) , 1

)
× b1 = 0.5, b2 = 0.2 (35)

A. MULTI-OBJECTIVE HBO
The single objective IHBO is considered the main core of
the multi-objective IHBO (MOIHBO). In the multi-objective
algorithms, Pareto dominance is employed to compromise
among the objective functions. Therefore, the solutions
obtained are categorized as dominated and non-dominated
solutions. Then, the optimal solution will be chosen from
the non-dominated alternatives by the decision-maker. In this
regard, two functions are used to formulate the Pareto opti-
mal solutions from the IHBO, namely archive and leader
selection. The archive is responsible for organizing the
non-dominant solutions accomplished so far and the selection
of leaders used to direct the other agents to obtain the right
solution. The MOIHBO is shown in Algorithm 1.

B. COMPROMISE SOLUTION
A fuzzy membership approach is applied to achieve the best
compromise solution. A membership function uni is repre-
sented for the all n functions at each i non-dominated solution

FIGURE 1. HBO implementation flowchart.

as follows:

uni =


1 Fi ≤ Fmini
Fmaxi − Fi
Fmaxi − Fmini

Fmaxi ≤ F i ≤ F
min
i

0 Fi ≥ Fmaxi

(36)
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FIGURE 2. Convergence characteristics of HBO and IHBO for single
objective function (IEEE 30-bus system).

where, Fmini and Fmaxi are the minimum and maximum value
of the ith objective function among all non-dominated solu-
tions, respectively. Hence, the normalized value for each
non-dominated solution is calculated as follows:

un =

∑nobj
i=1 u

n
i∑M

n=1
∑nobj

i=1 u
n
i

(37)

where, M denotes the total number of the non-dominated
solution, therefore, the best compromise solution is the one
with the highest value of un.

Algorithm 1MOIHBO Formulation

1: Initialize a set of random search agents xki
2: Calculate the objective functions for each search agent
3: Find the non-dominate solutions and store in the archive
4: Select the leader using leader selection
5: while (iter <itermax)
6: for each search agents xki
7: Update the position using (30)
8: Calculate the objective functions
9: Find the non-dominate solutions and update the
archive
10: if the archive is full
11: Run the grid mechanism to omit one of the

current archive members
12: Add the new solution to the archive
13: endif
14: if any of the new added solutions to the archive is

located outside the hypercubes
15: Update the grids to cover the new
solution(s)
16: endif
17: Perform the leader selection
18: iter = iter + 1
19: end while
20: return final non-dominated solutions stored in the
archive

FIGURE 3. The statistical results for all single objective functions of ORPD
(IEEE 30-bus system).

V. SIMULATION RESULTS AND DISCUSSION
To prove the effectiveness and performance of the proposed
IHBO, both original HBO and IHBO are used to solve the
standard test systems; IEEE 30-bus, IEEE 57-bus and IEEE
118-bus with the aim of minimizing the real power loss,
total voltage deviations, and voltage stability index as single
objective and multi-objective functions. All simulation stud-
ies have been run onMATLAB 2016a, 2.8 GHz Intel Pentium
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TABLE 1. The optimal variables obtained by HBO and IHBO based on the single objective ORPD problem (IEEE 30-bus system).

i7 PC with 16 GB of RAM. The numerical optimal values
have been obtained for the two algorithms after 200 itera-
tions for all test systems. Moreover, the simulation studies
have been obtained after 30 independent runs for all the test
cases. The two algorithms have been implemented on a total
population of 50 particles.

A. IEEE 30-BUS TEST SYSTEM
The IEEE 30-bus test system consists of 6 generators with one
slack bus, 41 branches (transmission lines of 37 branches and
tap changing transformers of 4 branches), 9 reactive power
compensators and the total real and reactive power demand
of the system are 238.4 MW and 126.2 MVAR, respectively.
The detailed data of buses and lines for the IEEE 30-bus
system are defined in [54]. Further, in this study, the system
level is constrained as follows, the voltage magnitude range
is 0.95 p.u. and 1.1 p.u. for all generating buses. The limits
between 0.95 p.u. bus 1.05 p.u. are considered for load buses
voltages. On the other hand, the tap changing transformers are
ranged from 0.9 p.u. to 1.1 p.u. In addition, the limits of shunt
VAR compensators are supposed between 0 to 5MVAR. This
system comprises 19 control variables including 6 generators,
4 settings of tap changing transformers, and 9 shunt VAR
capacitors.

1) SINGLE-OBJECTIVE ORPD FRAMEWORK
In this subsection, the effectiveness of the proposed IHBO
to solve the ORPD problem as single objective func-
tion (minimization of the total real power loss or TVD
or VSI) is proved. The results obtained by the proposed
IHBO are compared with those obtained by the origi-
nal HBO and other well-known optimization algorithms.
The obtained results for all cases are listed in Table 1.
The results that are reported at the base case of the test
system are acquired from previous literature [56]. The
three considered single objective functions are presented as
follows:

Case 1: this case aims to minimize the total real power
loss based on the original HBO and proposed IHBO. How-
ever, the real power loss is minimized to 3.6469 MW and
3.4923 MW using HBO and IHBO, respectively. By HBO,
the TVD and VSI are minimized to 1.9244 p.u. and 0.1576,
respectively, while they are minimized to 1.4794 p.u. and
0.1251, respectively by IHBO.

Case 2: the main objective function in this case, is to
minimize the TVD using the two algorithms. The TVD is
reduced to 0.1034 p.u and 0.0854 p.u. using HBO and IHBO,
respectively. In contrast, the real power loss, and VSI became
4.3519 MW and 0.1846, respectively by HBO, while the
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TABLE 2. Results of single-objective ORPD obtained using different optimization techniques (IEEE 30-bus system).

TABLE 3. The optimal results obtained by IHBO based on multi-objective ORPD problem (IEEE 30-bus system).

real power loss, and VSI became 4.2417 MW and 0.2106,
respectively by IHBO.

Case 3: in this case, VSI is taken as the main objective
function utilizing both HBO and IHBO. In this case, the VSI
is minimized to 0.0536 by HBO and 0.0505 by IHBO. On
the other hand, the real power loss and TVD are equal to
4.7557 MW and 0.9118 p.u, respectively by HBO, while,
these values are equal to 3.6435MW and 1.0658 p.u., respec-
tively by IHBO.

Table 2 provides the best values of the three considered
objective functions obtained by the original HBO, the pro-
posed IHBO and the other well-known algorithms, PSO-
GSA [12], (DE) [22], GSA [25], SCA [31], APOPSO [38],
MJAYA [54], and comprehensive learning particle swarm
optimization (CLPSO) [57]. From Table 2, it can be observed
that the IHBO outperforms other techniques, where it

provides the lower values all three objective functions com-
pared with other algorithms.

The convergence characteristics of real power loss, TVD,
and VSI for 200 iterations yielded by both HBO and IHBO
for IEEE 30-bus are shown in Fig. 2. It can be observed that
the proposed IHBO reaches to the optimal solution faster than
the original HBO.

Fig.3. shows the statistical results yielded by two algo-
rithms based on the three considered single objective func-
tions through 30 independent trials which conducted for each
algorithm to compare their best, worst, mean values and
standard deviation (SD).

2) MULTI-OBJECTIVE OF ORPD FRAMWORK
In this subsection, the optimal values of real power loss,
TVD, and VSI are obtained by the developed multi-objective

VOLUME 9, 2021 58327



S. K. Elsayed et al.: Improved Heap-Based Optimizer for ORPD

FIGURE 4. Pareto set using IHBO based on multi-objective ORPD (IEEE 30-bus system).

HBO and IHBO algorithms. However, two models of
multi-objective problems namely bi and tri objective func-
tions are considered here. The simulation results based on
multi-objective IHBO are tabulated in Table 3. Fig. 4 shows
the generated Pareto optimal results for all cases of
multi-objective functions of the IEEE 30 bus test system.
The studied cases of multi-objective ORPD problems are
described as:

Case 4: both HBO and IHBO are utilized for minimizing
the real power loss and TVD simultaneously. The Pareto front
values are shown in Fig.4a for this case. On the other hand,
the optimal variables along with the best values of objective
functions are listed in Table 3. From this table, it is seen
that the ability of IHBO for obtaining the best values of real
power loss and TVD which are 3.8842 MW and 0.2955 p.u.,
respectively.

Case 5: In this case, the real power loss, and VSI are con-
sidered as bi-multi-objective function. Pareto front obtained
by IHBO is shown in Fig.4b. However, the optimal vari-
ables and the corresponding minimum values of the bi
multi-objective problem are presented in Table 3. From this

table, it can be displayed that the best values for real power
loss and VSI are 3.6188 MW and 0.0838 p.u., respectively.

Case 6: In this case, the TVD andVSI are optimized simul-
taneously. The Pareto front acquired by the proposed IHBO is
shown in Fig.4c. In addition, the simulation results of optimal
variables with the best values of each considered objective
function are listed in Table 3. The preferable compromise
values for TVD and VSI are 0.2163 and 0.0583, respectively.

Case 7: in this case, the results of the tri objective ORPD
problem are presented. The real power loss, TVD, and VSI
are optimized simultaneously. The Pareto front acquired
using IHBO is displayed in Fig.4d. The best values of the
three objective functions and the corresponding optimal con-
trol variables are tabulated in Table 3. From this table, it can
be observed that the best values for the real power loss, TVD
and VSI are 3.9254 MW, 0.31348, 0.0968 p.u., respectively.

B. IEEE 57-BUS TEST SYSTE
The IEEE 57-bus test system comprises 7 generating units
with one slack bus, 80 transmission lines and 17 tap changing
transformers, 3 reactive power compensators.
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TABLE 4. The optimal values obtained by HBO and IHBO based on the single objective ORPD problem (IEEE 57-bus system).

TABLE 5. Results of single-objective ORPD obtained by different optimization techniques (IEEE 57-bus system).

The total real and reactive power load demands of the
system are 1250.8 MW and 336.4 MVAR, respectively. The
detailed data of this test system are given in [59].

Moreover, in this paper the system constraints are limited
as follows, for all generating buses, the magnitudes of voltage
are limited from 0.9 p.u. to 1.1 p.u. The voltage limits are
taken between 0.94 p.u. bus 1.06 p.u. at load buses. The tap
changing transformers are varied between 0.9 p.u. to 1.1 p.u.
Limits of reactive power compensation devices are assumed
between 0 to 30MVAR. Overall, the IEEE 57-bus test system
comprises 27 control variables comprehensive 7 generating
units, 17 tap changing transformers, and 3 shunt VAR com-
pensation devices.

1) SINGLE-OBJECTIVE ORPD
In this subsection, the proposed IHBO is also validated for
solving the single-objective ORPD problem described in
(20) of the IEEE 57-bus test system. The obtained optimal
variables for the three considered Cases 8–10, are given
in Table 4. These cases can be summarized as:

Case 8: This case aims to minimize the total real
power loss using HBO and IHBO. The total real power
losses are 14.7935 MW and 13.9725 MW using HBO and
IHBO, respectively. Further, the TVD and VSI are equal to
1.3780 p.u. and 0.8835, respectively using HBO as well,
the TVD and VSI are equal to 1.1208 p.u. and 0.8079, respec-
tively using IHBO.
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FIGURE 5. Convergence characteristics of HBO and IHBO of HBO and
IHBO for single objective function (IEEE 57-bus system).

Case 9: the main objective function is to minimize the
TVD using HBO and IHBO. As seen from the results,
the TVD is 1.0354 p.u. and 0.8781 p.u. using HBO and
IHBO, respectively. Moreover, the total real power loss and
VSI are equal to 18.7449 MW and 0.8168, respectively
using HBO. Likewise, the total real power loss and VSI
are equal to 16.4291MW and 0.8626, respectively using
IHBO.

Case 10: the main objective function in this case, is to min-
imize the VSI. Using HBO and IHBO, the VSI is minimized
to 0.6291 and 0.5085, respectively. In contrast, the real power
loss and TVD using HBO are equal to 21.1385 MW and

FIGURE 6. The statistical results for all single objective functions of ORPD
(IEEE 57-bus system).

1.3069 p.u., respectively. As well, these values using IHBO
are equal to 19.4196 MW and 1.2387 p.u., respectively.

To confirm the superiority and effectiveness of the pro-
posed IHBO, the objective function results using HBO and
HBO are compared with those obtained by other recently
reported algorithms. The best values of the studied single
objective functions obtained by different optimization algo-
rithms are tabulated in Table 5. The IHBO presents the best
capabilities for minimizing the objective function compared
with HBO, GSA [25], APOPSO [38], BA, CBA_III and
CBA_IV [49], CKHA [58], Seeker optimization algorithm
(SOA) [60], adaptive invasive weed optimization algorithm
(MICA-IWO) [61], PSOwith an aging leader and challengers
(ALC-PSO) [62], and stochastic ranking with differential
evolution SR-DE [63].

The convergence characteristics yielded by both HBO and
IHBO for single-objective functions of the ORPD prob-
lem over IEEE 57-bus are shown in Fig.5. This figure dis-
plays the robust performance of the IHBO for larger extent
systems.

The statistical results are obtained and compared
using HBO and IHBO, which are utilized for solving
single-objective ORPD through 30 independent trials per-
formed for each algorithm and the results are presented
in Fig 6.

2) MULTI-OBJECTIVE ORPD
As stated in the previous subsection of IEEE 30-bus test
system, two models of multi-objective problems are utilized
called bi and tri-objective functions. The simulation results
obtained by the IHBO for the considered cases are presented
in Table 6. Furthermore, Fig.7 depicts the produced Pareto
optimal values for two considered models of multi-objective
functions based on four cases implemented over the
IEEE 57-bus test system, which are described as follows:
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FIGURE 7. Pareto set using IHBO based on multi-objective ORPD (IEEE 57-bus system).

Case 11: IHBO is applied in this case for minimizing
the real power loss and TVD simultaneously. The values of
the Pareto front are shown in Fig.7a. As well, the optimal
variables and the best values of objective functions to be
minimized in this case are given in Table 6.It is seen from
the table, the capability of IHBO for achieving the best min-
imum values of real power loss and TVD which are equal to
16.0289 MW and 0.9498 p.u., respectively.

Case 12: The real power loss and VSI are solved as a bi
multi-objective problem for minimizing each of them simul-
taneously. The Pareto front based on the proposed IHBO
are shown in Fig.7b. The minimum values of the bi multi-
objective problem and the optimal variables are introduced
in Table 6. The results show that the best optimization values
for real power loss and VSI are equal to 15.7423 MW and
0.7799 p.u., respectively.

Case 13: In this case, the TVD and VSI are mini-
mized simultaneously using the proposed IHBO based on
the bi multi-objective model. The Pareto front are displayed
in Fig.7c. Moreover, the simulation results of optimal vari-
ables with the minimum values of the TVD and VSI are

presented in Table 6. The preferable results for TVD and VSI
are 1.0745 p.u. and 0.6916, respectively.

Case 14: the tri multi-objective ORPD problem is solved
using the proposed IHBO. The Pareto front of the three con-
sidered objective functions is displayed in Fig.7d. The best
minimum values of three objective functions along with the
optimal variables are listed in Table 6. The best values for the
real power loss, TVD and VSI are 18.1928 MW, 0.9205 p.u.
and 0.8152 respectively.

C. IEEE 118-BUS TEST SYSTEM
To achieve the robustness and strength performance 186 of
IHBO based on the large-scale test system, the IHBO is
applied in this section on the IEEE 118-bus test system.
The system comprises 54 generating units, 64 load buses,
transmission lines, 14 reactive power compensators, and
9 tap-setting transformers. Further, the total load of real and
reactive power is 4242 MW and 1438 MVAR, respectively.
The detailed system technical data are presented in [64].

Furthermore, the system constraints are as follows; the lim-
its of voltage magnitudes at the generating buses are between
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TABLE 6. The optimal values obtained by IHBO based on multi-objective ORPD problem (IEEE 57-bus system).

0.9 p.u. and 1.1 p.u., the limits of voltages at load buses are
considered between 0.94 p.u. bus 1.06 p.u., the tap-setting
transformers are considered between 0.9 p.u. to 1.1 p.u.,
the limits of shunt reactive compensators are supposed to be
between 0 to 20 MVAR.

The system comprises 77 control variables including
54 generating units, 9 tap changing transformers, and
14 shunts VAR compensation devices.

The proposed IHBO is applied on the IEEE 118-bus test
system for solving the single-objective and tri-multi objec-
tive ORPD problems in this section. The obtained results
of optimal variables and considered objective functions are
tabulated in Table 7 for cases 15-18. The cases are described
as follows:

Case 15: The purpose of this case is to minimize the real
power loss using IHBO. The real power loss is 108.2051MW,
where the TVD and VSI are equal to 1.1202 p.u. and 0.1086,
respectively.

Case 16: The aim of the case is to minimize the TVD
of the system by applying IHBO. The best-minimized
value for the TVD is 0.2814 and the values of real power
loss and VSI are equal to 138.1058 MW and 0.1707,
respectively.

Case 17: The IHBO is implemented here for minimizing
the VSI. The minimized value for the VSI is 0.0502. The
values of real power loss and TVD are equal to 141.6473MW
and 1.3530 p.u., respectively.

FIGURE 8. Pareto set using IHBO based on multi-objective ORPD (IEEE
118-bus system).

Case 18: The tri-multi objective ORPD problem is solved
based on IHBO. The real power loss, TVD, and VSI are
minimized simultaneously. Furthermore, the optimal val-
ues of the Pareto set are shown in Fig.8. Moreover, the
obtained results of minimum values for the real power loss,
TVD, and VSI are 126.1271 MW, 0.5712 p.u. and 0.0563,
respectively.

The proposed IHBO is also compared with other
well-known optimization algorithms and the results are
tabulated in Table 8. From this table, it can be observed
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TABLE 7. The optimal results obtained using IHBO based on single and tri- multi-objective ORPD problem (IEEE 118-bus system).

TABLE 8. Compared results of single-objective ORPD using different optimization techniques (IEEE 118-bus system).

that the IHBO gives the best minimum values for the
three considered objective functions compared with those
given by the exchange market algorithm (EMA) [10],

APOPSO [38], BA, CBA_III, and CBA_IV [49], FAH-
CLPSO [53], ALC-PSO [62],opposition based GSA
(OBGSA) [65],quasi-oppositional teaching-learning based
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TABLE 9. The best compromise solutions for all studied cases.

optimization(QOTLBO) [66], and Comprehensive learning
PSO (CLPSO) [57].

Finally, Table 9 display the summary of all studied cases
over all the three test systems based on the proposed IHB.
However, all results of minimized objective functions are
showed for single and multi-objective ORPD problem.

VI. CONCLUSION
In this paper, an effective optimization optimizer called IHBO
has been proposed to improve the performance of the original
HBO which recently published and applied for solving sev-
eral optimization problems in different fields. In addition, two
algorithms based on HBO and IHBO have been developed
for solving single and multi-objective ORPD problems. The
proposed algorithms have been evaluated and verified on
various standards of the IEEE 30-bus, IEEE 57-bus, and IEEE
118-bus test systems. The results confirm high performance

as well as the effectiveness of IHBO in solving the ORPD
optimization problems. Furthermore, the coincidence of the
optimal obtained results of the large systems like the IEEE
118 bus system validates that the proposed technique over-
comes the difficulties related to this type of test system. Also,
the results yielded by IHBO have been compared with those
obtained by the original HBO along with other available
recently meta-heuristics techniques. The simulated results
confirm that the IHBO outperforms other compared tech-
niques for solvingORPD in terms of robustness and effective-
ness. In the future work, the proposed IHBO could be applied
for solving other complex optimization problems in differ-
ent fields such as optimal distribution generation allocation
considering uncertainty of renewable energy resources and
load, optimal design and planning of hybrid renewable energy
systems, parameter estimation of fuel cells and photovoltaic
models.
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