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ABSTRACT Object tracking is an important basis for the autonomous navigation of unmanned surface
vehicles. However, several problems still must be addressed for a wide applicating of object tracking in
unmanned surface vehicles. First, if multiple objects of the same classification exist in the same field of
view, then stable extraction of an object is difficult. Second, in an environment with a complex background
and large changes in object shape, the tracking accuracy is low, and object tracking errors and tracking
loss can easily occur. Third, much time is required to detect a high-resolution real-time video stream, not
meeting the delay requirement of the photoelectric servo stable tracking. To resolve these problems, this
paper proposes an object detection-tracking algorithm based on a radar-photoelectric system. The algorithm
combines an object detection algorithm with an object tracking algorithm and involves the following steps.
First, a first-frame object extraction algorithm is used to extract the tracking object from the first frame.
Second, a region of interest (ROI)-prediction algorithm is used to predict ROIs and detect objects in these
ROIs. This algorithm can effectively solve the above problems in marine tests. When multiple objects of the
same classification exist in the same field of view, the algorithm can extract the radar-guided object stably.
When faced with a complex background and a large change in object shape, the algorithm substantially
improves the accuracy and robustness of object tracking. Compared with the conventional object detection
algorithm, the time consumption of this algorithm is reduced by 25.8%.

INDEX TERMS Unmanned surface vehicle, radar-photoelectric system, first-frame object extraction
algorithm, ROI-prediction algorithm, object detection algorithm, object tracking algorithm.

I. INTRODUCTION
An unmanned surface vehicle (USV) [1], [2] is a ship that
can be operated by a monitoring center onshore and a pro-
gram control device onboard. It is completely or intermit-
tently controlled by the onboard computer. Compared with
manned ships, unmanned ships are more suitable for high-
risk, high-repetition and harsh environments. Based on their
application field, unmanned ships can be divided intomilitary
and civil ships. In the military, USVs are mainly used in
antisubmarine, coastal defense, mine detection [3], pirate
attack and other tasks. For civil use, USVs are mainly used
in hydrological monitoring, maritime search and rescue,
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seabed exploration [4] and other tasks. Fig. 1 shows the
‘‘Tianxing-1’’ USV used in this paper.

A. USV PERCEPTION SYSTEM
The USV perception system includes a perception computer,
marine radar, a photoelectric device and other equipment.
The perception computer includes a communication module,
tracking module and decision module. The CPU model of
the perception computer is i7-7700t, and the GPU model
is 2080ti. The resolution of the photoelectric visible light
sensor is 1920 × 1080, and the field of view is 1.97 to 40
degrees. The resolution of the infrared sensor is 640 × 512,
and the field of view is 2 and 10 degrees. The range of the
laser rangefinder is 20 m to 10 km with the error of less
than 5 m, the tracking accuracy of the photoelectric servo is
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FIGURE 1. ‘‘Tianxing-1’’ unmanned surface vehicle.

1 mrad, and it can generally navigate in the sea condition of
grade 4. The azimuth accuracy of the navigation radar is 0.2
degrees, and the effective detection range is 40 m to 18 km.
As shown in Fig. 2, first, marine radar detects the sea surface
environment and transmits the detected object information
(The object information includes the target’s longitude and
latitude, the direction angle of the target, the target’s speed,
the size of the target, and the course of the target) to the
perception computer that transmits the processed object infor-
mation to the photoelectric sensor. The photoelectric sensor
points the USV toward the object according to the guidance
of the perception computer. Then, the detection object enters
the photoelectric field of view, and the photoelectric sensor
transmits the optical data of the field of view to the perception
computer. The perception computer recognizes and detects
the object in the video and then transmits the first frame of the
video data to the tracking algorithm to track the object in the
video. Then, the tracking algorithm returns the pixel location
deviation of the object and transmits it to the photoelectric
servo motor. The servo tracking is controlled according to
the pixel location deviation to realize real-time photoelectric
object tracking.

B. MARINE TARGET DATASET
The targets tested in this paper mainly include buoy and
ship. Prior to the algorithm test, we first set up the dataset,
respectively, in different weather, different sea areas, different
times, and different angles. We carried out multiple data
collection and screened the data according to the specific
data collection effect and the subsequent test environment
analysis, to complete the establishment of the dataset.

Fig. 3 shows a partial display of the buoy dataset. These
data samples include various characteristics such as small-
scale target, large-scale target, target in fog, target in solid
light, target in the fuzzy situation, target in complex back-
ground, target in occlusion.

Fig. 4 shows a partial display of the marine ship dataset.
The data sample includes data with various characteristics
such as small-scale target, large-scale target, target in fog,
target in solid light, target in the fuzzy situation, target in

FIGURE 2. Perception system.

FIGURE 3. Partial display of buoy data.

complex background, target in static state, target in a dynamic
state, target in high-speed navigation, target in bow direction
and target in ship side direction, the target in the stern direc-
tion, the sample of the ship and buoy appearing at the same
time.

C. TYPICAL OBJECT TRACKING ALGORITHM
Moving object tracking [5] is a challenging and popular topic
research topic in USV research. With the rapid develop-
ment of hardware equipment and artificial intelligence, object
tracking performance has been greatly improved, but at the
same time, the rapid development of USVs has led to higher
requirements for object tracking algorithms. The complex
environmental background, multi-object interference, and
large changes in the object shape and object size still hinder
the widespread application of object tracking algorithms.

The object tracking algorithms are classified according
to the time sequence: the early classic tracking algorithm,
the tracking algorithm based on the kernel correlation filter,
and the tracking algorithm based on deep learning. Early
object tracking algorithms have been mainly based on object
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FIGURE 4. Partial display of marine ship data.

modeling or search. Object-based modeling involves mod-
eling the appearance of an object and then finding that
object in the following frame. The most commonly used
method is feature matching. First, the object features are
extracted, and then the most similar features are found in
subsequent frames to determine the object location. The
commonly used features include those derived from the
scale-invariant feature transform (SIFT) feature [6], speeded
up robust features (SURF) [7], and Harris corner detector.
However, the real-time performance of this method is poor.
With increased research, the prediction algorithm has been
added to the object tracking field, and tracks an object near
a predicted value to reduce the tracking range. The common
prediction algorithms include the Kalman filter [8] and parti-
cle filter [9]. Another method to reduce the search range is the
kernel method that uses the principle of the steepest descent
method to iterate the object template in the direction of gra-
dient descent until it reaches the optimal position; examples
include the MeanShift [10] and continuously adaptive mean
shift (CAMShift) algorithms [11]. However, the above algo-
rithms contain fatal defects. First, the background informa-
tion is not taken into account; second, the tracking algorithms
are slow.

In recent years, object tracking has experienced much
progress mainly due to the introduction of correlation filter-
ing from the communication field into object tracking. Typi-
cal tracking algorithms based on correlation filtering include
the minimum output sum of squared error (MOSSE) [12],
circulant structure tracking with kernels (CSK) [13], ker-
nel correlation filter (KCF) [14], background-aware correla-
tion filter (BACF) [15] and scale-adaptive multiple-feature
(SAMF) [16] approaches. Before the correlation filtering
method is applied to object tracking, all tracking algo-
rithms are processed in the time domain. The process of
operation involves a complex matrix inverse operation that
incurs a high computational cost and yields poor real-time
performance. An object tracking method based on the
correlation filter transfers the calculation to the frequency

domain, and the cyclic matrix can be diagonalized in the
frequency domain, substantially reducing the number of cal-
culations and improving operation speed.

Recently, with the rapid development of deep learn-
ing [17], deep learning methods have been widely used in
the field of object tracking. The hierarchical convolution
feature (HCF) [18] approach integrates the depth feature
domain correlation filtering algorithm because the features
extracted from different layers of a convolution neural net-
work [19] have different characteristics. The former image
has high resolution, and the feature contains more location
information; the latter contains more semantic information.
The three-layer network is used to train the correlation filter,
and the final response position of the object is obtained after
weighting. In the continuous convolution operator tracker
(C-COT) [20], a continuous convolution filter method is pro-
posed. On the basis of the spatially regularized discriminative
correlation filter (SRDCF), the SRDCFdecon approach [21]
adopts a multilayer depth feature, and a continuous spatial
domain difference conversion operation is used to determine
that the input of the filter can have different resolution char-
acteristics. The efficient convolution operator (ECO) [22]
is an improved version of C-COT and considers the model
size, sample size and update strategy. First, the filter with a
small contribution is filtered out; then, the training samples
are simplified to reduce the redundancy between adjacent
samples; and finally, the model is updated every six frames.

1) MEANSHIFT
The MeanShift algorithm is a nonparametric estimation
method. By calculating the similarity between the candidate
template of the object position in the previous frame and the
object position in the current frame, the template with a high
similarity is selected to obtain the MeanShift vector of the
object. The vector points to the current frame position of
the object from the previous frame position. The mean shift
vector is calculated by the iterative mean shift algorithm. The
final algorithm locates the final position of the object in the
current frame to achieve object tracking. Although the Mean-
Shift algorithm achieves a good tracking effect, it cannot track
the change in object scale adaptively and cannot track against
a complex background.

2) KCF
Correlation filter theory is introduced into theKCF algorithm.
An object tracking algorithm based on the correlation filter
transfers the calculation to the frequency domain. The cyclic
matrix can be diagonalized in the frequency domain, sub-
stantially reducing the computational cost and improves the
operation speed. The cyclic matrix can increase the number
of negative samples and improve the quality of classifier
training. A Gaussian kernel is added to ridge regression to
simplify the calculation. The introduction of the Gaussian
kernel function can transform nonlinear problems into linear
problems in high-dimensional space, making the algorithm
more general.
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3) ECO
The ECO algorithm is a filtering feature point tracking algo-
rithm based on a convolution neural network spatial gradient
calculation and histogram of oriented gradients (HOG) fea-
ture recognition technology that serves as an improvement
of the C-COT. Based on the traditional discriminant correla-
tion filter, Danelljan improved the time and space efficiency
by improving the model size, training collective quantity
and model updating method. Feature dimension reduction,
sample space compression and a sparse update strategy are
used to reduce the computational burden and improve the
tracking efficiency of the algorithm. Although ECO greatly
reduces the overfitting of the C-COT and reduces most of the
unnecessary calculations, the ECO algorithm cannot benefit
from the deeper CNN.

D. THE CONTENT OF THIS PAPER AND HIGHLIGHTS
To prevent the tracking loss of specific objects under mul-
tiple objects in USV object tracking based on marine radar
guidance photoelectric mechanisms, and the poor tracking
robustness and high object detection delay under complex
backgrounds and large changes in the object morphology and
object scale, an object detection-tracking algorithm based on
a radar-photoelectric system is proposed. The algorithm is
based on marine radar guiding photoelectric object pointing.
After the photoelectric object is in place, the first-frame
image is preprocessed, and then the object size, position and
classification are obtained by the object detection algorithm.
Then, the first-frame object extraction algorithm is used to
filter the object in the first frame, the marine-radar-guided
object is selected from the first-frame image, and then that
object is fused with the object in the photoelectric image.
The region of interest (ROI)-prediction algorithm is used
to detect the object in each frame. According to the object
position in the previous frames, the next pixel position of the
object is predicted, the object is detected near the predicted
position, and the local position of the object is returned to
the global position. If the object is lost or the detection result
does not match the radar guidance object, the predicted ROI
interval is increased, and the object is detected and matched
again. Thus, the object detection-tracking algorithm based
on a radar-photoelectric system is realized. The algorithm
makes full use of the depth information of the convolution
neural network, improves the robustness of water object
tracking, and substantially reduces the number of calculations
compared with the traditional object detection algorithm.
This algorithm can meet the accuracy requirement of object
tracking and improve the computational efficiency. The main
contributions of this paper are summarized as follows:

1) AN OBJECT DETECTION-TRACKING ALGORITHM BASED
ON A RADAR-PHOTOELECTRIC SYSTEM IS PROPOSED
Compared with the KCF and ECO tracking algorithms,
this algorithm can make full use of depth information.
For a complex background environment, the robustness is
greatly improved. Based on the results of object detection,

the ROI-prediction algorithm can achieve stable tracking
of an object. Compared with You Only Look Once, ver-
sion 3 (YOLOv3) and other detection algorithms, it greatly
improves the detection efficiency and reduces the time con-
sumption by 25.8%.

2) A FIRST-FRAME OBJECT EXTRACTION ALGORITHM IS
PROPOSED TO REALIZE THE FUSION OF MARINE RADAR
GUIDANCE OBJECTS AND PHOTOELECTRIC TRACKING
OBJECTS
Based on the marine-radar-guided photoelectric object track-
ing mechanism, the first-frame object extraction algorithm
enables realization of the autonomous sensing of USVs.
Compared with the tracking algorithm, the first-frame object
extraction algorithm realizes the automatic extraction of
tracking objects under multiple objects and fuses them with
radar-guided objects. The object is matched by photoelectric
laser positioning and marine radar positioning deviation, and
photoelectric tracking direction angle deviation and marine
radar guidance direction angle deviation.

3) AN ROI-PREDICTION ALGORITHM IS PROPOSED
According to the object location, a prediction algorithm is
proposed to predict the position of the object in the vicinity of
the object. The local position of the object is reset to the global
position. If the object is lost or the detection result does not
match the radar guidance object, the predicted ROI interval is
amplified, detected and matched again. When it is enlarged
to the maximum global area, if no object exists that meets the
conditions, then the object is considered to be lost, and the
marine radar objects undergo the photoelectric process again.

II. FIRST-FRAME OBJECT EXTRACTION ALGORITHM
A. OBJECT TRACKING MECHANISM OF UNMANNED
SURFACE VEHICLE
The real-time tracking and positioning of an object by a
sensing system is an important part of the sea object track-
ing task of USVs. This real-time object tracking and posi-
tioning process is mainly divided into the following three
parts: first, the marine radar detects the surface object and
guides the photoelectric equipment toward the object; second,
the perception computer identifies and detects the object
sequence images returned by the photoelectric system to
return the object pixel location deviation; and third, according
to the pixel location deviation, the photoelectric servo realizes
the tracking and laser positioning of the object. The USV
object tracking mechanism is shown in Fig. 5.

The return accuracy of the direction angle of marine radar
is high, and in this test, it is 0.2 degrees. Even if the pho-
toelectric system is adjusted to the minimum field of view
(the minimum field of view of the photoelectric device used
in this test is 1.97 degrees), the radar can stably guide the
photoelectric object pointing. After photoelectric pointing
toward the object is accomplished, the object guided by radar
appears in the photoelectric field of view. If only one object
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FIGURE 5. USV tracking mechanism.

of this classification is in the field of view, the pixel location
deviation of the object can be obtained by the object recog-
nition and detection algorithm in the perception computer to
realize stable tracking of the object by the photoelectric servo.
However, in actual task execution, multiple objects of the
same classification often appear in the samefield of view after
the object is identified. In this case, the object detection algo-
rithm cannot accurately return the pixel location deviation of
the radar-guided object, causing problems such as incorrect
object tracking and servo oscillation.

To solve this problem, this paper proposes a first-frame
object extraction algorithm, which can realize the filtering of
nonguided objects in the same field of view under the guid-
ance of marine radar and realize the fusion of radar-guided
objects and photoelectric visible light objects. The proposed
algorithm improves the robustness of object tracking and
enables the sensing system to realize the stable return of
object pixel location deviation in the first photoelectric image
in a complex environment.

B. PRINCIPLE OF THE FIRST-FRAME OBJECT EXTRACTION
ALGORITHM
The implementation of the first-frame extraction algorithm
mainly includes the following four parts: first, elimination
of the outliers in the first frame of the photoelectric image;
second, filtering the object according to the horizontal pixel
location deviation; third, eliminating the left-right oscillation
when the pixel location deviation is close; and fourth, apply-
ing the pixel area filtering method.

First, according to the characteristics of radar guidance,
when the USV and object are relatively stationary, the max-
imum deviation of the direction angle is α degrees. Then,
according to the relative position and relative speed of the
USV and the object, we can calculate the object pixel position
with an optoelectronic field of view of β and a video resolu-
tion of Px × Py after radar guidance. Based on this, the fault
tolerance value ε is added to ensure the stable filtering of
outliers.

A0 =
α

β
· Px (1)

A1 =
Px
2
− (A0 + ε) (2)

A2 =
Px
2
+ (A0 + ε) (3)

where A0 is the maximum deviation of the actual pixel posi-
tion of the object in the horizontal direction after radar-guided
photoelectric object pointing. Filtering removes objects less
than A1 or greater than A2 in the optoelectronic field of
view. When the pixel position of the object behind the radar
object is calculated, each object is weighted according to the
guidance characteristics of the radar and the pixel location
deviation in the horizontal direction of each object.

di =

∣∣∣∣xi − Px
2

∣∣∣∣ (4)

pi =
n∑
j=1

sign(di − dj) (5)

qi =


n+ 1
2
+ sign(pi) ·

∣∣∣pi − p n+1
2

∣∣∣ , n is odd

n
2
+ sign(pi) ·

∣∣∣pi − p n
2

∣∣∣
2

, n is even

(6)

where i is the serial number of each object in the original
data, xi is the pixel coordinates of the object in the horizontal
direction, and di is the distance between the object and the
image center in the horizontal direction. qi is the new serial
number of each object.

When two objects with the same classification appear in the
same field of view and the absolute pixel location deviation
values of the two objects are close to each other, optoelec-
tronic servo tracking oscillation occurs during the actual task
execution.When the difference between the two frames is less
than x, the pixel location deviation of this frame is calculated
with the pixel location deviation of the previous frame to
ensure that the calculated results of the two frames are the
same in order to solve the problem of photoelectric servo
oscillation. 

Xk = xk −
Px
2

Yk = yk −
Py
2

(7)

Sk = sign(Xk · Xk−1) (8)

where Xk is the object pixel location deviation in the horizon-
tal direction in the current frame and Yk is the pixel location
deviation in the vertical direction of the object in the current
frame. Sk is the oscillation flag of two adjacent frames. If Sk
is 0 or 1, then it is in the non-oscillatory state; if Sk is −1,
then it is in the oscillation state.

We can obtain the approximate distance from the object
via detection of the surrounding environment by radar. At the
same time, we can classify the object according to the
anisotropy of the object echo, the echo size and the object
behavior characteristics. The pixel size of the object can be
estimated according to the classification of its distance. Each
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FIGURE 6. Effect of the first-frame object extraction algorithm In the case
of multiple buoys (simple background).

pixel is used as the object weight to estimate the object size.

si = wi · hi (9)

‖s‖∞ = max
1≤i≤m

|si| (10)

where wi is the object width, hi is the object height, and si
is the object pixel area. m is the number of objects retained
after filtering by previous filtering algorithms. In the reserved
objects, the object with the largest pixel area is selected as the
final guidance object input to the photoelectric servo.

C. TEST RESULTS OF THE FIRST-FRAME OBJECT
EXTRACTION ALGORITHM
First, the first-frame object extraction algorithm is tested
against a simple background. As shown in Fig. 6, two objects
with the same classification exist in the same field of view.
After marine radar detection, the perception decision-making
program automatically selects the nearest object to the radar
object to guide the object. In this field of view, the green
buoy is the object guided by the radar, and the red buoy is
successfully filtered out by the first-frame object extraction
algorithm.

Against a complex background, the first-frame object
extraction algorithm is tested in the case of multiple buoys.
As shown in Fig. 7, two objects of the same classification
exist in the same field of view. In addition, the background
behind the buoy is more complex. The red buoy is again
filtered out by the first-frame object extraction algorithm.

Against a simple background, the first-frame object extrac-
tion algorithm is tested in the case ofmultiple ships. As shown
in Fig. 8, two objects with the same classification exist in
the same field of view. After marine radar detection, the per-
ception decision-making program automatically selects the
nearest object to the radar object to guide the object. In this
field of view, the ship in the middle is the object guided by
the radar, and the other ship is successfully filtered out by the
first-frame object extraction algorithm.

Against a complex background, the first-frame object
extraction algorithm is tested in the case of multiple ships.

FIGURE 7. Effect of the first-frame object extraction algorithm In the case
of multiple buoys (complex background).

FIGURE 8. Effect of the first-frame object extraction algorithm In the case
of multiple ships (complex background).

FIGURE 9. Effect of the first-frame object extraction algorithm In the case
of multiple ships (complex background).

As shown in Fig. 9, two objects with the same classification
exist in the same field of view. In addition, the background
behind the ship is more complex. Using the first-frame object
extraction algorithm, the other ships are again filtered out
successfully.

In the test, ten different sea test environments are selected
to test the first-frame target extraction algorithm in the case
of multiple buoys and multiple ships. The results are shown
in Fig. 10.

III. ROI-PREDICTION ALGORITHM
A. VALUE OF THE ROI-PREDICTION ALGORITHM
For the USV object tracking task, the time consumed during
object detection and recognition is a very important index.
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FIGURE 10. Accuracy of the first-frame object extraction algorithm in
different environments.

The traditional object detection and recognition algorithm
detects and recognizes all of the images in each frame.
Processing all of the images in each frame is a highly
time-consuming task. If the image enhancement algorithm
is added to the front end or other image processing algo-
rithms are added to the back end, the time required increases.
Therefore, the delay may not meet the requirements of the
photoelectric servo tracking delay. In fact, little change occurs
in the position of the object pixel between two adjacent
frames, and the approximate position of the object in the
next frame can be predicted by the Kalman filter algorithm.
If the calculation time of the predicted object area image
processing and object detection and recognition is reduced,
a better object tracking effect can be achieved. At the same
time, occurrences of object false detections can be greatly
minimized.

Compared with the traditional depth difference algorithm,
the prediction algorithm can solve the problem of object
tracking with large differences in depth and shape. In addi-
tion, when the object is against a complex background,
the ROI-prediction algorithm can provide a better tracking
effect.

B. THE PRINCIPLE OF THE ROI-PREDICTION ALGORITHM
Realization of the ROI-prediction algorithm mainly involves
the following three components: first, the object area predic-
tion algorithm; second, the local object detection algorithm;
and third, object loss detection.

When the target motion model and sensor observation
model are linear functions and the noise model is Gaussian
white noise, the Kalman filter is the optimal solution for the
tracking problem. First, according to the position of the object
pixel in the previous frame or several frames, the Kalman
filter algorithm is used to predict the position of the object
in the next frame. The object global position and size in the
first frame are extracted, and the global coordinates of the
object are used as input. The new object position is predicted

FIGURE 11. Network structure of object detection algorithm.

by the following state prediction equation and state update
equation.

State prediction equation:{
x̂−t = Fx̂−t−1 + But−1
P−t = FP−t−1F

T
+ Q

(11)

State update equation:
Kt = P−t H

T (HP−t H
T
+ R)−1

x̂t = x̂−t + K (zt − Hx̂−t )
Pt = (I − KtH )P−t

(12)

Then, according to the size of the object in the last frame,
the prediction area is appropriately enlarged to improve the
probability of the existence of a real object at the predicted
object position. At the same time, properly enlarging the
detection area does not cause a large increase in the time con-
sumed. The depth features of the enlarged object prediction
area are extracted, and object detection and recognition are
carried out. The network structure is shown in Fig. 11. After
the object is successfully detected, the new local coordinates
and new size of the object are extracted. Then, the local
coordinates of the object are converted to global coordinates,
and the global coordinates and size of the object are taken as
new inputs for the iterative predicted the object position in the
next frame.

During reoperation, the angle between the object and the
bow direction in the geodetic coordinate system is calculated
according to the center point of the object. If the angle
between the object and the radar exceeds the maximum error
angle or the object is not detected in the detection process,
the object is regarded as lost.

C. TEST RESULTS OF THE ROI-PREDICTION ALGORITHM
As shown in Figs. 12 and 13, the ROI-prediction algorithm
is used to track a buoy. As shown in the figure, the initial
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FIGURE 12. First-frame object extraction algorithm for buoy extraction.

FIGURE 13. Test results for a buoy based on ROI-prediction algorithm.

position of the object is extracted through the first-frame
object extraction algorithm, and then the position of the buoy
at the next moment is predicted by the ROI-prediction algo-
rithm. The object is detected near the prediction area, the new
local position of the object is successfully extracted, and then
the local position is converted to the global position so that
the next frame position of the buoy can be predicted again
until the object is lost.

Even when the buoy is interleaved with several ships, the
ROI-prediction algorithm can still realize stable tracking of
the buoy.

As shown in Figs. 14 and 15, the ROI-prediction algorithm
is used to test the object tracking of ships at sea. In the figures,
the initial object position is extracted through the first-frame
object extraction algorithm, and then the ship position at the
next moment is predicted by the ROI-prediction algorithm.
The object is detected near the prediction area, and the new
local position of the object is successfully extracted. Then,
the local position is converted to the global position so that
the next frame position of the buoy is predicted again until
the object label is missing.

In the actual test, the ROI-prediction algorithm greatly
reduces the time consumption of object detection and
improves the robustness of object tracking.

FIGURE 14. First-frame object extraction algorithm for ship extraction.

FIGURE 15. Test results for a ship based on the ROI-prediction algorithm.

IV. OBJECT DETECTION-TRACKING ALGORITHM FOR
UNMANNED SURFACE VEHICLES BASED ON
RADAR-PHOTOELECTRIC SYSTEMS
A. THE VALUE OF THE USV OBJECT DETECTION-TRACKING
ALGORITHM BASED ON A RADAR-PHOTOELECTRIC
SYSTEM
Compared with the KCF and ECO tracking algorithms,
our algorithm can fully utilize the depth information. For
a complex background environment, the robustness is sub-
stantially improved. Based on the object detection results,
the ROI-prediction algorithm can achieve stable object track-
ing. Compared with YOLOv3 [23], [24] and other detection
algorithms [25], [26], it greatly improves the detection effi-
ciency and reduces the time consumption by 25.8%.

The implementation of the object tracking algorithm based
on object detection mainly involves two algorithms: the
first-frame extraction algorithm and the ROI-prediction algo-
rithm. The specific process is shown in Fig. 16.

First, marine radar scans the area and then guides the pho-
toelectric system to point toward the object. Next, the first-
frame object extraction algorithm is executed to extract the
pixel coordinates and size of the radar-guided object. Then,
the pixel coordinates of the object are taken as the input,
and the pixel position of the object in the next frame is
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FIGURE 16. Flow chart of the object detection-tracking algorithm.

predicted by the ROI-prediction algorithm. Then, the local
pixel coordinates of the object are converted into global
pixel coordinates that are used as the new input to pre-
dict the next frame region. When object loss occurs after
the object detection algorithm is executed, the first-frame
object extraction algorithm is executed again to carry out
new global object detection. If no matching object is found
after the first-frame object extraction algorithm is executed,
the marine radar carries out a photoelectric object search
again.

B. ADVANTAGES OF THE USV OBJECT
DETECTION-TRACKING ALGORITHM BASED ON A
RADAR-PHOTOELECTRIC SYSTEM AGAINST A COMPLEX
BACKGROUND
Compared with KCF and other object tracking algorithms,
the object detection-tracking algorithm in this paper has
higher stability. As shown in Fig. 17, it has better performance
in the actual test process when the background is complex and
the object is obscured by fog.

When the environmental background is complex and the
color of the background is very similar to that of the buoy,
the algorithm in this paper can still achieve stable object
tracking.

Moreover, this paper tests the algorithm in cloudy and dark
weather. As shown in Fig. 18, the unmanned surface ship
approaches the buoy from 2 km away. Despite the cloudy
weather, it can still achieve stable tracking of the target during
the navigation. As shown in Fig. 19, when the unmanned
surface ship is in dark weather, the perception computer
automatically switches to the infrared sensor, and the target
tracking can still be realized in dark weather by detecting the
infrared image.

FIGURE 17. Object tracking effect against a complex background and
under fog.

FIGURE 18. Object tracking effect in cloudy weather.

FIGURE 19. Object tracking effect in dark weather.

During the navigation of unmanned surface vehicles,
the mast will block the lens and the wave on the deck,
leading to a significant time interruption between the image
sequences. In view of these situations, this paper has carried
out the relevant tests. When the image sequence is inter-
rupted, the photoelectric system will not detect the target.
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FIGURE 20. Object tracking effect in the case of mast blocking the lens.

At this time, the navigation radar target information will be
called again, and the angle tracking of the target will be
carried out. When the target appears again in the image, the
tracking mechanism will immediately change to the tracking
according to the pixel location deviation.

As shown in Fig. 20, when the mast blocks the lens, the
target ship disappears in the image for a while. Simultane-
ously, the angle tracking of the target through the navigation
radar information can still achieve the target ship tracking.
When the mast no longer blocks the target ship, the tracking
mechanism will immediately change to tracking according to
the pixel location deviation to achieve higher precision target
tracking.

As shown in Fig. 21, when there is a wave on the deck,
after the splashing water blocks the lens, the target ship will
disappear in the image for a while. At this time, angle tracking
can still be achieved by using navigation radar information.
When the navigation is stable, and there is no wave on the
deck, the tracking mechanism will immediately switch to
tracking according to the pixel location deviation to achieve
higher accuracy dynamic target tracking.

The USV object detection-tracking algorithm based on a
radar-photoelectric system predicts the pixel position of the
object in the next frame and only detects the object in the
prediction area. Compared with the traditional object detec-
tion algorithm, by predicting the object area and reducing the
detection area, the detection efficiency is largely improved.
Under the same experimental environment, the algorithm’s

FIGURE 21. Object tracking effect in the case of seawater blocking the
lens.

FIGURE 22. Comparison of the time consumption between the
ROI-prediction algorithm and YOLOv3 and YOLOv4 in the buoy tracking
test.

time consumption is reduced by 25.8% compared with that
of the YOLOv3 algorithm. Compared with the yolov4 algo-
rithm, the time consumption of the algorithm is reduced by
16.4%. Some of the data are compared in Figs. 22 and 23.

V. SEA TRIALS
A. THE PRINCIPLE OF THE ROI-PREDICTION ALGORITHM
A sea test is conducted to examine the dynamic object track-
ing effect of the USV object detection-tracking algorithm
based on a radar-photoelectric system in an actual marine
environment.
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FIGURE 23. Comparison of the time consumption between the
ROI-prediction algorithm and YOLOv3 and YOLOv4 in the ship tracking
test.

FIGURE 24. Dynamic object tracking of ‘‘Tianxing-1’’.

FIGURE 25. First-frame object extraction algorithm for ship extraction.

Fig. 24 shows a surface view of Tianxing-1 as it tracks a
dynamic object.

The object ship sails at a speed of 25 knots. Tianxing-
1 starts to sail when the object ship is at a distance of 8 km
away. When it is 500 m away from the object ship, it starts
evasion maneuvers. After sailing to the rear of the object ship,
Tianxing-1 achieves stable tracking of the object ship at a
distance of 400-500 m from the object ship.

FIGURE 26. Test results for a ship based on the ROI-prediction algorithm.

FIGURE 27. First-frame object extraction algorithm for ship extraction.

FIGURE 28. Test results for a ship based on the ROI-prediction algorithm.

B. PROCESS OF THE MARINE TEST
After the marine radar detects the object ship, it guides the
photoelectric device to point toward the object. As shown in
Fig. 25, the object identified by the radar in the field of view is
extracted through the first-frame object extraction algorithm.
Then, the pixel coordinates of the object are input into the
ROI-prediction algorithm to predict the next frame position
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FIGURE 29. First-frame object extraction algorithm for ship extraction.

FIGURE 30. Test results for a ship based on the ROI-prediction algorithm.

FIGURE 31. First-frame object extraction algorithm for ship extraction.

of the object, and then the local object detection algorithm
is implemented near the prediction area. Then, the local
coordinates of the object are transformed into global coor-
dinates, and the object position is predicted again. As shown
in Fig. 26, the ROI-prediction algorithm achieves the object
tracking effect after extracting the position information of the
object ship with its size in the first frame.

FIGURE 32. Test results for a ship based on the ROI-prediction algorithm.

Due to a wave on the deck, the object is lost in the field
of view. Then, the marine radar reattempts the photoelectric
object pointing and re-executes the first-frame object extrac-
tion algorithm to extract the new pixel position of the object
ship and track it, as shown in Figs. 27 and 28.

At this point, the evasion action of the object ship is nearly
complete, and then the tracking ship circles to the rear of the
object ship for constant speed tracking; see Figs. 29 and 30.

At this time, ‘‘Tianxing-1’’ circles to the rear of the object
ship and keeps a distance of 400-500 m from the object ship
for stable tracking; see Figs. 31 and 32.

VI. CONCLUSION
An object detection-tracking algorithm based on a radar-
photoelectric system is proposed to avoid the tracking loss of
specific objects among multiple objects in the object tracking
ofUSVs that leads to poor tracking robustness and high object
detection delay when the object shape and scale substantially
change against a complex background. The first-frame object
extraction algorithm fuses marine radar guidance objects and
photoelectric tracking objects. When multiple objects of the
same classification appear in the same field of view, an object
guided by radar can be extracted stably. When the object
is against a complex background, the algorithm can also
achieve stable object tracking, and the robustness is greatly
improved. Due to the proposed ROI-prediction algorithm,
the detection area of each frame is reduced, the stability of
object tracking is improved, and the detection efficiency is
substantially increased. Compared with the YOLOv3 detec-
tion algorithm, the time consumption is reduced by 25.8%.
Compared with the yolov4 detection algorithm, the time
consumption is reduced by 16.4%. In a sea test of dynamic
objects, the stability of object tracking is notably improved.
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