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ABSTRACT Multimedia sensors have recently become a significant data source in the Internet of Things
(IoT), giving rise to the Internet of Media Things (IoMT). Since multimedia applications are usually latency-
sensitive, data processing in the cloud is not always suitable. A strategy to minimize delay is processing
multimedia streams closer to data sources, exploiting resources at the network edge. Moreover, virtualization
is widely used to reduce complexity arising from heterogeneity in IoT environments. In this paper, we pro-
pose an edge-based architecture and platform to manage virtual multimedia sensors (VMS), enabling IoMT
applications to be easily deployed. Our proposal encompasses V-PRISM, a software architecture tailored for
IoMT, and ALFA, a distributed implementation of the architecture. V-PRISM components were designed to
be deployed and executed in multiple edge nodes. VMSs are in charge of processing multimedia streams and
provide an abstraction layer between IoMT applications and physical devices that produce those streams.
This paper describes the proposal and the results of experiments showing that the proposed approach can
successfully perform multimedia stream processing for applications that requires low-latency.

INDEX TERMS Edge computing, Internet of Media Things, Internet of Things, virtual multimedia sensors.

I. INTRODUCTION
With the widespread of the Internet of Things (IoT) and its
integration with cloud computing, a new paradigm named
Cloud of Things (CoT), or Cloud-assisted IoT, has recently
emerged [1] exploiting the synergy between IoT and the
cloud. In this scenario, places, people, and objects are con-
tinuous data generation sources that are consumed by appli-
cations that receive processed data streams through the cloud.
The cloud provides a vast amount of storage and process-
ing capabilities for the data generated by IoT devices while
abstracting their heterogeneity. By offering sensing and actu-
ation as a service, cloud providers broaden their portfolio of
services for users and applications.

One of the enabling technologies of the CoT paradigm is
virtualization. It refers to the process of building a logical
abstraction of hardware and/or software features. Virtual-
ization is at the core of cloud computing. It allows hiding
from clients the variety of types of infrastructures, platforms
and data available at the back-end, promoting the decou-
pling between entities that produce and consume resources
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and facilitating application delivery. It has also been used
in other contexts, such as communication networks [2], and
more recently in sensors and sensor networks [3]. In wireless
sensor network systems, virtualization allows the creation of
virtual sensor nodes, which abstract physical sensor nodes
and are responsible for providing services to applications and
end-users. The mapping of physical sensors to their virtual
counterparts is done through a virtualization model. Several
virtualization models are described in the literature specifi-
cally designed for wireless sensors and sensor networks [4].
Such models are tailored for sensors with reduced process-
ing, memory and battery capacities, equipped with wireless
communication interfaces. Wireless sensors are examples of
devices that make up an IoT system.

Among the various types of sensors that compose the IoT
infrastructure, and therefore, the CoT, multimedia devices
have increasingly stood out. In a report produced by Cisco
[5], they estimate that by 2022 about 80% of the Internet
bandwidth will consist of multimedia streams. The relevance
of this type of device has given rise to the concept of Internet
of Media Things (IoMT)1 [6], or even Multimedia Internet

1IoMT is also called Internet of Multimedia Things
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of Things (M-IoT) [7]. In this work, we will adopt the term
IoMT also adopted in the ISO/IEC 23093-1:2020 standard.2

In the IoMT, sensors are cameras and microphones with
limited processing and storage capacity, which connect to
heterogeneous devices and diverse applications. Traditional
sensors, such as temperature, pressure, and light detection,
typically generate discrete data. On the other hand, multime-
dia sensors produce continuous, massive data streams with
nontrivial structure and temporal significance. Such features
make the processing of multimedia streams more complex
than traditional sensor data. Moreover, there is high hetero-
geneity in the communication protocols and data formats
utilized by multimedia devices, adding an extra level of com-
plexity in the acquisition, processing, and data consumption.

The particular features of multimedia streams in the con-
text of IoMT make the use of existing sensor virtualization
models unsuitable. Therefore, it is necessary to design virtu-
alizationmodels tailored formultimedia sensors. Considering
the high heterogeneity of multimedia devices and the specific
requirements of multimedia stream processing, the design
of models and mechanisms to abstract multimedia sensors
will enable the development of innovative services in several
relevant areas such as health, security [8], education and
entertainment.

In a typical CoT system, sensor-generated multimedia
streams are virtualized in the cloud and delivered on-demand
to applications. Such an approach implies that the massive
amount of generated data needs to be transferred from the
devices to the cloud, thus demanding a considerable amount
of bandwidth.Moreover, cloud computing incurs high latency
for data exchange between cloud servers and devices.
Therefore, the cloud-based IoT model cannot meet the strict
temporal requirements of multimedia applications. A promis-
ing strategy that has recently gained momentum to decrease
the latency for applications is to migrate (part of) processing
from the cloud to the network edge, placing it closer to the
sensing devices (data sources). Such strategy is exploited by
recent paradigms of edge [9] and fog computing [10].

In this work, we use the terms edge and fog interchange-
ably. We adopt the definition of Edge Computing (EC) pro-
vided by [11], which is a horizontal, system-level architecture
that distributes computing, storage, control and networking
functions closer to the users along a cloud-to-thing contin-
uum. The use of EC brings benefits as decreasing delay
and bandwidth consumption at the network core, better use
of available resources, and increasing data security and pri-
vacy. As multimedia applications benefit from running in
low-latency environments, designing an architecture for the
virtualization of multimedia sensors at the network edge is a
promising approach.

This work proposes a distributed environment for the
virtualization of multimedia sensors in edge computing envi-
ronments. The proposed approach encompasses a software
architecture, named V-PRISM, and its concrete distributed

2https://www.iso.org/news/ref2449.html

implementation, called ALFA. V-PRISM components are
responsible for processing multimedia streams produced by
physical multimedia devices. Stream processing is performed
by entities named Virtual Multimedia Sensors (VMS). The
architecture considers IoMT systems following a three-tier
approach encompassing the cloud, the edge, and the things
tiers. All components of the architecture are deployed in
the edge tier. Besides presenting the logic components of
V-PRISM and their operation, this paper also describes
its concrete implementation in a platform named ALFA.
We developed and validated V-PRISM logical components
and adopted several technologies for ALFA deployment.
Furthermore, we developed a set of virtual multimedia sen-
sors and virtual devices to evaluate our approach in real
scenarios.

This work is an extension of our initial proposal [12].
In this new version, V-PRISM has evolved to a fully dis-
tributed edge architecture with several new components like
VMS allocation, EnvironmentMonitoring and StreamSharer.
We also conduct new experiments showing that the pro-
posed approach can perform multimedia stream processing
for applications that require low-latency. Besides, to the best
of our knowledge, V-PRISM is the only sensor virtualiza-
tion architecture coined specifically to support multimedia
streams.

The remainder of this paper is organized as follows.
Section II provides a brief background on sensor virtualiza-
tion architectures and compares our proposal to related work.
We present our proposed distributed V-PRISM architecture
in Section III. In Section IV, we discuss the ALFA platform.
In Section V, we discuss virtual devices and virtual multime-
dia sensors available in our implementation. In Section VI,
we present an evaluation of our work consideringQoS aspects
of video processing in VMS deployed in the edge and cloud
nodes. Section VII brings main conclusions and future work.

II. RELATED WORK
A. INTERNET OF MEDIA THINGS (IoMT)
Cameras and microphones have become a significant source
of data in the IoT. The use of multimedia sensors in IoT
environments has given rise to a new subset of the IoT called
Internet of Media Things (IoMT). Beyond the traditional IoT
challenges, IoMT has specific issues that must be addressed
to enable its adoption on a large scale. Table 1 lists some
fundamental differences between IoT and IoMT [13].

TABLE 1. Comparison between IoT and IoMT [13].

In the IoMT scenario, data collected, processed, trans-
ported, and consumed are multimedia streams. Traditional
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sensors, as temperature and humidity sensors, produce dis-
crete data organized in simple data structures. In contrast,
multimedia sensors produce continuous data with a complex
data structure. Moreover, the bulky nature of multimedia
streams, in contrast to the IoT limited network bandwidth,
increases the challenges to satisfy application QoS (Qual-
ity of Service) requirements [7]. Therefore, new techniques,
standards, and frameworks must be developed to deal with
these new challenges.

The advance of IoMT brings new light to a dynamic sce-
nario where multimedia sensors are part of our daily life and
whose multimedia data can be used unpredictably by IoT
software developers. The deployment of multimedia sensors
is not an easy task. This difficulty has risen a new type of
service called multimedia sensing as a service (MSaaS) [14].
In this scenario, infrastructure providers offer MSaaS to
IoMT application, enabling a fast growth of this type of
applications. Because of that, the proposal of architectures
that virtualize multimedia devices is a promising trend.

The significant heterogeneity of devices and multimedia
vendors brings an extra effort to develop, deploy, and man-
age IoMT applications. On the other hand, the adoption of
an underlying architecture or framework may reduce that
effort significantly. Nowadays, IoT architectures are mainly
focused on discrete data sharing and processing.

B. SENSOR VIRTUALIZATION ARCHITECTURES
To select related work about Sensor Virtualization Archi-
tectures (SVA), we adopted the software architecture defi-
nition provided by [15], where an architecture consists of
(a) a partitioning strategy and (b) a coordination strategy.
The partitioning strategy leads to dividing the entire system
into discrete, non-overlapping parts or components. The coor-
dination strategy enables defining interfaces between those
parts. Extending the software architecture definition provided
by [15], we define an SVA as a set of software components
and patterns that enable the development and management of
virtual sensors (VS), that are the source of data to applica-
tions. In this section, we discuss some previously proposed
VSAs to manage virtual sensor environments. We did not
restrict our search for architectures that manage multimedia
virtual sensor because they are in a limited number.

There are some approaches to deal with VS. In [16],
the authors propose a scalable virtual sensor framework that
supports building a logical dataflow (LDF) by visualizing
physical sensors or custom virtual sensors. A web-based
virtual sensor editor was implemented using the framework
to simplify the creation and configuration of the LDF. Each
virtual sensor is composed of a set of linked mathematical
functions provided by the MathJS library.3 Each VS is a pro-
cess running inside a cluster server. There is only one cluster,
and it is elastic to adapt to the unexpected change in terms of
the number of concurrent users. This adaptation is done by
adding or removing a node to/from the cluster. The authors

3https://mathjs.org/

do not discuss the strategy adopted for VS allocation. Besides
that, as the VS is composed only of purely predefined math-
ematical functions, the capability of providing new VS types
is limited to scalar data.

In [17], the authors propose FITOR, an orchestration
system for IoT applications in the fog environment. This
approach provides an optimized fog service provisioning
strategy for minimizing the provisioning cost of IoT appli-
cations and meeting their computational and latency require-
ments. The architectural model assumes that the edge nodes
must be a Docker host machine, and each running container
must have a set of services to collect data from the container.
The strategy adopted to collect statistical data was not opti-
mized, increasing the resources used in an already limited
resource environment. In addition, the approach was not
specifically tailored to deal with multimedia edge node envi-
ronments. Besides that, they did not specify which resource
allocation method was used.

A new sensor cloud architecture for IoT based on fog
computing was proposed in [18]. The architecture prepro-
cesses raw sensor data on fog nodes and provides tempo-
rary storage of the results. It controls and manages diverse
types of sensors in IoT devices through the virtualization
of physical sensors providing dynamic, on-demand, elastic,
and standardized Sensing-as-a-Service to the users. However,
the proposed architecture does not allow the inclusion of
multimedia sensors or VS remote management.

Two similar approaches were proposed in [19] and [20].
Both studies propose a web-based authoring tool for creating
virtual sensors. In these tools, a VS is created by aggregating
the data provided by physical sensors, and, the data-flow is
chained to generate VS for complex event detection. VS types
are defined using JSON and Javascript. When the execution
of a VS starts, the VS type definitions (JSON and Javascript
files) are loaded from a database. After that, the loaded script
is evaluated by a Javascript Engine. The Javascript Engine
runs in the server where the architecture is executed. It implies
that there is only one node for running VSs. Besides that,
the architecture defines that the devices must generate scalar
data.

Another relevant work was discussed in [21]. The authors
proposed a framework to virtualize multiple types of sen-
sors. In addition, they developed a communication protocol
called OMCP (OSIRIS Module Communication Protocol),
which allows external applications to manage virtual sensors.
It is important to highlight that, as far as we are concerned,
that study was the only framework that formally discussed
and implemented such a type of interaction. Unfortunately,
the authors did not discuss aspects of virtual sensor deploy-
ment, an essential issue for sensor virtualization.

Besides academic work, many industry initiatives use the
virtual sensor approach to deal with IoT devices. In [22],
the authors compare the Amazon AWSGreengrass and Azure
IoT Edge. Both are commercial platforms that can be used
to virtualize sensors. The platforms enable the manipulation
of scalar data and some types of multimedia streams like
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audio and static images. Both platforms distribute virtual
sensors in the edge and the cloud. The authors concludes that
Greengrass andAzure Edge performances are similar inmany
test cases, but they found that Azure Edge exhibits higher
end-to-end latency due to the batch-based processing adopted
in the multimedia scenario. That higher latency scenario rep-
resents a problem for latency-sensitive applications. Besides
that, those platforms have only commercial licenses, and they
are proprietary software.

Another organization that is heavily working on the
standardization of edge computing architectures is the
European Telecommunications Standards Institute (ETSI).
ETSI defines standards to deal with telecommunications,
broadcasting and other electronic communication networks
and services. In [23], they provided a framework and a
reference architecture for Multi-access Edge Computing
(MEC). The document describes a MEC system that enables
MEC applications to run efficiently and seamlessly in a
multi-access network. This is a general guide to develop
architectures to a more specific domain. Our architecture
follows some of the standards described in [23]. In particular,
the idea of an orchestrator, as we can see in Fig. 1, that
shows a complete view about physical devices and software
components of the environment and defines in which edge
node the application must be started or when the application
must to be relocated.

FIGURE 1. MEC System reference architecture [23].

A relevant feature depicted in Fig. 1 is that the infrastruc-
ture can handle manyMECHosts (edge nodes) and, each host
can execute different MEC application (virtual multimedia
sensors). In this way, different application providers could
deliver their applications to be executed inside the MEC
infrastructure. Some factors that enable this level of interop-
erability are the application virtualization and the existence
of a Service Registry component.

A comparison among VSAs is depicted in Table 2. The
last row of the table represents the features of our distributed
V-PRISM proposal. Each column of the table means:

• NodeManagement: We analyze if the SVA allows node
management. A node is a computational device where
one or more VSs will be executed.

TABLE 2. Comparison between sensor virtualization architectures.

• VS Type Setup: We analyze if the SVA is capable of
defining which kind of VS type can be executed in
each node of the infrastructure (either edge or cloud),
meaning that a single node can run different VS types.

• API for VS Management: We analyze if the SVA
allows the use of mechanisms that enable remote
applications to manage VSs via an API (Application
Programming Interface).

• Resource Allocation: We analyze if the SVA provides
mechanisms for dynamic resource allocation.

• Management Interface: We analyze if the SVA has any
interface (graphical or via command line) for managing
its components.

• Lightweight Virtualization: We analyze if the SVA
uses a light virtualization method for virtualizing its
components.

• Component Deployment: We analyze where a VS is
deployed. The deployment can be done in the cloud
(C) or in the edge (E).

• SVA implementation: We analyze if a public imple-
mentation is provided.

• Multimedia Stream: We analyze if the SVA supports
multimedia streams.

In contrast with most of the other architectures, our
proposal, V-PRISM, provides multiple improvements, which
are: i) lightweight virtualization approach, allowing the exe-
cution of multiple virtual multimedia sensors in multiple
heterogeneous edge nodes; ii) external applications can man-
age VMSs through an API; iii) the VMS allocation can be
automated by multiple resource allocation algorithms, and
these algorithms are selected by the IoMT infrastructure
owner; iv) we provide a web interface to manage V-PRISM
components; v) programmers can develop and deploy new
VS types following the guidelines provided by our architec-
ture; vi) all the features proposed are implemented and avail-
able under the MIT License at our GitHub4; vii) to the best

4 https://github.com/midiacom/alfa
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of our knowledge, V-PRISM is the only sensor virtualization
architecture that supports multimedia streams.

III. DISTRIBUTED V-PRISM ARCHITECTURE
In this section we present the distributed V-PRISM archi-
tecture as an extension of our initial work [12]. Our current
proposal supports virtualization andmanagement of VMSs in
distributed edge nodes.

A. THREE-TIER ARCHITECTURE FOR IoMT
For the design of V-PRISM, we consider that IoMT systems
follow a three-tier architecture encompassing: i) the cloud, ii)
the edge, and iii) the things tiers, as proposed in [24]. Fig. 2
shows an overview depicting how each entity considered in
our proposal is deployed in each tier. The main goals and
composition of each tier are:

FIGURE 2. V-PRISM three-tier architecture overview.

The Cloud tier is the top level of the architecture. The
elements that integrate this tier are machines hosted in big
data centers, with powerful CPU, memory, storage, and net-
work capabilities. Usually, IoMT applications are hosted in
this tier. The cloud can provide almost unlimited resources
for applications, but the processing nodes in this tier are far
from IoMT devices. This distance implies an increase of the
communication latency.

The Edge tier is the intermediate layer between the things
and the cloud. The elements that make up this tier are
resource-constrained machines hosted in small data centers,
or single-board computers like Raspberry deployed directly
inside the monitored environment. The resources at the edge
are limited, in contrast to the cloud, although they are closer
to the physical devices. Thus this tier can provide services
with lower latency in comparison to the cloud.

The Things tier is where multimedia devices are hosted.
Media things are typically heterogeneous and produce a mas-
sive amount of data. They usually have limited resources

available to process and store the generated data. The goal
of this tier is to produce data streams. Moreover, devices in
this tier may contain, in addition to sensors, some process-
ing capacity, although limited. Therefore, simple processing
tasks can be performed in this tier.

V-PRISM architecture encompasses the following types
of elements: Virtual Multimedia Sensors (VMS), Virtual
Devices (VD), and V-PRISMManager components. All these
elements are deployed in edge nodes, as presented in Fig. 2.
A VD receives/collects multimedia streams from a physi-
cal device. One or more VMSs can request the multimedia
stream from the VD to perform some operation over the data.
Finally, the VMS output will be sent to other VMSs or IoMT
applications. We consider IoMT applications as any type of
external V-PRISM entity that consumes the output of a VMS.
Typically IoMT applications are hosted in the cloud, but they
can also be hosted in the edge and the things tiers. V-PRISM
can handle all these deployment configurations for IoMT
applications (at the cloud, edge or things tiers).

The three-tier architecture is an approach designed to
explore the integration of the things, the edge and the cloud
tiers. In V-PRISM,we adopt this strategy once each tier has its
own responsibilities. In the next section, we detail the VMS
Categories proposed in this work.

B. VMS CATEGORIES
To facilitate understanding and organizing the different types
of VMS, we propose a categorization according to the multi-
media stream abstraction provided by the VMS type. Besides
helping to organize the various possible types of VMS that
can be built on V-PRISM, these categories also potentially
serve for the following two purposes:

• The proposed categories group the VMS by the provided
functionalities (from the simplest to the most complex
ones), so they also help to guide the amount of resources
that will be needed to instantiate each type. More com-
plex nodes will require more infrastructure resources for
their deployment and execution. Therefore, a minimum
amount of resources required for each VMS category
can be stipulated and a resource allocation algorithm can
use this information for its decision making. Only edge
nodes able to provide the minimum resources of a given
category would be candidates for the implementation of
nodes of the respective type;

• Provide templates for each VMS type, which facilitates
developers work.

To the best of our knowledge, no previous work proposed
a categorization tailored for VMS. In order to produce a
comprehensive organization, we studied the already proposed
categorizations for virtual sensors presented in [21], [25], and
[16]. Fig. 3 depicts the proposed hierarchical categorization.

The categorization presented in Fig. 3 was inspired on
the information classification proposed in [26]. The author
coined three concepts to define information abstraction
levels. The first one is that information is a thing
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(information-as-thing) when the information is only data.
The second one is knowledge (Information-as-knowledge)
when an entity makes some reasoning over the information,
and the third one is process (Information-as-process) when
the information consumed by some entity promotes some
change in the entity that receives the information. Therefore,
inspired by this work, our proposed organization is also com-
posed of three main categories defined as follows. VMS as
a Thing, when the VMS only forwards the data collected
by the device. VMS as a Process, when the VMS, besides
forwarding the data, adds new features to the virtual device.
VMS as a Service, when the VMS provides a high-level
abstraction feature over the multimedia stream.

We also propose the following subcategories: Replica-
tor, Improver, Converter, Selector, Aggregator, Detector, and
Transformer. It is important to note that this is not exhaustive
subcategorization. With the advancements in IoT environ-
ments, new devices can enable innovative VMS types, forcing
the creation of new categories to cover them.

FIGURE 3. VMS hierarchical categorization.

As depicted in Fig. 3, the computational complexity and
resource consumption tend to growwhen the abstraction level
of the VMS category rises. On the other hand, the level of
multimedia stream processing reduces as the category level
decreases. It indicates that VMSs defined in different cate-
gories have different requirements. Thus this hierarchical cat-
egorization can be used as a parameter to resource allocation
algorithms once a VMS cannot run inside every edge node
available.

1) SUBCATEGORIZATION DESCRIPTION
An Improver VMS can provide to IoMT applications fea-
tures that do not exist in the physical multimedia device.
A frequent situation in IoT environments is devices deployed
without proper firmware updates, which allows security
threats. It happens because, typically, an IoMT system can
run for years, and during this time, vendors can stop mak-
ing improvements in the device’s firmware. In these situa-
tions, an Improver VMS can be used to increase the life-
time for legacy multimedia devices already deployed in the
environment.

AConverterVMS can be usedwhen themultimedia stream
produced by the device needs to be changed to meet the IoMT
application requirements. For example, if an old microphone
can only produce a WAV stream, but the IoMT application
requires an OGG audio stream.

The Selector VMS category is composed by VMS types
that receive multiple multimedia streams as input and then
choose only one stream as output. All the multimedia input
streams must be of the same type. The multimedia stream
is not modified, only forwarded to the IoMT application.
Each Selector VMS has at least one selection function. The
selection function can use a simple QoS device stream analyt-
ics or a complex multimedia pattern recognition. For pattern
recognition, the VMS can implement artificial intelligent
algorithms as proposed in [27].

An AggregatorVMS receives multiple multimedia streams
and sends a single combination of them to the IoMT appli-
cation. There are two classes of Aggregator VMS. The first
one will aggregate multimedia streams of the same type (for
example, two or more video streams), and the second one will
aggregate multimedia streams of different types (for example,
audio streams and video streams).

The Detector VMS category encompasses VMSs that per-
form event detection in a multimedia stream. Artificial intel-
ligence techniques can be used in these VMS [27]. It is
essential to mention that the VMS runs in an edge node,
usually with low capabilities. Thus, the algorithm selected
to execute the detection needs to be compatible with the
resources available in the edge node. It is possible to develop
aDetectorVMS to perform complex event detection. In [28],
the authors presented a complex real-time event detection
framework for resource-limited multimedia sensor networks.
The same type of strategy can be applied to a VMS running
in an edge node.

A TransformerVMS changes the nature of the stream. It is
used when the multimedia stream needs to be transformed
into another data type. An example of transformation is when
video streams must be converted into a file or an audio stream
must be converted into text. A car license plate detection
VMS is an example of a Transformer and also a Detector.
This subcategorization is a partial list, and it can be

extended as new VMS types are developed. In the following
sections, we present the V-PRISM logic components. The
components and interactions between them will be described
in detail.

C. V-PRISM COMPONENTS
In recent years, there has been a lot of effort to specify a
general-purpose architecture to run and manage applications
in the edge [8], [29], [30]. Our architecture follows the meta
specifications presented by ETSI [23]. As it is a general spec-
ification, it leaves domain detail definitions to more specific
architectures.

V-PRISM logic components are depicted in Fig. 4. They
are responsible for processing multimedia streams produced
by multimedia devices and consumed by IoMT applications.
IoMT applications are typically deployed in the cloud, and
physical multimedia devices are typically placed in the things
tier. Stream processing is performed by the set of virtual mul-
timedia sensors (VMS) provided and hosted by V-PRISM.
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FIGURE 4. V-PRISM distributed architecture.

All V-PRISM components can be deployed in multiple edge
nodes in a distributed fashion.

1) VIRTUAL MULTIMEDIA SENSOR
AVirtual Multimedia Sensor (VMS) is the architectural com-
ponent responsible for providing multimedia stream process-
ing. Therefore, a VMS component performs some process in
a multimedia stream produced by physical devices (media
things). Examples of processing are converting video for-
mats, extracting multimedia features, aggregating new char-
acteristics to already existing multimedia streams, etc. For
each specific type ofmultimedia stream processing, there will
be one VMS type.

The data processed by a VMS can be used by two types of
entities. The first one is the IoMT application that requested
the corresponding stream. The second one is another VMS.
Therefore, VMSs can be chained, where the output of a given
VMS is used as input for the next VMS. Chaining VMSs
allows reusing the output of a stream processing while cre-
ating complex processing flows to accommodate application
requirements.

Each VMS has one or more input ports, connected to a
virtual device (VD) or to another VMS, and one output port.
It can be noticed in Fig. 4 that the connection between a

VMS and an application is unidirectional. This fact implies
that the application does not have a direct communication
channel with the VMS. If the application needs to send a
control message to a VMS, this must be done using the VMS
Registry component.

AVMS is defined as a tupleVMS = {P, I , S,D,T , SH ,E}
where P = {par1, . . . , parn} is a set of configuration parame-
ters par = {name : value} that defines how that specificVMS
will process the multimedia stream, such as saturation level,
noise level, video quality, etc.; I = {en1, . . . , enn} is a set
composed of VD or VMS entity providers of input streams.
S is the software that performs the corresponding multimedia
stream processing, i.e., this value can be the container ID if
the software is running inside a Docker environment, the PID
if its running on LXC (Linux Containers), or any other type
of software identification; D is an (IP,PORT ) tuple that
defines the first address used to send the output result (it can
identify an IoMT application or another VMS); T refers to the
VMS type, each implementation of V-PRISM can choose the
best approach to identify the type, it can be the type name,
a pointer reference, or an ID; SH is a boolean value that
defines if the processed output stream can be shared with
other VMSs or IoMT applications; E is an optional parameter
that defines in some cases in which edge node the VMS must
be executed.
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2) VIRTUAL DEVICE
AVirtual Device (VD) is the architectural component respon-
sible for forwarding a multimedia stream produced by a
multimedia device to a given VMS. Each VD is connected to
one physical device. Each VD is programmed to connect to a
specific device type (e.g. USB camera) and to send a specific
type of multimedia stream, e.g. H.264 video stream. This
approach makes the architecture flexible for incorporating
different VD types. The VD output type cannot be changed
in execution time. The VD is data stream agnostic since it
has no knowledge of the content being carried. This feature
decreases the complexity of creating new VD types.

The association between the physical device and a
VD must be defined using V-PRISM stream descriptors
during the setup process and cannot be changed after the
VD starts running. The VD type must be compatible with the
type of data stream and the communication protocol available
at the physical device. A VD operates as a driver, interpreting
specific data formats and protocols. In contrast, it is possible
to have many associations between a VD and VMSs. VD and
VMS have a weak association since it can be established and
changed during execution time.

A VD is defined as a tuple VD = {P,C, S,T ,E}, where
P = {par1, . . . , parn} is a set of parameters par = {name :
value} that identifies the device, such as a path for the device,
the device IP address, etc.; C = {cnf1, . . . , cnfn} is a set of
the device configurations cnf = {name : value}, each device
has different configurations, for example, video resolution
or audio quality; S is the software that performs multimedia
stream collecting and forwarding, i.e., this value can be the
container ID if the software is running inside a Docker envi-
ronment, the PID if its running on LXC, or any other type
of software identification. T is the VD data type, it defines
the type of the VD output, which can be audio or video; E is
an optional parameter that defines in which edge node the
VD must be started. The edge node can be identified in many
ways depending on the implementation infrastructure. For
example, in a Docker environment, it can be the (IP,PORT )
where the Docker API is listening.

3) V-PRISM MANAGER COMPONENTS
TheVMSRegistry component is used tomanage and provide
a descriptor list about the availability of VMS types in each
edge node. The IoMT application will query this list before
making the VMS creation requests. The descriptor list can
be fully retrieved or queried by specific parameters such
as location, VMS categories, and VMS types. For example,
an IoMT application can request a list of all VMSs that
perform voice recognition in a specific location.

The VMS Request Manager (VRM) component is
responsible for receiving requests made by the IoMT appli-
cation to create or destroy a VMS. It is through the
VRM that external demands created by IoMT applications
reach other V-PRISM components. This component uses
a message-driven communication. Such approach allows

heterogeneous systems to communicate in a loosely coupled
way, and it fits the dynamic nature of IoT and CoT systems.
The communication protocol used between these entities is
not in the scope of this work.

Maestro is the first component executed after a VMS
creation request is admitted by VRM. It is a V-PRISM core
component and has two main functions. The first one is
to manage the VMS life cycle and the second one is to
orchestrate the VMS stream pipeline. Maestro works together
with other components to provide these functions. In the
VMS life cycle management, Maestro uses the Edge Node
Manager component to send commands to create, destroy,
or move a VMS from one edge node to another. Maestro
consumes functions provided by the Resource Allocation
Manager component to determine in which edge node a VMS
will be created.

The Resource Allocation Manager (RAM) is the com-
ponent that defines in which edge node the requested VMS
must be instantiated. Different types of resource allocation
algorithms can be implemented in this component. Some
algorithms proposed in other studies [30]–[33] could be used
as well.

Each VMS and VD can be developed using the technol-
ogy that better fits its requirements, for example, a VMS
that detects movement can be developed in Python using
OpenCV. In contrast, a VD that collects data from a micro-
phone can be developed using C language. This means that,
for V-PRISM, the VMS is agnostic about the technology
adopted in the component development. To overcome the
heterogeneity of hardware, software and network communi-
cation standards, each VMS and VDwill run inside its private
virtual environment based on light virtualization. The Virtu-
alization Engine component uses the low-level API provided
by the virtualization platform to virtualize the components of
V-PRISM. Another responsibility taken by the virtualization
engine component is the communicationmechanism between
components. It must abstract the heterogeneity of the network
environment. In this manner, virtual entities can focus only on
their main tasks.

The Edge Node Manager (ENM) is the component
responsible for managing all edge nodes that run V-PRISM
components. In the MEC Architecture [23], ENM has the
same functionalities described in theMECPlatformManager.
ENM is responsible for the following functions: receiv-
ing virtualized resource fault reports; measuring the perfor-
mance of the virtualization infrastructure; providing elements
for managing V-PRISM core components, and preparing
the virtualization infrastructure to run VMS and VD
images.

The Environment Monitor component gathers data
(CPU, memory used, battery level) from the edge nodes. The
Virtual NodeMonitor collects statistics data from the virtual
entities (VMS and VD). The freshness of the data depends
on the capabilities of the devices in the edge environment.
Typically these data are not collected in real-time because the
resource allocation algorithm is time-constrained.
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The VMS Manager component is responsible for provid-
ing interfaces to manage VMSs. Moreover, it keeps track of
VMS types available in each edge node. Each edge node has
the capabilities to run a subset of all VMS types available.
A VMS type is implemented by a software that performs
some processing over a multimedia stream.

The VD Manager (VDM) component is responsible for
providing interfaces to create, destroy, and manage virtual
devices. Each VD stores physical sensor metadata, like the
format of the generated stream, the physical location of the
sensor, its data-sampling rate, etc. The attributes stored about
each sensor can be distinct and depend on the physical nature
of the multimedia sensor.

The Stream Sharer (SS) component provides a function
that enables the VMS to send a multimedia stream to more
than one destination. By default, the VMS has many input
ports but only one output port. This component allows the
VMS to focus solely on the main task that is multimedia
processing and not in the process of sharing the result stream.

D. V-PRISM OPERATION
1) V-PRISM DEPLOYMENT
V-PRISM is composed of many distinct components. The
components can be deployed in different edge nodes. Every
edge node that compounds V-PRISM must have at least the
Virtualization Engine component, and one or more VMS
types or VD types.

Before entering the V-PRISM environment, an edge node
must be registered in the Edge Node Manager component.
The edge node must also have a unique identifier (ID) that
will be used to address the control messages sent to it. Typ-
ically the virtual engine adopted in the development already
provides some ID. In Docker, for example, the ID is com-
posed by a string with 26 characters.

An edge node can host virtual entities like VMSs and VDs.
The virtual entity software must be deployed and available at
the edge node. Real-time software deployment can increase
virtual entity startup time.

Network communication between all edge nodes that com-
pound V-PRISM environment is mandatory. For improving
V-PRISM security, we advocate that all edge nodes must
be part of the same private network, which can be either
a physical or a virtual network. The only components that
must have a direct connection to the Internet are the VMS
Registry and VMSs that send data to an IoMT application
hosted outside the private network.

Each physical device that produces a multimedia stream is
attached to only one virtual device (VD). Before a VMS uses
the multimedia stream provided by a VD, the parameters for
VD configurations must be informed, and the virtual device
must be started.

2) INITIALIZATION OF A VMS
The initialization of a VMS has two phases. The first is the
admission phase, where the VMS Request Manager (VRM)

FIGURE 5. VMS creation sequence diagram.

component defines if the IoMT application request is valid or
not. After that, the second phase is started and it consists of
a call to Maestro to start the VMS creation. Fig. 5 shows the
sequence diagram of the second phase.

First, the VMS Registry component sends to Maestro the
request to create a new VMS. Maestro requests the Edge
NodeManager component to retrieve the list of all edge nodes
that are running and have already deployed the corresponding
VMS type. Finally, the list of candidate edge nodes and the
information provided by the IoMT application are sent to
the Resource Allocation Manager. It will choose, based on a
resource allocation algorithm, one edge node to run the VMS,
and that information will be sent to VMS Manager that will
call the Virtualization Engine to create the VMS.

IV. ALFA DISTRIBUTED PLATFORM
In this section, we present ALFA, a distributed platform
based on V-PRISM. ALFA provides essential features to
enable IoMT to use edge computing to perform multimedia
processing. Fig. 6 depicts ALFA deployment diagram. For
better comprehension, we also provide a video demonstra-
tion that can be seen at https://www.youtube.com/watch?v=-
kC9T2KIp94.

FIGURE 6. ALFA deployment diagram.
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As mentioned, the edge tier comprises heterogeneous
nodes with limited computational resources (compared to the
cloud tier). Edge nodes can range from single-board com-
puters [34], to IoT gateways or even micro datacenters [35].
ALFA components shown in Fig. 6 can be distributed among
different edge nodes, provided that it has the minimum
required capabilities.

ALFAwas built usingDocker. Docker enables the adoption
of containers. A container is a standard unit of software that
contains the code and all dependencies to execute the system.
Thus the application runs quickly and reliably when moved
from one computing environment to another. The adop-
tion of containers in a heterogeneous environment, like the
edge, can improve network efficiency, computation, and data
storage [36].

Another useful technology that Docker offers is the net-
work overlay driver. Since each VMS or VD can be deployed
in a different edge node attached to a different network and
geographically distributed, we need to implement a way to
enable container-to-container communication. If the edge
nodes are attached to different IP subnetworks, the Docker
overlay network enables direct communication between the
containers as if they were in the same network.

To implement ALFA components, an edge node should be
a device endowedwith storage, memory, and CPU, capable of
running Docker version 19.0 or higher. On the other hand, not
every VMS or VD needs to have Internet access. Only VMSs
that send data to IoMT applications running in the cloud must
have Internet connectivity.

FIGURE 7. Web interface for listing VMS instantiated.

To facilitate managing ALFA infrastructure, we developed
a web application, depicted in Fig. 7 and 8. The IoMT infras-
tructure owner uses the interface depicted in Fig. 7 to manage
the running VMS instances. In Fig. 6, the HTTP Server inside
V-PRISM Manager is running the web application service.
It is important to note that this service can be deployed in
any of the edge nodes of the environment. The main modules
of the web application are VMS: it lists all created VMSs
inside any edge node and allows VMS management; Virtual
Devices: it lists all the virtual devices created that can be
used as a source of multimedia data; Edge Nodes: it manages
all edge nodes that will be used to run a VMS or a VD;
Locations: it manages all the places where a physical device
can be deployed. A location can be ameeting room, a hall, etc.

FIGURE 8. Web interface for bind VMS and VD.

Many Virtual Devices can be placed in the same location.
VMS types: it manages all the possible VMS types that can
be initiated in ALFA deployment; Device Types: it manages
all the possible VD types that can be initiated in ALFA
deployment.

As mentioned previously, a VD can be a source of a
multimedia stream to many VMSs. When we associate a
VMS with a VD, we bind them. In Fig. 8, we show the web
application interface used to bind a VMS to a VD. The bind
will be between a Video Merge and some VD. The Video
Merge VMS has two input ports, we can see that the port
15000 is already attached with the VD USB Webcam, and
the port 15001 can be attached with another VD. Each VMS
developer will define each port the VMS will listen to.

V. ALFA VMS, VD AND USE CASE SCENARIO
V-PRISM architecture was developed to be extended by
the creation of new VMS and VD types. In this section,
we present a set of VDs and VMSs currently available
in ALFA platform. By presenting those VDs and VMSs,
we explore some possibilities that V-PRISM brings to IoMT
and edge in the use case section.

A. AVAILABLE VIRTUAL DEVICES
In this section, many VD types developed in ALFA are
presented. Each VD is encapsulated in a Docker image that
contains the source code of software that collects or receives
data from an IoMT device. New VD types can be developed
and installed as needed.

The RTSP to UDP Video is a VD created to establish a con-
nection with devices that use Real-Time Streaming Protocol
(RTSP). RTSP [37] is an application-level protocol used over
audio and video streams to provide controlled, on-demand
delivery of real-time data. As a widely adopted protocol,
data from many IoMT devices can be accessed over RTSP.
Because of that, we developed a VD capable of connecting
to devices that use this protocol. This VD type collects data
from a device that is not physically attached to the edge node
where the VD is running. The physical device uses WiFi or
another wireless infrastructure to transfer the data to the edge
node.
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The USB Camera and Mic are VDs that collect data from
devices attached to the edge node where the VD container is
running. These VD are typically used when the edge node
is a single board-computer like Raspberry Pi. By default,
a Docker container is not allowed to access data and the
attached devices at the host machine. To allow it and bind
a host device (camera, microphone) to a container, when the
container is started, it is necessary to explicitly give access
and map the external device to an inside path at the Docker
container.

For example, in Fig. 6, the Smartphone RTSP Server and
USB Camera devices are multimedia devices whose streams
are sent via UDP to a VD. The first one uses a wireless
connection, and the second one is attached to the edge node.
Therefore, ALFA can handle different types of devices.

B. AVAILABLE VIRTUAL MULTIMEDIA SENSORS
In this section, some of the VMSs developed in ALFAwill be
presented. Each VMS, as we mentioned previously, is encap-
sulated in a Docker image that contains the source code to
process a multimedia stream and deliver the result to an IoMT
application or another VMS. As ALFA is flexible, new VMS
types can be developed and installed as needed.

The Video GrayscaleVMS converts a colored video stream
into grayscale. This VMS is useful in situations where the
IoMT application runs some transform algorithms, like the
HoughCircle present in OpenCV. The first step of a Hough
transform is to convert the video stream to grayscale, because
of that, transferring the colored videowill be a resourcewaste.
In our proposed categorization, presented in Section III-B,
this VMS is a Transformer.
The Video Crop VMS cuts part of a video stream. This

VMS is useful in situations where the application will need
only a fraction of the complete video. For example, a surveil-
lance application can be interested only in the video of the
door instead of the video of all the environment. In our
categorization, this VMS is a Transformer.
The Video QR Code Detection VMS can be used to detect

and extract data from a QR Code inside a video stream. This
VMS is useful when a QR Code is used to interact with a
remote application using QR Code and camera to execute
some task. The QR Code data extracted can be used by the
application as a signal to start the execution of another task.
In our categorization, this VMS is a Detector.
The Noise Detector VMS can post in an MQTT topic

if the sound volume of the environment was higher than a
configured threshold. This VMS is useful in the Industrial
Internet of Thing (IIoT) to monitor facilities and machines
where the noise level can be used to predict a dangerous
incident. In our categorization, this VMS is a Detector.
The Face Counter VMS can post in an MQTT topic the

number of faces identified in a video stream. This VMS
can be combined with another VMS to count the number of
people in an ambient. This VMS was created to exemplify
the adoption of deep learning for multimedia processing.

We used library Face Recognition available at GitHub.5 In
our categorization, this VMS is a Detector.

One of the premises of V-PRISM is the flexibility to incor-
porate new VD types. it allows that VMSs and VDs can
be built using different techniques. In ALFA, we test these
two features, by developing multiple VMSs and VDs for
different goals and using different techniques, to validate the
approaches proposed in V-PRISM.

C. USE CASE SCENARIO
Here we describe the adoption of V-PRISM, IoMT, VMSs,
edge, and cloud computing providing complex service for
users. The use case is deployed in a car parking and works
as a surveillance system. Fig. 9 depicts a car being stolen (1)
and, when the car’s alarm starts to make noise, the sound is
captured by the smart polemicrophone (3) and, processed by
a VMS Alarm Detection hosted in the edge node (5).

FIGURE 9. Surveillance system in a car parking.

The event detected by VMS Alarm Detection dispatches a
signal to turn on the smart pole light (2). The video stream
provided by smart pole camera (4) is delivered to a VMS
Video Record that stores the video in the edge node (5). The
same video stream is processed by a VMS Person Detection
and, if a person is detected in the video stream, the image
frame is stored in a security system hosted in the cloud
(6). As presented, V-PRISM can be used to deploy services
composed of multiple independent VMS types.

VI. EVALUATION
As reported in our initial work [12], we analyzed that the
adoption of V-PRISM and virtual multimedia sensors in
IoMT environments improves the resource consumption in
the IoMT device and in the IoMT network. In the current
work, we present novel experiments to identify if the place-
ment of V-PRISM components affects the QoS aspects of
IoMT applications.

The latency and total time of video stream processing
are critical QoS parameters [7], [38] [39]. The experiments
described in this section assesses QoS aspects of video pro-
cessing in VMS deployed in the edge and cloud nodes.

5https://github.com/ageitgey/face_recognition
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In order to plan the experiments, we adopted the Goal
Question Metric (GQM) [40] approach. GQM model is a
hierarchical (three levels) structure that, in each level, refines
the granularity of what is relevant in order to provide reli-
able insights on a phenomenon. A goal represents which
phenomenon should be analyzed, where each goal can be
represented as one or more questions, and for each question,
a set of metrics will be used to answer it. The goal of this
evaluation is G1: Analyze if the adoption of V-PRISM to
process multimedia streams in the edge improves QoS aspects
of IoMT application in comparison with the cloud approach.
Table 3 describes questions Q1 and Q2 that the experiments
aim at answering. Table 4 depicts the metrics collected in the
experiments to answer these questions.

TABLE 3. Questions for G1-VMS placement experiment.

TABLE 4. Summary of the metrics used to answer the questions of
G1 goal.

For the deployment of the experiments, we used the fol-
lowing environment configurations. The edge node was emu-
lated using a virtual machine with 1 GB RAM and 1 vCPU,
1.8 GHz, Intel i7 8565U. The edge node is running inside a
local WiFi network at Niterói, Brazil, and from now on this
node will be only called edge node. The cloud node was a
virtual machine with 1 vCPUs, 2.5 GHz, Intel Xeon Family,
and 1 GB of RAM. It is located physically at the United States
at North of Virginia in Amazon Cloud, and from now on this
node will be only called cloud node. The one-way-delay was
calculated using the ping command round-trip-time (RTT).
The following subsections detail our experiments and discus-
sion of the obtained results.

A. QR CODE DETECTION PROCESSING
For this experiment we use the Video QR Code Detection
VMS, described in Section V-B. It was used as an event detec-
tion over a video stream. This VMS detects and extracts infor-
mation of a QR Code inside a video frame. The video used
as data source for this experiment has 70 seconds and was
encoded in H.264 with 25 frames per second (1750 frames in
total), and with 200 × 200 spatial resolution. We inserted a
QR Code image in 450 of these frames.

We run the experiment for the edge and cloud nodes ten
times. Table 5 shows the mean values of the data collected.
The column namedQR Code Detected represents the number
of video frames with a QR Code that were detected. TheData
Extracted column represents the number of video frames with
a QR Code detected whose stored data could be retrieved.
The FRL (Frame Loss) column represents the percentage of
frames with QR Code not detected by the VMS. The column
named QFD (Quantity of Frames Detected) represents the
percentage of frameswith QRCode detected in the VMS. The
column named QDE (Quantity of Data Extracted) represents
the percentage of frames with QR Code whose data were
extracted by the VMS.

TABLE 5. Mean FRL, QFD and QDE metrics over 450 QR Code frames (ms).

Extracting features from a video stream, like QR Code
detection, is an intensive CPU and memory task. Table 5
shows that the cloud’s computational power was decisive to
obtain better processing results in contrast with the edge.
Some QRCodes were detected, but the data was not extracted
due to network packet loss or even CPU shortage.

To obtain metrics First Frame Detection (FFD) and Frame
Detection Difference (FDD), we run another experiment
depicted in Fig. 10. To execute the components of this
experiment, we used the Containernet [41] network emulator.
Containernet is a Mininet extension [42], and it allows the
execution of Docker container as host machines inside the
emulated network. As each VMS is running inside Docker
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FIGURE 10. Experiment design to obtain metrics for total latency.

containers, we can connect V-PRISM components to Con-
tainernet network to run the experiment. The script that
defines the topology was developed in Python. The network
links between the elements have parameters that can be con-
figured depending on the experiment goals.We used the delay
parameter to differentiate the traffic for cloud and edge node
artificially. In this emulation, we defined the same limits
of CPU and memory for the edge and cloud nodes, since
we are interested in the delay metric only. We also ran this
experiment ten times for the edge and for the cloud nodes.

In Fig. 11, each bar represents a node where the VMS
Video QR Code Detection is running. The nodes with latency
between 10ms and 50ms represent the edge nodes. The nodes
with a latency greater than 50ms represent the cloud nodes.
This figure shows the average FFD metric with 95% confi-
dence interval. We can observe that the time for the detection
of the first QR Code (y-axis of the graph) grows as the
latency grows. It means that even in a situation where there is
sufficient bandwidth between the IoMT device and the node,
the latency affects the total time detection significantly.

FIGURE 11. First Frame Detection (FFD).

FIGURE 12. Frame Detection Difference (FDD).

In Fig. 12, each bar represents a nodewhere theVMSVideo
QR Code Detection is running. As before, the nodes with

latency between 10ms and 50ms represent the edge nodes,
and the nodes with a latency greater than 50ms represent
the cloud nodes. This figure shows the average FDD metric
with 95% confidence interval. The interval between each
successive QR Code frame in the original video is 1 second.
We can observe that the average FDDmetric is approximately
1.1 seconds independently of the latency. It means that the
latency does not affect the time between successive event
detection in the same video stream.

B. NOISE DETECTION
For this experiment, we deployed two Noise Detector VMS,
one in the edge node and another in the cloud node. The
microphone was placed at the same room of the edge node
where the virtual device (VD) was deployed. A noise source
was configured to make a beep sound, and it was played
80 times with 5s interval between each beep.

The delay between the VD and the cloud was 67.5ms,
whereas the delay between the VD and the edge node
where the VMS was deployed was negligible. The available
bandwidth between the edge environment and cloud was
100Mbps. We performed multiple tests in different moments
to minimize the network congestion effect.

The audio stream produced has a 1Mb/s bitrate. The
stream, as we can see in Fig. 13, is sent in parallel to both
VMS A (edge) and B (cloud). The time interval between
successive noise detection events in the VMS in the cloud
and edge was calculated, named DTN (Detection Time of
Noise) metric. Table 6 depicts the results of the experiment.
The average noise detection time in the edge was 918ms with
a standard deviation of 88ms. In the cloud, it was 967ms with
a standard deviation of 137ms. The noise detection average
time in the edge was 49ms lower in comparison to the cloud.

The standard deviation of detection in the edge was lower
than the cloud, thus pointing to higher predictability of delay
in the edge than in the cloud. Another important point to
notice is that the average difference between detection time

FIGURE 13. Audio processing experiment in edge and cloud nodes.

TABLE 6. DTN metric (ms).
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in the edge and in the cloud was less than the delay between
the VD and cloud, meaning that cloud processing time was
shorter than edge processing time. This is expected, since
the cloud has a higher computing power than edge devices.
Therefore, we can conclude that the choice between edge or
cloud processing should consider not only the delay between
the physical device and the cloud but also the processing time
of the multimedia stream.

C. DISCUSSION
Based on FRL, QFD, and QDE metrics, we can answer Q1:
Does the deployment of the proposed architecture in the
edge reduce the total data loss during multimedia stream
processing, compared with the cloud deployment? as follows.
The adoption of V-PRISM in the edge could not reduce the
overall data loss based on our experiment. We conclude that
the leading cause of this behavior is that the cloud has more
computational power and can process the multimedia stream
at a higher rate than the edge nodes.

Based on metrics FFD, FDD, and DTN, we can answerQ2:
Does the deployment of the proposed architecture in the edge
reduce the total delay in the IoMT applications, compared
with the cloud deployment? as following. The adoption of
V-PRISM in the edge can reduce the overall delay during
the processing of multimedia stream, but the time difference
between successive event detection is still the same, indepen-
dently of VMS placement.

Based on the results presented, we conclude that the place-
ment of VMS in edge nodes (in contrast with the cloud)
to run CPU and memory-intensive tasks cannot reduce the
total data loss. However, a VMS placed in an edge node,
in comparison with the cloud node, can reduce the total time
for event detection in a video stream. Thus, goal G1 was
achieved, considering the delay QoS metric.

VII. CONCLUSION
In this work, we presented V-PRISM, an innovative archi-
tecture to virtualize and manage virtual multimedia sensors.
Our proposal relies on a three-tier architecture where devices,
placed in the things tier, generate multimedia streams that
are processed by entities called virtual multimedia sensors
(VMS). VMSs are deployed in multiple edge nodes, and their
output data is delivered to IoMT applications.

In contrast with other architectures, our proposal improve-
ments are i) adoption of lightweight virtualization; ii) flexible
management of VMS through standardized API; iii) multiple
allocations policy can be executed. To the best of our knowl-
edge, V-PRISM is the first sensor virtualization architecture
that supports multimedia things.

We validated the V-PRISM architecture by implementing
a distributed IoMT platform named ALFA. It instantiates the
components of our three-tier architecture. ALFAwas released
under an open-source license available at GitHub6 under the
MIT License.

6 https://github.com/midiacom/alfa

Another novel aspect of our implementation is the creation
and provision of several types of VMSs and VDs. These
VMSs and VDs will help the developers to create their own
components. ALFA provides an extensible mechanism to run
different types of algorithms to resource allocation that are
used to the deployment of VMS in multiple edge nodes.

We also performed experiments about the VMS placement
in edge and cloud nodes. We concluded that the functional-
ities provided by VMSs are a crucial factor in determining
which kind of node is better for VMS placement.

As future work, we are going to develop more
resource-intensive VMSs for facial recognition and speech
translation in order to further investigate QoS aspects.
We also plan to specify a domain-specific configuration
language to instantiate and run ALFA components. We are
currently working on an integration with the FIWARE plat-
form [43].

Some VMSs receive a multimedia stream from many vir-
tual devices whose data may be provided by different tools.
In this work, we did not discuss this feature in detail, but
it will be important to develop temporal synchronization
mechanisms in the future. We will also introduce a virtual
entity for dealing with multimedia actuators in V-PRISM.
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