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ABSTRACT In order to solve the problem of control performance degradation caused by time delay in
wave compensation control system, predicting vessel heave motion can be the input vector of the control
system to alleviate time delay problem. The vessel heave motion belongs to the problem of time series,
this paper proposes an improved Long Short-Term Memory (LSTM) model with a random deactivation
layer (dropout), which can deal with the time series problem very well. In order to obtain the vessel heave
motion, this paper establishes a wavemodel suitable for marine operation, and solves the vessel heavemotion
through the mathematical model of vessel motion. Finally, the paper predicts the vessel heave motion in a
short predicted time series. In the process of obtaining the prediction effect of vessel heave motion, the Back
Propagation (BP) neural network and the standard LSTM neural network are used to compare with the
improved LSTM neural network. While the predicted time series is 0.1 s at sea state 3, the mean absolute
percentage (MAPE) errors of BP neural network in the prediction of vessel heave motion is 1.06× 10−2%,
the standard LSTM in the prediction of heave motion is 1.43×10−4%, the improved LSTM in the prediction
of heave motion is 7.51× 10−6%. The improved LSTM improves MAPE by 1.05× 10−2% compared with
the BP and 1.42×10−4% compared with the standard LSTM. The prediction results show that the improved
LSTM has a strong prediction capability with not easily overfitted in vessel heave motion prediction. The
results show that the improved LSTM provides a new idea for vessel motion prediction and solves the
problem of time delay, which is useful for the study of stability in marine operations.

INDEX TERMS Short-term prediction, improved long short-term memory (LSTM), vessel heave motion,
time delay.

I. INTRODUCTION
Due to the existence of winds, waves, the safe and stable driv-
ing of vessels at sea are different from that of cars on land. The
complex marine environment cause vessels multi-degree of
freedom motion, includes heave motion, surge motion, sway
motion, and so on. The vessel heave motion limits the accu-
racy of the equipments’ installation and orientation on the sea
surface, affecting the marine operation’s safety and efficiency
seriously [1]. Because of the above reasons, researches on
vessel heave motion are necessary. To reduce the environ-
mental conditions’ influence on the marine operation, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiyong Zheng .

series-parallel mechanism was proposed to compensate the
motion of the cargo on the vessels [2]. However, the com-
pensation accuracy of the vessels motion can be severely
affected due to the apparent time delay of wave compensation
devices [3], especially in the active control system. To solve
the problem of time delay, some methods were presented to
predict vessels motion. By taking the prediction results as
the input of the control system, the compensation of cargo
movement in advance can reduce the unnecessary fluctuation
caused by environmental factors [4].

Recently, predictions of vessel heave motion have been
studied widely. Methods for vessel motion prediction can be
divided into three categories, including physics-based numer-
ical methods [5], data-driven methods [6], and combination
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methods of physics-based numerical and data-driven [7]. The
numerical methods use mathematical models to describe the
variation of vessel motion based on physical conditions and
processes, which are sophisticated and difficult to solve.
Because that of the mathematical models with many interfer-
ence factors, some prediction effects are not ideal. As a result,
fewer and fewer scholars use physics-based numerical meth-
ods recently. The data-driven methods learn patterns from
historical observations and further use the learned patterns
to predict future vessels motion. The common strategies are
real-time prediction [8]–[10], and short-term prediction [11].
The machine learning-based prediction models were used for
the real-time vessels motion prediction to their capability in
nonlinearity processing. The real-time prediction has high
accuracy and strong robustness. However, the real-time pre-
dictions have high requirements for the control system, and
the control processes are more complex [12]. The real-time
estimations of vessels motion have been researched in [13],
[14]. Compared with the real-time prediction, the offline
prediction can also achieve good prediction results. The
short-term prediction is one ofmany offline predictions, it can
satisfy the prediction accuracy and reduce the problem of
low control accuracy caused by time delay in vessel motion
prediction [15]. The combined methods of physics-based
numerical and data-driven have the advantages of both. It can
obtain better prediction results through the establishment of a
simple mathematical model without large datum. Traditional
methods have the physics-based numericalmethods and some
data-driven methods like classical time series models, which
have poor prediction effects with complex model [16].

Some intelligent learning models like the neural net-
work models can effectively improve the prediction accu-
racy with simple models, which also have advantages in
vessel motion prediction. Since the 1990s, some scholars had
used neural networks to identify the vessel coupled heave
and pitch motion [17]. After, many neural network algo-
rithmswere applied in vessel motion prediction, including the
Back Propagation (BP) neural network [18], Autoregressive
Model (AR) model [6], Radial Basis Function (RBF) neural
network [12], [19], [20], Support Vector Regression (SVR)
neural network [4], [21], Wavelet Neural Network (WNN)
[22], and so on. The above studies have shown that a given
prediction model’s predictability is affected by the character-
istics of the vessel motion sequence.

Recurrent Neural Networks (RNNs) are effective ways to
process time series. The vanishing and exploding gradient
problems cannot build model of long-term dependencies in
the vessel motion sequence well. For this shortage, in 1997,
Hochreiter and Schmidhuber [23] proposed Long Short-Term
Memory (LSTM), which was one of the time-recurrent neural
networks. The LSTM can remember information for much
longer periods of time due to its recurrent structure and
gating mechanisms. It is regarded as a state-of-the-art method
for time series related problems [24], [25]. The LSTM is
a popular RNN in recent years [26]. As described in [27],
the behaviors of LSTM were similar to dynamic systems.

By using gate units, LSTM has avoided the problems of
gradient degradation and learning long-term patterns. LSTM
is the basic cell of multiple models [28], many scholars grad-
ually optimize LSTM neural network [29]. However, in the
field of wave compensation, over-optimization can lead to
overfitting.

With the advantage of the networks remembering inputs for
a long time and an explicit memory, LSTM has been widely
applied inmany areas, especially in time series modeling, like
predictions of sea waves [30] and vessel motion [11]. In this
paper, a short-term prediction study about the vessel heave
motion based on an improved LSTMmodel with dropout has
been proposed in marine operations. In the process of vessel
motion prediction, it has become a development direction to
study the response of the vessel to the wave [31].

Many theoretical methods of vessel motion modeling in
waves have been proposed by many scholars, including
approximate empirical formula [32], spectral interpolation,
two-dimensional theory, three-dimensional theory, computa-
tional fluid dynamics considering the fluid viscosity, and so
on. Strip theory is a common method to study the response
of vessels to waves [33]. In the strip theory, the vessel is
regarded as a slender body. Taking a small length of the
cross-section to calculate the two-dimensional effect of fluid
on the cross-section each time, ignoring the interference of
hydrodynamic force along the vessels length direction. Inte-
grating the calculated fluid effect on each cross-section along
the vessels length, finally the forces of fluid on the whole
vessel are obtained.

The remainder of this paper is organized as follows. The
improved LSTM applied to predict impact vessel heave
motion is described in Section II. The wave model is estab-
lished by a two-parameter spectrum and vessel motion is
established by strip theory in Section III. To study the influ-
ence of short-term prediction, the neural networks’ prediction
effects on vessel motion at different time delays are discussed
in Section IV. By comparing with other algorithms, the effec-
tiveness of the improved LSTM algorithm is illustrated.
Finally, the conclusion is presented in Section V.

II. LSTM APPLIED TO PREDICT VESSEL HEAVE MOTION
This Section mainly includes the description of algorithm
flow, the introduction of the improved LSTM model, and the
setting of some parameters.

A. DESCRIPTION OF ALGORITHM FLOW
There are strong correlations and dependencies between
vessel heave sequences. The current vessels heave motion
are affected by the previous motion and affecting the next
moment. In this respect, the time series methods can be used
in predicting future motion. The time series methods can
analyze and characterize the relations of the vessel heave
motion between the sequence values. The time series meth-
ods which are predicting the future values based on the
past sequence values of vessel heave motion is used in this
paper. To solve the problem of connecting to remote data,
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FIGURE 1. Algorithm flow in the vessels heave motion prediction.

the improved LSTM can extract the dependence between data
from time-series data.

The algorithm flow in vessel heave motion prediction
is shown in Fig.1. By setting different significant wave
heights, the wave models under different sea conditions are
established. By the establishment of vessels’ motion model
based on strip theory, the vessels motion sequence which is
responded to different sea conditions is obtained. By taking
the ‘‘Yuming’’ vessel as an example, through the mathe-
matical model for solving vessel motion, the vessel heave
motion sequence is obtained. Then the paper divides the
obtained heave sequence datum into training datum and
predicting datum. The training datum is used to train the
improved LSTM model, predicting datum can be obtained
by the trained model. The heave sequence in a time win-
dow form is first input into improved LSTM for indepen-
dent predictions. Next, their predictions on each horizon are
combined through averaging to produce the final prediction.
The final prediction is used as the latest element of the
input heave sequence to update the heave sequence, which
is further used to predict one more time series. By repeating
the above process, vessel heave motion predictions can be
obtained.

B. THE IMPROVED LONG SHORT-TERM MEMORY
PREDICTION MODEL
LSTM is a variation of RNN, which is used to solve the
vanishing and exploding gradient problem of the RNN. The
LSTM neurons replace the RNN neurons in the hidden layer
with LSTM neurons, which can empower the model for
long-term memory. It can learn long-term dependencies and
works well on a large variety of problems. The LSTM model
structure is shown in Fig. 2.
As shown in Fig. 2, the LSTM has a chain-like struc-

ture. The input sequence xt value can affect the output of
a long-term distant ht ; the neuron’s output date at the last

FIGURE 2. Internal structure of the LSTM.

moment and the input at the current moment are entered into
the first interaction layer; the forgetting gate layer, and the
forgetting gate processes the output ft , the value is a number
from 0 to 1, which is positively correlated with the impor-
tance. The interaction layer is the input gate layer, the data
at the previous moment, and the current input are processed
by the input gate to determine which information should be
updated into the memory unit; after the input gate calculation
is completed, a candidate value C̃t is created to change the
current state; theCt gate’s calculated validated into the overall
sequence memory unit, and then the memory unit is updated;
by combining the forget gate’s calculation result and the
calculation result of the input gate, the updated value can be
obtained. The symbol indicates that the element is multiplied.
The output value of the LSTM in the current state is gener-
ated from the data at the previous moment and the current
input. Based on the memory unit’s update, the final output
value of the LSTM is determined. The expression of the gate
structure is

ft = σ
[
Wf · (ht−1, xt)+ bf

]
it = σ [Wi · (ht−1, xt)+ bi]
C̄ = tanh [Wc · (ht−1, xt)+ bc]
Ct = ft ◦ Ct−1 + it ◦ C̃t
ot = σ [Wo · (ht−1, xt)+ b0]
ht = 0t ◦ tanh (Ct)

, (1)

where ft , it , and ot are the outputs of three sigmoid functions
σ ; Wf , Wi, Wc, and Wo are the weights applied to the con-
catenation of the new input xt ; output ht−1 are obtianed from
previous cell; bf , bi, bc, and bo are the corresponding biases.
The cell composition of the neural networks is shown

in Fig. 3.
The basic structure of a standard LSTM neural network is

shown in Fig. 3(a); The basic structure of the improved LSTM
with dropout is shown Fig. 3(b). In the improved LSTM,
the neurons in the hidden layer are temporarily deleted ran-
domly according to the set probability during training. The
unconnected neurons are temporarily deleted after dropout,
and then the training process is standard. The input value is
propagated forward, and the loss value is propagated back.
After training, the weight and bias of the neurons which
have not been deleted are updated, and the deleted neu-
rons are restored. The above processes are repeated until
convergence.
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FIGURE 3. Randomly deactivated layer of neural network.

The calculation formula of the improved LSTM after
adding dropout is

ỹ(l) = r (l) · y(l)

z(l+1)i = w(l+1)
i ỹ(l) + b(l+1)i

y(l+1)i = f
(
z(l+1)i

)
, (2)

where wi denotes the weight of each neuron; ỹ(l) denotes the
output of neurons through the inactivated layer; r denotes
the random probability generated by Bernoulli function, r
denotes a random probability of 0-1; bi denotes bias; z

(l+1)
i

denotes the output of the neuron at the next moment; y(l+1)i
denotes the output of neuron after excitation function. In
the hidden layer of the improved LSTM, the neuron is
randomly inactivated, which can prevent overfitting in the
prediction.

After the dropout layer effect, the LSTM hidden layer’s
output is connected to a fully connected dense layer, and each
neuron that has been randomly inactivated is connected to
the neuron in the dense layer. This paper can get the pre-
dicted value of heave motion after activation by the activation
function, thought to multiply the hidden layer’s output by a
matrix, and add a bias term. Setting the fully connected dense
layer is because the predicted value contains the characteristic
information of the heave motion initially, a fully connected
layer is still needed to realize the learning of the functional
relation of vessel between historical data and the predicted
result. The full connection can learn the functional relation of
vessel between historical data and prediction results, which is

shown as follows:

hDt = WphLt + b, (3)

where Wp denotes the weight between the LSTM layer and
the full connection after dropout; hLt denotes the output of
the LSTM layer at the t th time; hDt denotes the output of the
LSTM layer at t + 1th time.

C. PARAMETER SETTING
According to the characteristics of the vessel heave sequence,
an improved LSTM structure is established. The improved
LSTM comprises a five-layer network, including the input
layer, the hidden layer (LSTM layer), the dropout layer, the
fully connected feedback layer, and the final regression layer.
To improve the control accuracy of the vessel, reducing data
overfitting, some parameters are set as follows:

1) STEP SIZE SELECTION OF INPUT DATA IN THE LSTM
LAYER
The input of the improved LSTM is one more timestep than
other neural networks. The added timestep can be regarded as
something that happened in the past or future. The network
can predict the next step based on the accumulated state
information in the memory unit. When the step length is
0.1 s, the research can select 1-20 steps for input each time
to obtain the corresponding predicted value. If the datum
of the history sequence are too short, they can cause the
network to calculate more iterations in the prediction process.
If the calculation time is too long, and it can lead to reduced
accuracy.

2) SELECTION OF THE NUMBER OF NEURONS IN THE LSTM
LAYER
The number of neurons can directly affect the prediction
accuracy of the network. A large number of neurons can cause
some problems as follows: it can increase the calculation
time, cause excellent performance in the training process, and
cause overfitting in the prediction process. A small number of
elements can make under-fitting occurred. The selection of
the number of neurons is generally determined by trials and
errors. After abundant experiments in heave motion predic-
tion, the number of hidden nodes for the improved LSTM is
decided as 200.

3) SETTING OF OTHER PARAMETERS IN THE IMPROVED
LSTM
The adaptive moment estimation solver is selected in this
paper. The solver has the advantages of performing a step-
wise optimization on a random objective function, having
high computational efficiency, and requiring a small memory
footprint. The initial learning rate is 0.005, and after half of
the training is multiplied by 0.2 to reduce the learning rate
to prevent fluctuations at the optimal solution. The gradient
threshold is set to 1 to prevent data from growing too fast due
to the gradient explosion. The dropout probability of neurons
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in the dropout layer is 0.2. Since the gate unit setting in the
LSTMnetworkmakes the gate’s output, a number from 0 to 1,
tanh is used as the activation function.

III. DATA RESORCES
This Section introduces the data sources, mainly including
the waves modeling and the vessel modeling. The obtained
vessels heave motion sequence can be the input vector of the
prediction model.

A. WAVE MODEL WITH ITTC SPECTRUM
In the marine operation, when the sea state is greater than 5,
the vessel’s speed and direction can be greatly affected by
the environment, and navigation is dangerous, so it is not
recommended to sail out. When the sea state is less than 3,
the impact on the vessel is small. As a result, this paper studies
the vessel heave motion response from sea state 3 to sea
state 5.

1) WAVE MODEL
Waves are low-frequency motion systems with strong ran-
domness. In this respect, waves are regarded as a superposi-
tion of several waves from different directions, the structure
of motion response is linear. The wave propagation character-
istics in all directions are ignored in the simplifiedmodel. The
wave only propagates in a fixed direction, which is regarded
as the linear superposition of infinite harmonics. For long
peaked irregular waves, the instantaneous wave height can
be expressed as

ζ (t) = H +
∞∑
i=1

ζai cos (kiξ − ωit + εi) , (4)

where ζai denotes the regular wave amplitude; ki denotes the
wave number; ωi denotes the frequency; εi denotes the phase
angle; H denotes the fixed tide height of the sea surface.

By assuming that the tidal height of the sea surface is
constant, H = 0, the ζ (t) can be expressed as

ζ (t) =
∞∑
i=1

ζai cos (ωit + εi) . (5)

2) THE ENERGY EQUALIZATION METHOD
By Eq.(5), it can be seen that the wave model is expressed
as the sum of the harmonics. If the frequency, amplitude, and
initial phase of the harmonics are determined, the wavemodel
can be established.

The principle of the energy equalization method is shown
in Fig. 4. In order to segment the wave frequency with equal
energy, the number of frequencies after segmentation can tend
to infinity.1wi tends to infinity, the wave after segmentation
can be regarded as the harmonic with a fixed frequency. The
wave model can be obtained by superimposing the harmonics
after several times segmentation. The frequency of the seg-
mented wave is w1, w2, w3, . . . ,wn, which can be substituted
into the wave energy spectrum S. The spectrum S(w1), S(w2),

FIGURE 4. The principle of energy equalization method.

S(w3), . . . , S(wn) are obtained by∫ ω1

ω0

S (ωi) dωi =
∫ ω2

ω1

S (ωi) dωi = · · · =
∫ ωn

ωn−1

S (ωi) dωi.

(6)

The wave amplitude ζai can be obtained by the frequency
spectrum ωi. According to the relationship between ampli-
tude and energy, the amplitude of each harmonic can be
expressed as: ∑

1ω

1
2
ζ 2ai = S (ωi)1ωi, (7)

where 1ωi = dωi = ωi − ωi−1. Further,

ζai =

√
2
∫ ωi

ωi−1

S (ωi) dωi. (8)

According to the International Towing Tank Conference (
ITTC ) parameter spectrum, the S (ωi) is

S (ωi) =
A

4MB1ωi
. (9)

3) ITTC TWO-PARAMETER WAVE SPECTRUM
The energy equalization method is used to establish the
waves model. Therefore, the vessel heave motion response
to this model is calculated. The wave spectrum uses the
ITTC single-parameter spectrum. The relation between the
instantaneous value and time of the fixed-point long-peak
wave simulation of the ITTC single-parameter spectrum is
in Eq. (10):

ζ (t) =

√
A

2BM

M∑
i=1

cos (ωit + εi) , (10)

where A = 0.78,B = 3.12
he

; he denotes the significant
wave height; the selected frequency division number denotes
uniformly distributed; M denotes number of segments for
the selected frequency; εi denotes the random phase of the
ith time harmonics, which is evenly distributed between
0 and 2π .

In the energy spectrum, he andωi are important parameters.
In order to research the effect factors of the wave model,
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TABLE 1. Classifications of wave level.

FIGURE 5. Wave energy spectrum at different significant wave heights.

the wave energy spectrums at different significant wave
heights and different angular frequencies are researched.

According to the regulations of the State Oceanic Adminis-
tration, the sea conditions are divided into nine levels, which
are shown in Table 1.

Fig. 5 shows wave energy spectrums. The significant wave
height he = 1.25 m, he = 2 m, he = 3 m, he = 3.75 m,
he = 5 m, and he = 7 m are discussed. The ωi is set from
0 to 2 rad/s. It can be seen that the spectral density with
different he is different. When the he increases, the overall
energy of the wave also increases. The results show that the
greater significant wave height, the greater maximum value
of the spectral density. At the end, the spectral density first
increases and then decreases after a certain frequency during
the same he.

The principle of energy equalization method is the super-
position of different regular waves. The simulation accuracy
can increase with the increase of regular wave number M .
However, M cannot be taken as infinity. The larger the M ,
the slower the calculation speed. When M is 30, it can meet
the needs of the accuracy and meet the prediction accuracy
in vessel motion. M = 10 and M = 50 for signal simulation
and verification are discussed in this paper.

Fig. 6 shows the comparison between the wave energy
spectrum and the theoretical wave energy spectrum. It can be
seen that the four simulated wave models basically conform
to the statistical principles of real wave conditions. The wave
model has all states of ergonomics; when the simulation time
is long enough, all the model characteristics of the wave
can be described. For the sea area on the same sea state,

FIGURE 6. Comparison of analog spectrum and theoretical spectrum,
(a) the superimposition of 10 regular waves at sea state 3, (b) the
superimposition of 10 regular waves at sea state 5, (c) the
superimposition of 50 regular waves at sea state 3, (d) the
superimposition of 50 regular waves at sea state 5.

FIGURE 7. Wave model at sea state 3.

the data of 20 minutes of general fixed-point measurement
can basically reflect the wave conditions in the area. After
the fixed-point wave is decomposed, each unit’s regular wave
amplitude is basically the same, and the initial phase of each
wave falls on.

In detail, the wave model is shown in Fig. 7 at sea state
3 with he = 1.25 m, the wave model is shown in Fig. 8 at sea
state 5 with he = 3.75 m. Compared Figs. 7 with 8, it can
been seen that as the significant wave height he increases,
the average wave height value increases, and the waves
become more intense. This paper can see the height is from
−1 m to 1 m at sea state 3 and the height is from−4 m to 4 m
at sea state 5.

As a result, the effective wave height can be used to reflect
the intensity of the waves and simulate the sea conditions,
which is of great significance to vessels motion control.

The wave model based on the energy equal equalization
method shows that the wave model is linearly superimposed
by different unit regular waves. The results reflect the sta-
tistical characteristics of waves. The ocean surface can move
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FIGURE 8. Wave model at sea state 5.

TABLE 2. Evaluation index of wave motion.

TABLE 3. Principal particulars and hydrodynamic parameters of ‘‘Yuming’’.

and change with time. This paper defines sea level as the base
level, mean value (MV) of the ocean surface is zero, and it is
symmetrical. According to statistical principles, the standard
distribution skewness is 0, and the kurtosis (K) is 3. The mean
value of wave surface motion, skewness (S), and kurtosis of
the waves simulated by the energy equal division method are
shown in Table 2.

It can be seen from Table 2 that when the number of
regular waves is in the unit, the simulated wave energy
spectrum has obvious burrs. When the number of regu-
lar waves increases, the burr phenomenon has a significant
improvement, but the overall trends of vessel motion and
wave model are the same. There can be no particularly low
or high-frequency bands, most of them are concentrated in
the same frequency band. As the significant wave height
increases, its frequency also decreases. By taking the vessel
named ‘‘Yuming’’ of Shanghai Maritime University as a
reference, the specific parameters are shown in Table 3:

B. VESSEL MOTION MODEL
Due to the complex sea environment, vessels are affected
by irregular waves. In the actual vessels motion, the 6-DOF

FIGURE 9. Vessel motion model based on strip theory.

motion on the vessels are coupled with each other. The lateral
and longitudinal motion are couplings, but the calculation
is very complicated. By considering the complex coupling
motion of vessels at sea when it is combined with the actual
vessels, it is necessary to simplify the model to eliminate the
interference of weak factors. The following assumptions are
employed:

1) The complex wave model is simplified and replaced by
the dual-parameter spectrum.

2) The waves are of small amplitude, the vessel motion
caused by waves is also a slight motion.

3) A vessel is rigid a slender and rigid body, ignoring its
elastic effects.

4) For having high real-time performance, the vessel
heave motion is simplified as an independent motion,
ignoring the coupling of each vessel motion.

The vessel motion model based on strip theory is seen
in Fig. 9. In strip theory, the hull is divided into several small
thickness cross sections. When each cross section is calcu-
lated, the cross section is only subjected to a two-dimensional
fluid force, so the three-dimensional flow of fluid to the vessel
becomes a two-dimensional flow on each slice cross section.
The forces on each slice cross section can be calculated.
Finally, all cross sections are integrated with the length of the
vessel, the three-dimensional force of fluid to the vessel is
calculated.

The coupled vessel motion model in the longitudinal and
pitching is{
(m+ a33) z̈+ b33ż+ c33z+ a35θ̈ + b35θ̇ + c35θ = Z3
(I + a55) θ̈ + b55θ̇ + c55θ + a53z̈+ b35ż+ c35z = M5,

(11)

where z and θ represent the heave displacement and pitch
angle of the vessel in longitudinal motion, respectively; ż and
θ̇ are the heave velocity and pitch angular velocity; z̈ and θ̈
are the heave acceleration and pitch angular acceleration; I
is the pitch moment of inertia; aij, bij, cij (i, j = 3, 5) are
the hydrodynamic coefficient, depending on the parameters
of the vessel.

The motion of vessels are similar to energy converter in
waves. The wave energy is used as the input signal, which
is converted by the vessel and output multi degree of free-
dom motion of vessels. Conversion of wave energy to vessel
motion is shown in Fig.10.

Relationship between wave height and vessel motion is in
Eq. (11). The heave motion can be simplifying:

z̈+ 2vzzż+ n2zz =
Fzz

D/g+ λzz
, (12)
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FIGURE 10. Conversion of wave energy to vessel motion.

FIGURE 11. The disturbing force on vessel heave motion.

where 2vzz is damping coefficient of heave motion.

2vzz =
2Nzz

D
g + λzz

, (13)

where 2Nzz denotes the damping force (or moment) coeffi-
cient, and 2Nzz = fSw; f denotes the dimensionless coeffi-
cient, f = 0.18; Sw denotes the waterline area of the vessel;
D denotes the mass of vessel; g denotes the acceleration of
gravity; Fzz denotes the heave disturbing force of wave to
vessel; λzz denotes the additional mass of the heave motion;
natural circular frequency of heave nzz is

nzz =

√
ρgSw
D
g + λzz

, (14)

where ρ is the density of seawater.
The disturbing force on vessel heave motion generated by

waves is shown in Fig.11.
Fig. 12 shows the vessel board coordinate system used in

this paper. In coordinate system o− xyz, the center of gravity
of the vessel o is the origin of the coordinate system; the
x-axis points the vessel surge direction; the y-axis points the
vessel sway direction; h, u, and v denote heave velocity, surge
velocity, sway velocity, respectively; the direction of h, u, and
v are along the z-axis, along the x-axis and along the y-axis in
the system, respectively; ϕ (roll rate), θ (pitch rate), ψ (yaw
rate), which are around x-axis, y-axis and around z-axis in the
system, respectively.

The vessel heave motion established by strip theory in
waves is

z(t) =
n∑
i=1

z0iζa, (15)

FIGURE 12. Vessel motion model.

FIGURE 13. Superimposition of 50 regular waves and the corresponding
vessel heave motion at sea state 3.

FIGURE 14. Superimposition of 50 regular waves and the corresponding
vessel heave motion at sea state 5.

By combining with Eq. (10), the heave motion in Eq. (15) can
be expressed as:

z(t) =
n∑
i=1

z0i

√
A

2BM
cos (ωit + εi) , (16)

where z0i = ζa|Wz(iω)|; |Wz(iω)| is the amplitude-frequency
response function of the heave motion.

After the vessel motion equation under the regular wave
of the unit is obtained, the decomposed wave can be super-
imposed on the vessel heave motion according to the linear
superposition principle. The speed is 0 m/s and the angle
of encounter is 0◦, vessel motion response to waves can be
obtained. After solving Eq. (16), the curve of veseel vessel
heave motion are is shown in Figs. 13 and 14. By comparing
Fig. 13 with Fig. 7 (b), and Fig. 14 with Fig. 8 (b), it can
been seen that the vessel can eliminate part of the influence
from the wave. The results show that changing trend of the
vessels heave motion have a certain positive correlation with
the waves motion.

As a result, the significant wave height is an important
factor affecting the vessel heave motion.

C. MODEL EVALUATION INDEX
The neural network’s performance in the prediction can be
seen by comparing the predicted value with the real value, its
accuracy can be seen intuitively and clearly by quantifying it.

58074 VOLUME 9, 2021



G. Tang et al.: Short-Term Prediction in Vessel Heave Motion Based on Improved LSTM Model

When compared with the accuracy of other prediction algo-
rithms, the evaluation index can objectively get the degree
of agreement between different algorithms and actual data.
Three indexes are used to measure the performances of the
different methods for vessel heave motion prediction, includ-
ing the root mean square error (RMSE), the mean abso-
lute error (MAE), and the mean absolute percentage error
(MAPE), which are defined as follows:

1) ROOT MEAN SQUARE ERROR (RMSE)
RMSE is the root of the mean square error, which is more
intuitive than the mean square error in the order of magnitude.
The RMSE is

ERMSE =

√√√√1
n

n∑
i=1

(
ypi − yti

)2
, (17)

where ypi is the predicted value at ith time, i = 1,2. . . n; yti is
the real value at ith time, and n is the number of time steps.

2) MEAN ABSOLUTE ERROR (MAE)
MAE describes the average of the absolute values of the dif-
ference between themodel’s predicted value and the observed
value. MAE can be expressed by

EMAE =
1
n

n∑
i=1

∣∣ypi − yti∣∣ . (18)

3) MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)
MAPE describes the percentage of error between the pre-
dicted value and the true value. Compared with the MAE,
the degree of deviation between the model and the true value
can be seen more intuitively. MAPE can be expressed by

EMAPE =
1
n

n∑
i=1

∣∣∣∣ypi − ytiyti

∣∣∣∣× 100%, (19)

IV. RESULTS AND DISCUSSION
In order to study the influence of sea states on vessel heave
motion prediction and verify the correctness of themodel, this
paper takes the ‘‘Yuming’’ of Shanghai Maritime University
as an example. Time delay is an important parameter, this
paper studies the effect of vessel prediction from sea state 3 to
sea state 5 with different predicted time series. Predicted time
series is the time span used to predict time series in the future.
In this paper, the predicted time series is n seconds, meaning
that predicting applied vessel heave motion in n seconds
ahead by the improved LSTM. The value of the predicted time
series is equal to the delay time of the system.

In the control system of wave compensation equipment,
the time delay of different devices is different because of the
controller and actuator. The causes of system delay mainly
include mechanical system delay and drive system delay.
By taking the series-parallel hybrid platform of Shanghai
Maritime University as an example, the problem of time

delay studied in this paper is to improve the system con-
trol of the hybrid platform. In respect of mechanical system
delay, the hybrid mechanism belongs to the medical platform,
a special kind of compensation equipment, which improves
the safety of marine medical facilities. Compared with the
large wave compensation platform, the load and inertia of the
platform are small, so the mechanical system delay is small.
In respect of drive system delay, compared with hydraulic
drive and mechanical drive, the precision of electrical drive
is high, so the time delay is relatively less. Besides, the time
delay is only a set parameter, which can be adjusted for
different time-delay systems. Considering the above aspects,
the time delay of the compensation platform is about 0.27 s,
so the prediction predicted time series is 0.1 s, 1 s, and 2 s
respectively for comparison.

A. MODEL TRAINING
90% of the heave datum are trained by the network, and the
remaining 10% are used to verify the prediction accuracy of
the network. The rolling prediction is used in the data predic-
tion. The network outputs the prediction after the data of the
training set. Every time the next step heave displacement is
predicted. The real displacement value of the previous step is
taken as the input. To predict the data at t th time, the training
steps of the model are as follows:
Step 1: Input the data of t = n (n is the beginning time

of training) into the input layer of LSTM, and output the
activated result through tanh.
Step 2: The processed results are input into the LSTM

hidden layer, and the data is processed continuously through
the gate unit, and the processed data is output to the random
deactivation layer.
Step 3: The data is randomly inactivated, and the neu-

rons are randomly deleted and restored continuously, and the
weights are updated to converge.
Step 4: The data passing through the random deactivation

layer is input into the full connection layer to realize the func-
tion learning between the historical data and the prediction
results.
Step 5: Input data to the output layer for output.
Step 6: The residual between the output value and the real

value of the training set is calculated.
Step 7: Update the weight by back-propagation through

time (BPTT).
Step 8: The data of t= n and the state of t= n+ 1 memory

unit are input into the input layer of LSTM, and the activated
result is output through tanh.
Step 9: Repeat the above process until t = t− 1.
Step 10: The predicted value at time t is output.

B. SEA STATE 3 PREDICTION
In the model prediction, three models are used to predict
the vessel heave and motion, which are the traditional fully
connected BP, the standard LSTM, and the improved LSTM
with dropout. The BP network is a three-layer network, and
the number of neurons is 7 after trial and error. In detail,
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FIGURE 15. Comparison of prediction with algorithm results at sea
state 3.

FIGURE 16. Comparison of prediction with algorithm results at sea
state 5.

the prediction predicted time series (tp) are 0.1 s, 1 s, and 2 s,
respectively. The prediction result of the model at sea state
3 is shown in Fig. 15.

C. SEA STATE 5 PREDICTION
In order to further study the influence of significant wave
height on the prediction of vessel motion, this paper com-
pared it with sea state 5. The prediction results of vessel heave
motion direction after 10 regular wave superposition and
50 regular waves superposition are discussed, respectively.

D. RESULTS AND DISCUSS
Figs. 15 and 16 show the prediction comparisons of the three
neural networks algorithm, respectively. It can be seen from
the figures that three neural networks perform well in the
0.1 s prediction process of the sea state 3 predictions. In the
case of sea state 5, and after lengthening the prediction time,

TABLE 4. Prediction errors of vessel heave motion at tp = 2 s.

TABLE 5. Prediction errors of vessel heave motion at tp = 1 s.

TABLE 6. Prediction errors of vessel heave motion at tp = 0.1 s.

the improved LSTM is significantly improved than the BP
neural network. This is because the gate unit in the improved
LSTM retains the previous state information, while the neu-
rons in the BP neural network are independent of each other.

To intuitively quantify the prediction accuracy of the neural
network, the prediction and evaluation index tables of the
neural network for the vessel heave motion at various sea
states are shown in Tables 4, 5, and 6.

From the analysis of Tables 4, 5, and 6, it can be seen
that the prediction accuracy of the improved LSTM is better
than the traditional BP network and the standard LSTM.
A certain improvement. In the prediction of vessel heave
motion response of 2 s, 1 s, and 0.1 s, MSE of the LSTM
with dropout layer at sea state 3 reached 1.4 ×10−3, 1.2
×10−3, and 6.44 × 10−5; RMSE reached 1.9 ×10−3, 1.5
×10−3, and 6.44 ×10−5, and MAPE reached 4.43 ×10−2%,
1.42 ×10−2%, 7.51 ×10−6%, and the root mean square
at sea state 5. MSE reached 7.6 ×10−3, 4.5 ×10−3, and
3.72×10−4, RMSE reached 8.9 ×10−3, 5.5 ×10−3 and 4.71
×10−4. MAPE reached 3.68×10−2%, 7.9×10−3% and 6.34
×10−5%. By comparing with the BP network and standard
LSTM network, it can be found that the accuracy has been
improved to a certain extent, and it can be seen that the
smaller the time step of each prediction, the higher the predic-
tion accuracy. When the prediction time increases, the error
appears to increase. The improved LSTM with dropout has
the ability to prevent overfitting. As a result, the prediction of
vessel heave motion based on the improved LSTM performs
well, which provides a new idea for solving the time delay
problem in wave compensation.

V. CONCLUSION
The prediction of vessel heave motion is key to solve the
problem of time delay in the wave compensation control
system. A short vessel heave motion prediction based on the
improved LSTM has been studied in this paper.

58076 VOLUME 9, 2021



G. Tang et al.: Short-Term Prediction in Vessel Heave Motion Based on Improved LSTM Model

Firstly, the algorithm flow is introduced. Then the wave
and vessel are modeled. Finally, the vessel heave motion is
predicted under different time delay conditions and different
sea conditions. By comparing and analyzing the prediction
results of the different neural network models, the following
conclusions can be drawn:

1) The improved LSTM can accurately predict the
heave motion based on time history datum. Besides,
the RMSE between the predicted and actual values is
less than 0.003, and no over-fitting occurred.

2) The improved LSTM has a certain effect in short-term
prediction to solve the problem of time delay in wave
compensation.

3) The smaller the predicted time series, the higher the
prediction accuracy in short-term prediction can be
obtained.

Consequently, the time series prediction algorithm based
on the improved LSTM model has better application value
in the actual environment that is considered in this study.
The improved LSTM network is more targeted and has better
adaptability in the field of vessel heave motion prediction.
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