
Received March 17, 2021, accepted April 5, 2021, date of publication April 13, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073041

Compression of XML and JSON API Responses
GYAN P. TIWARY 1, ELENI STROULIA 2, (Member, IEEE), AND ABHISHEK SRIVASTAVA 1
1Discipline of Computer Science and Engineering, IIT Indore, Indore 453552, India
2Faculty of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada

Corresponding author: Abhishek Srivastava (asrivastava@iiti.ac.in)

This work was supported in part by the Ministry of Electronics and Information Technology (MeiTY), Government of India, in part by the
Science and Engineering Research Board (SERB), Government of India, and in part by the University of Alberta, Edmonton, Canada.

ABSTRACT Web services are the de-facto standard for implementing web-based systems today, and com-
prise message-based interactions involving XML and JSON documents. These formats can be quite verbose,
especially XML, and therefore compression of such documents can potentially improve the communication
efficiency and performance of service-oriented systems. In this paper, we review the various formulations of
XML compression and propose a novel technique for the same, wherein large section of the documents are
substituted by numerical representations. The approach is simple yet effective, especially on small documents
that constitute the bulk of communicated content in web-based systems.We conduct experiments with several
datasets and demonstrate that the proposed technique for XML compression outperforms the existing state-
of-the-art techniques.

INDEX TERMS Compression of Web API responses, compression of ReSTful responses, JSON compres-
sion, XML compression.

I. INTRODUCTION
In service-oriented architectures, data exchange relies on
some choice of resource representation, with XML or JSON
being the most popular ones. XML and JSON are struc-
tured documents where structure tags specify the type of
the data elements they annotate, enabling the independent
services to share commonly agreed upon semantics. Element
and attribute tags in XML and, correspondingly, keys in
JSON serve as annotations to the actual data values being
exchanged. These annotations tags are invariably repeated
several times in the request and, especially response, docu-
ments. While this repetition arguably makes XML and JSON
self-descriptive, it also contributes to verbosity of these doc-
uments. The main purpose of compressing structured docu-
ments such as XML and JSON is to reduce their size without
information loss.

Consider for example an API returning information about
a flight to Edmonton, at 16:02:30 on 2019-12-24 at
gate 6, having departed at 16:22:30 from gate 7, shown
in listing 1 as XML and in listing 2 as JSON. The size of
the XML representation is 169 bytes and the JSON repre-
sentation is slightly smaller at 154 bytes, whereas the size of
the data itself is only 55 bytes. In general, the sizes of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhangbing Zhou .

XML and corresponding JSON representation of the same
structured data returned by a web service are comparable,
with JSON being slightly smaller because it does not require
‘‘closing tags’’ for the various data elements.

In our literature review on compression of structured doc-
uments, most work has been on the compression of XML
and relatively limited attention has been given to JSON. The
method we describe in this paper is applicable to structured
documents in general, including XML and JSON, relying on
the notion that the documents in question exhibit a regular
structure composed of free text encapsulated in regular pat-
terns of labels, i.e., words from a limited vocabulary. In this
paper, we report on our experiments with XML, primarily
because this enables us to compare our method against other
related methods that have been validated with XML. To the
best of our knowledge, there has been no reports of JSON
compression in the literature. A detailed discussion of the
methods of compression is given in section II. Since most
of the work is done on XML compression and experimental
datasets are available only in XML compression, our evalua-
tion is based on XML compression only.

An XML document (as well as a JSON document) is
structured as a tree, with each node labelled by a tag consist-
ing of more children nodes and/or plain data, conveying the
actual information content. In the example shown in Listing 1
‘‘Edmonton’’, ‘‘16:02:30’’, ‘‘16:22:30’’, ‘‘2019-12-24’’,

57426 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7954-4075
https://orcid.org/0000-0002-8784-8236
https://orcid.org/0000-0002-6338-5476
https://orcid.org/0000-0002-3195-2253


G. P. Tiwary et al.: Compression of XML and JSON API Responses

Listing 1. API response in XML.

Listing 2. API response as a JSON.

‘‘6’’ and ‘‘7’’ constitute the plain data, i.e., the actual infor-
mation to be communicated. The element and attributes tags,
i.e., ‘‘Airport’’, ‘‘City’’, ‘‘Arrival-time’’, ‘‘Departure-time’’,
‘‘Date’’ and ‘‘Gate’’, constitute the structure of the document.

XML documents are text files and, in principle, they can
be compressed using simple text compressors [2], [3]. Such
text compressors, however, are XML-agnostic and ignore the
structured nature of XML. Therefore, even though ordinary
text compressors do compress XML documents, taking the
structure of the document into consideration can result in sig-
nificant reduction in the size of the compressed documents.

The main objective of this research is to minimize the
size of the XML or JSON documents being communicated
between web services. Web services provide a programmatic
way of accessing the web. There are two ways of implement-
ing web services, SOAP based web services and RESTful
web services. SOAP Based Web Services define the XML
schema for their request and response documents. Restful
Web Services do not require the precise definition of the
structure of their requests and responses. Generally, the size
of the XML (or JSON) exchanged in either type of web
services is not very large and these have a high structure-
part/data-part ratio. This paper proposed a technique to more
effectively compress such small XML or JSON documents
used in web APIs.

Compression techniques that take advantage of the struc-
tured nature of XML are called XML-conscious compres-
sors [1]. XMill [4] is one among the earliest XML-conscious
compression algorithms and is often used as the benchmark
against which other methods are evaluated. XML-conscious
compressors are further divided into two categories, based
on whether or not they produce queryable compressed doc-
uments. Queryable XML compressors (partially) maintain
the structure of the original document in the compressed
result, such that XQuery, and other similar types of querying
mechanisms, may extract data without decompressing the
whole document. These methods are particularly relevant in

XML-storage systems to support space-efficient storage and
time-efficient access. XMill [4] is a non-queryable compres-
sor andXGrind [5] is the oldest and perhaps best knownXML
compressor of the queryable type.

Another approach to XML compression involves aggre-
gation and clustering of XML documents wherein several
small XML documents are aggregated to form a larger one,
which is subsequently compressed in XML-conscious man-
ner. SMCA [6] is a state-of-the-art techniques in this direc-
tion. While XMill is the most prominent technology of XML
compression, SMCA is one of the latest research in the field
of SOAP based XML message compression. The classifica-
tion of XML compressors and related research is described in
detail in the Section II.

To understand the problem statements of the proposed
research, it is necessary to understand the workings of
XMill [4] and SMCA [6], the most significant XML com-
pression techniques. SMCA is largely based on XMill and
the points below summarize the common features shared by
both of them.

• Both techniques treat the data and structure parts of
XML differently.

• In both techniques, a ‘tag dictionary’ assigns numbers
to the structure parts of the XML based on their position
in the document. For example, the tag dictionary cor-
responding to the XML in Listing 1 comprises six tag
names, i.e., Airport, City, Arrival-time, Departure-time,
Date and Gate, and their respective codes, i.e., 1, 2, 3, 4,
5 and 6.

• In both techniques, a ‘path’ to each XML data (con-
tent) point is worked out. The path to a data point in
XML is the sequence of tag names from the root tag
to the parent tag of the data element in question. For
example, the data point ‘‘2019-12-24’’ in Listing 1 has
the following path: ‘‘Airport/Arrival-time’’. Data points
‘‘6’’ and ‘‘7’’ have the same path i.e., ‘‘Airport/Gate’’.
An important assumption of both XMill and SMCA is
that data points with the same data path are similar.

• Both XMill and SMCA create a new container for every
new path and insert all the data that share a common path
a common corresponding container.

• The major premise of both XMill and SMCA is that
compressing similar data together in a container with
compressors like bgip2 [2], provides better compression.

Assuming that compressing an individual XML documents
does not yield a sufficient compression ratio, SMCA works
on several similar XML documents, aggregated together.
In SMCA, the contents from multiple XML elements with
the same path are put together in one container to get better
compression. Both XMill and SMCA suffer from some the
following drawbacks.

• Certain types of XML documents result in the creation
of many containers, each with a small number of data
elements, a phenomenon which adversely affects the
overall compression ratio. The XML documents used

VOLUME 9, 2021 57427



G. P. Tiwary et al.: Compression of XML and JSON API Responses

in Web APIs (either SOAP or RESTful) tend to suffer
from this problem, since they are typically short and
their data elements do not share common paths. XMill
and SMCA are, therefore, less effective in compression
of short XML documents.

• Assigning numbers to the structured parts of the XML
document based on their order in which they appear
in the document may result in infrequent structured
elements being assigned smaller numbers, i.e., numbers
with fewer digits, than more frequent elements. This
results in bulkier than necessary path containers, and
therefore reduces the effectiveness of the compression
process.

• Neither XMill nor SMCAmaintain the XML structure in
the compressed format, and, therefore, the compressed
document is not queryable.

In view of the drawbacks of existing XML compression
techniques, we raise the following hypotheses.

• A small number of containers with a large number of
similar data elements can result in better compression.

• Better compression can be achieved if the structure tags
of the XML document are assigned the smallest possible
number (starting from 1) in the tag dictionary based on
their probable frequency. More frequent tags should be
given small numbers, and vice-versa.

Using these hypothesis, in this paper, we describe a new
XML compression technique motivated primarily by the
need to enable bandwidth-efficient communications within
service-oriented systems and aims to reduce the size of
the XML documents exchanged as requests and responses
between web APIs. The size of these documents is typically
not very large (generally less than 1MB) and their content
typically involves a high ratio of element and attribute tags to
data content.

We have evaluated our method using the dataset used
by the authors of the SMCA compression method [6] that
contains a set of small XML API-response documents, and
larger XML documents constructed by aggregating the for-
mer ones. Our compression method outperforms the state-
of-the-art techniques in terms of compression ratio for short
messages (< 1MB). Its performance is comparable to the
best in literature for large messages (> 1MB) with the added
advantage that our technique results in queryable compressed
documents. We also evaluated our technique against XMill,
on the dataset used in [1]. This dataset comprises of very
large XML files, containing mostly textual data, annotated
with XML tags. These documents are typically the result of
manual or automated text processing workflows that embed
analysis results in the text, as structured tags. In contrast to
database-driven API responses, these documents tend to have
lower element and attribute tag ratio relative to data. Again,
our method outperforms XMill in most cases on this dataset.

The rest of the paper is organized as follows. Section II
discusses the classification of XML compression tech-
niques and provides an overview of previous research on

XML compression. The technique we propose is discussed in
detail in Section III. In Section IV, we evaluate the proposed
technique and compare it against other techniques in the
literature. The proposed technique of XML compression is
not insulated from limitations, which we discuss in Section V.
Finally we conclude the paper and discuss possible avenues
for future research in Section VI.

II. RELATED WORK
In principle, compression techniques belong in one of two
categories: general-text compressors and XML-conscious
compressors. XML is a text file, and like any other text file,
it can be compressed by any general text compressor such
as bzip2 [2], ppm [3]. A general text compressor, however,
does not take advantage of the special features of XML
and, therefore, tends to result in inferior compression ratio.
XML-conscious compressors, on the other hand, utilise the
structure of XML documents and therefore are able to com-
press XML documents with better compression ratios. XMill,
XGrind and SMCA [6] are examples of XML-conscious
compressors.

XML-conscious compressors are next divided into three
categories: schema-dependent, schema-independent and
XML tree-based compressors. Schema-dependent compres-
sors require the schema of the XML documents to effec-
tively compress a document. rngzip and [8] are examples of
schema-dependent compressors. Schema-independent com-
pressors, on the other hand, do not require the schema. XMill,
XGrind and SMCA are examples of schema-independent
compressors. Finally, XML tree-based compressors take
advantage of the fact that XML documents are organized in
a tree-like structure and aim to make this tree smaller. This
is done by representing the XML trees as a DAG (Directed
Acyclic Graph) or a FCNS (First Child Next Sibling) list: [9],
[10] and [11] are examples of XML tree-based compressors.

Furthermore, based on whether or not the resulting
compressed documents support queries such as XQuery,
compressors may be categorized as queryable XML com-
pressors and Non-Queryable XML Compressors. XGrind
is a queryable compressor while XMill and SMCA are
non-queryable compressors. Queryable compressors can be
homomorphic and non-homomorphic. The former type retain
the original structure of the XML even after compression,
whereas non-homomorphic compressors do not. XGrind is
a homomorphic compressor while XMill and SMCA are
non-homomorphic compressors. The XML compressor pro-
posed in this paper is XML-conscious, schema independent,
queryable, and homomorphic.

Much of the research done so far on XML compressors
is around XMill. XMill separates the data and structure
parts of the XML and inserts the data values into different
containers based on the path and data type. A dictionary
is created to assign a unique number to every unique ele-
ment and attribute name. Each container is then compressed
using a back-end compressor specialized for that data type.
Most general-purpose compressors can be used as back-end

57428 VOLUME 9, 2021

http://contrapunctus.net/league/haques/rngzip/


G. P. Tiwary et al.: Compression of XML and JSON API Responses

FIGURE 1. The three steps of the compression process.

compressors. XGrind is a two-pass compressor: the output
of XGrind is structured along the lines of its input XML.
Querying or parsing thus becomes possible even on the com-
pressed documents. XGrind encodes the element names and
attributes by numbers followed by ‘T’ and ‘A’ (‘T’ for tag,
‘A’ for attribute) and compresses the values using Huffman
coding. XML does not lose its basic structure due to compres-
sion with Huffman coding, and this feature makes XGrind
queryable.

XGrind, like XMill, is a seminal piece of work on XML
compression and several research endeavours have built on it.
Prominent among these are [12], [13] and [14]. Al-Shammary
and Khalil [15] was the first attempt at XML compression
keeping in mind SOAP-based web services. In this work,
the XML tree is first converted into a binary tree, using
a FCNS (First Child Next Sibling) transformation. Subse-
quently, a sibling state of two bits to each node of the binary
tree is attached. Finally a Huffman code is assigned to each
node and the entire XML is compressed. The resulting com-
pressed document is non-queryable.

This was followed by an era of aggregation-based research
on SOAP messages. This line of research is based on
the principle that, if a group of XML documents is com-
pressed instead of compressing each XML message sep-
arately, the compression ratio will be better [16]–[23].
SMCA [6] is perhaps the most recent major research endeav-
our in grouping based XML compression, outperforming
most approaches of XML compression in terms of com-
pression ratio. It is the only technique that aggregates and
compresses multiple XMLs in one pass and generates a
single non-queryable output. However, RESTful services
are known for single request and response, so aggregat-
ing multiple XMLs is not relevant in the case of RESTful
services.

Various XML compressors discussed in this section are not
as effective at compressing relatively small (<1MB) XML
documents in terms of compression ratio. XML documents
of this size are mostly utilised in API requests and responses.
The norm in ReSTful web services is that a single request
is followed by a single response. Therefore the technique of
grouping responses to several requests together is somewhat
impractical. The method we propose in this paper overcomes
the shortcomings of earlier approaches and is especially
effective for relatively small XML documents and is therefore
ideal for use with API request and responses (especially
ReSTful Web services). Further, the proposed technique cre-
ates queryable compressed documents.

III. THE PROPOSED TECHNIQUE
In this section, we describe in detail our method for XML
compression. The proposed method deals with all the prob-
lem statements discussed in Section I. It is designed to
examine the hypotheses discussed in Section I. Our method
converts the entire XML into a special type of binary encod-
ing in a single container. A back-end compressor is then
applied to the entire container. The structure parts of XML
are assigned with a smallest possible number (starting from
1) in the tag dictionary according to their probable frequency
in XML. The tag dictionary is referred to as ‘‘tag table’’ in
this article. The tag table for the XML in Listing 1 is shown
in the Table 2.

Note that our method relies on a simple key idea: each
element and attribute tag is mapped to a number; all closing
tags are also mapped to another single number; finally, each
distinct symbol of the language, in which the free-text of the
document is written, corresponds to its own number. This
translation process applies equally to XML and JSON doc-
uments, since the only difference between the two notations
is in the lack of pairs of opening/closing tags in JSON.

The method involves a configuration and a compression
phase. The configuration phase creates two dictionaries,
the symbol table (i.e. Table 1) and the tag table (i.e. Table 2),
which are used for the compression process, shown in
Figure 1.

The first step of the compression process is the character
translation, wherein the original XML document is converted
into XMLN , a form comprising only 13 symbols that can be
represented by just 4 bits. In the subsequent packing step,

TABLE 1. A subset of the symbol Table.

TABLE 2. The Tag Table corresponding to the flight-description XML
document.

VOLUME 9, 2021 57429



G. P. Tiwary et al.: Compression of XML and JSON API Responses

every two contiguous symbols of XMLN are accommodated
in one byte. This is done for all symbols contained in XMLN
and the resulting document is called XMLS . Finally, the third
back-end compression step involves compression of XMLS
using any one of the various back-end compressors like
PPM [3] to form the XMLB document.

A. CONFIGURATION
The configuration phase creates the symbol table, which
maps each character present in the data part of the input XML
document to a unique number, and the tag table, which maps
each element and attribute tag-name into a unique number.

According to a recent survey [7], 60.7% content on the web
are in English. The second most used language is Russian,
which is 8.3% of total and third most used language on the
web is Turkish which is just 3.9% of total. In addition, several
other languages use the Latin script. We are not entirely
sure about the programmable web, but realistically we expect
the language distribution of APIs to be along similar lines.
Therefore, assuming English as the main language of XML
documents, the document characters are in the range of 32 to
127 in the ASCII table. The symbol table, therefore, is a
mapping of each character in this range of ASCII values
to a unique number. Each character in the symbol table is
mapped to a two-digit number, computed as the (ASCII value
of the character - 31). Table 1 shows a subset of the symbol
table. The symbol table is independent of the specific XML
document under compression; instead it only depends on the
language of the document. Therefore, the same symbol table
is used to compress all XML documents in a given language.
Given the total number of characters in the English alphabet,
commonly used symbols, and the Arabic numerals, the range
of the Symbol Table values would be covered by two-digit
numbers.

Tag tables depend on the XML schema underlying the
to-be-compressed document, which, in turn depends on the
web API. In principle, a tag table could be constructed once
and reused for all documents emitted by the API. However,
to accommodate XML documents that are the result of text
annotation and to take advantage of the possibility that a
particular response may not use all the tags in the schema,
the tag table is constructed by scanning the XML document
and mapping every unique element and attribute to a unique
number. More frequent tags are mapped first to smaller num-
bers, whereas tags that appear less frequently are mapped to
subsequent larger numbers.

To illustrate the construction of the tag table, we use the
XML shown in listing 1. Table 2 shows the corresponding
tag table. As ‘‘Gate’’ is the most frequently appearing tag in
the XML, it is mapped to the smallest number; all tags and
attributes are also mapped to unique numbers.

Considering the practicalities of the deployment of our
compression method, we propose that service providers share
the symbol table and tag table of their XML response docu-
ments, along with the documentation of their APIs.

Listing 3. Example of the XMLN .

B. COMPRESSION
The actual compression process is carried out in three steps:
character translation, packing, and back-end compression as
shown in Figure 1.

1) CHARACTER TRANSLATION
In this step, the symbol table is used to translate the data part
of the XML document, one character at a time. The structure
part of theXML is translated using the tag table, with an entire
element or attribute tag substituted by their corresponding
number in the tag table. The intermediate file produced by this
step is called XMLN . The XMLN corresponding to the XML
document in the Listing 1 is shown in the Listing 3. In the
XMLN ‘T’ denotes the tag name, the number 2 following T
is the tag table entry corresponding to the word ‘‘Airport’’
in the XML. Similarly, ‘A’ represents an attribute name and
the number following A, 4 in this case, is the tag table entry
corresponding to the word ‘‘city’’ in the XML. Zero in XN
indicates the closing tag for the last (or most recently opened)
tag. The remaining numbers that are neither zero nor have an
‘A’ or ‘T’ before them represent the data part of the XML.
Each character of the data parts of the XML is substituted
with the help of the symbol table. In this way, XMLN is made
up of only 13 types of symbols, the Element Start Symbol
(T), the Attribute Symbol (A), Space, and the digits 0 to 9.
Element End symbol is denoted by a single 0 preceded and
followed by Space. Therefore no extra symbol is required to
denote the end of an element.

The character-translation process is described formally in
Algorithm 1. Every token of XML is picked up one by one in
different iterations (Line 3). If the chosen token in the current
iteration is a data part of the XML (Line 4), each character
of that token is translated with the help of the symbol table,
and stored in the variable translate (Line 5). If the chosen
token is a structure part of the XML (Line 6), the entire
token is translated to a minimum possible number with the
help of the tag table, and stored in the variable translate
(Line 7). If the chosen token in the current iteration is a tag
of the XML (Line 8), the character ‘T’ is prepended to the
current value of translate (Line 9). If the chosen token in the
current iteration is an attribute-name of the XML (Line 10),
the character ‘A’ is prepended to the current value of translate
(Line 11). If the chosen token in the current iteration is a
closing tag of the XML (Line 12), the variable translate is set
to 0 (Line 13). After obtaining a proper token it is concate-
nated with the variable XMLN followed by a space (Line 14).
As many iterations are performed as is necessary to translate
all the tokens in the XML document, and return the value
of XMLN .

57430 VOLUME 9, 2021



G. P. Tiwary et al.: Compression of XML and JSON API Responses

Algorithm 1: Character_Translation_Algorithm
Input: Plain_XML
Result: XMLN

1 var XMLN ;
2 var translate;
3 for All the tokens in Plain_XML do
4 if The token is a ‘‘data’’ part of the XML then
5 translate← Use Symbol Table to translate each

character of the token;
6 if The token is a ‘‘structure’’ part of the XML then
7 translate← Use Tag Table to translate whole

token;
8 if The word is a ‘‘tag’’ in the XML then
9 translate← ‘T ′ concatenate(+) translate;
10 if The word is a ‘‘attribute-name’’ in the XML

then
11 translate← ‘A′ concatenate(+) translate;
12 if The word is a ‘‘Tag Closing’’ then
13 translate← ‘0′;
14 XMLN ← XMLN + SPACE + translate;
15 end
16 return XMLN ;

2) PACKING
As the total number of symbols in XMLN is just 13, the sym-
bols may be represented using 4 bits. In the packing step,
every two contiguous symbols of XMLN are accommodated
in one byte. Doing this for the entire content of XMLN results
a ‘squeezed’ binary file called XMLS . As both XMLN and
XMLS retain the tree structure of the original XML, they may
be parsed with the help of the symbol and tag tables and
Xquery queries (or similar) can be executed on them.

Packing is described formally in Algorithm 2. Everything
starts with mapping all the 13 different symbols used in
XMLN to a unique 4-bit binary (Line 2). A cursor, denoted
by the variable cursor, points to the first symbol present in
XMLN (Line 3). If this cursor is not the end of the XMLN
(Line 4) and there exists another symbol next to where the
cursor is pointing (Line 5), then the symbol next to the current
cursor is pointed to by another cursor denoted by the variable
cursor1 (Line 6). The 4-bit binary mappings of the symbols
being pointed by cursor and cursor1 are accommodated in
one byte (Line 7). However, if the variable cursor is pointing
to the last symbol of the XMLN (Line 9), then the byte
will be created by assuming the next 4-bit binary as 0000
(Line 10). The created byte is appended to the variable XMLS
(Line 8 and 11). Because in an iteration we are picking two
values from the XMLN , so for the next iteration the cursor has
to be advanced by two symbols. Finally the algorithm returns
XMLS .

3) BACK-END COMPRESSION
The this final step of the compression process, the XMLS
created during the packing stage is passed to any one of

Algorithm 2: Packing_Algorithm
Input: XMLN
Result: XMLS

1 var XMLS ← null;
2 Assign all the 13 symbols in XMLN to an unique 4-bit

binary;
3 var cursor ← First Symbol in XMLN ;
4 for cursor is not end of XMLN do
5 if A character at cursor + 1 exists then
6 var cursor1 = cursor + 1 (i.e. next symbol);
7 Accommodate 4-bit binaries equivalent of

symbols pointed by cursor and cursor1 into a
single byte;

8 Concatenate the created byte with current value
of XMLS ;

9 if If cursor + 1 is end of the XMLN then
10 Create a byte using the 4-bit binary of character

at cursor and 0000;
11 Concatenate the created byte with current value

of XMLS ;
12 cursor = cursor + 2;
13 end
14 return XMLS ;

various back-end compressors. In this work, we choose
PPM [3] as the back-end compressor because of its superior
compression ratio in our case. Any other general purpose
compressor may also be used for back-end compression.
The output of this step is called XMLB. Parsing XMLB or
executing queries on it is not possible. SMCA, XMill, and
many other XML-compression techniques use back-end com-
pressors. We too have used a back-end compressor to show
the effectiveness of the proposed technique against existing
techniques.

The XML schema is required to create the tag table. How-
ever, once this table is created, the entire XMLdocument need
not be handled together for effective compression. Different
parts of an XML can be compressed separately using the tag
and symbol tables. Just one tag name of a large XML docu-
ment can be substituted using the symbol table and tag table
to get the corresponding XMLN . This XMLN that represents
a very small portion of the document can be converted into
XMLS followed by XMLB.

C. JSON COMPRESSION
The JSON document shown in Listing 2 conveys the same
information and exhibits a parallel structure to the XML
document in Listing 1, both consisting of a ‘‘Data’’ and
a ‘‘Structure’’ part. The two representations can be easily
converted to each other. Therefore, the character translation
technique discussed in the section III-B can be applied to both
representations and the output would be the same. However,
most related research on compression is in terms of XML,
and only XML datasets are available for comparative exper-
imentation, therefore we have chosen to explain our work in

VOLUME 9, 2021 57431



G. P. Tiwary et al.: Compression of XML and JSON API Responses

the terms of XML, fully cognizant of the fact that mostly web
APIs exchange information in JSON.

D. COMPRESSION OF NON-ENGLISH BASED XML
The effectiveness of the proposed XML compression tech-
nique depends to a large extent on the number of digits in
the entries of the symbol table. This number depends on the
number of unique characters that the XML is composed of.
Each character in the symbol table is assigned a unique num-
ber. The number assigned to these characters solely depends
on number of unique characters used in XML and is not
related to the encoding of characters (e.g., UTF-8, UTF-16,
or UTF-32). Similarly, the tag table contains mappings of ele-
ment and attribute names of the XML to the smallest possible
number based on the frequency of occurrence the concerned
tag and is also not related to the encoding of characters in
the tag. In the proposed method, we have only considered the
English alphabet because of two reasons.

• Our work is motivated by the need to improve the per-
formance of web applications through the compression
of API responses. Given that 60.7% of the content on
the Internet is in English [7] it stands to reason that
most of the API responses use English characters. With
this, one can safely assume that most XML documents
comprise content only in English and this significantly
helps compression as it makes the entries in the symbol
table be of just two digits.

• If we consider XML documents with non-English char-
acters, the number of digits required for the symbol table
entries increase and the compression is not as effective.
Finally, because earlier research on XML compression
assumes English based content only, we too show com-
pression results on XML documents in English.

The proposed method can be easily updated to work on
non-English characters. If the maximum number of unique
characters that an XML can have is increased to 999, which
is enough to accommodate most non-English characters, then
each character in the symbol table would bemapped to a num-
ber of three digits. The details on which three-digit number is
to be mapped with which character in the symbol table, can
be worked out at the time of implementation. One possible
approach to render some efficiency could be to assign a small
number to a character with a small Unicode and a large
number to a character with a larger Unicode. A subset of such
a symbol table is shown in the Table 3:

TABLE 3. A subset of the Symbol Table having character to 3-digit
number mapping.

Listing 4. Example of the XMLN when symbol Table has character to
3-digit number mapping.

The value of XMLN ((i.e., result of character translation))
in this case is given in Listing 4. The compression ratio cor-
responding to a three-digit symbol table is shown in Table 4.
It is clear from the table that even with a 3-digit symbol
table, the proposed method is superior to XMill and SMCA
in compressing small size XML documents.

E. COMPRESSION OF XML CONTAINING BINARY DATA
XML documents may also contain binary data. It is impor-
tant, therefore, that the proposed technique for XML com-
pression works on binary data. To denote the start of binary
data in an XML document, we introduce the fourteenth sym-
bol in XMLN as ‘B’. ‘B’ like other contents in XMLN is also
converted into a unique 4-bit binary in XMLS . To convert
binary data to XMLN , we apply a technique like Base-64 [26].
This involves dividing the binary data into 6-bit chunks. If the
two-digit number that a 6-bit chunk represents is N, then the
number N+1 is calculated and the two digits of N+1 are
appended to XMLN . While creating groups of binary data
of size 6 bits, if the last group cannot be made of 6 bits
owing to very few bits remaining, then extra 0s are added
to make it 6 bits long. Binary data is always represented in
terms of a number of bytes. Let us assume, for example,
that the binary data here is 3 bytes long, that is, 24 bits.
We make four groups of 6 bits from these 24 bits. A group
of 6 bits represents a number having two decimal digits. In our
approach, we use a four-bit binary (i.e., a nibble) to represent
each decimal digit in the packing stage of compression. Two
decimal digits obtained from a group of 6 bits will, therefore,
be accommodated in 8 bits. This means that it would take
8 bits in XMLS to represent binary data 6 bits long and thus
it will take 32 bits to represent binary data of 24 bits. The
number of bytes required inXMLS to represent the binary data
therefore becomes 4/3 times the actual size of the binary data.
This expansion is mediated by the back-end compression.
Representing binary data with the proposed method permits
10 symbols in a nibble. Therefore, only 100 different values
are possible in a byte instead of 256 values. Being able to
accommodate only 100 values in a byte increases the prob-
ability of repetition of a byte. Repeating bytes in a binary
document are very well handled by back-end compressors
like PPMD [3]. Since previous research does not consider
compression of binary data, we have not been able to conduct
a comparative study of our technique in this regard.

IV. EVALUATION
Experiments are conducted in this section to evaluate the
hypotheses raised in Section I. In the experiments conducted,

57432 VOLUME 9, 2021



G. P. Tiwary et al.: Compression of XML and JSON API Responses

we demonstrate that better compression is achieved if fewer
containers are used to compress an XML. The experiments
also show that in large size XML documents with a relatively
small number of containers, the number of containers does
not influence the compression ratio. The experiments demon-
strate that, given the independence of the proposed technique
from the use of containers for compression, the proposed
technique performs very well on compression of small size
web API XMLs.

A. EXPERIMENTAL DESIGN AND DATASET
To assess the efficacy of the proposed technique, we apply
it to two benchmark datasets: the first is the one used in
SMCA [6] (Section IV-B); and the second is the one used
in the survey paper of Sakr [1] (section IV-C). The proposed
compression technique is implemented using Python3. It is
important to note that in the experiments, we calculate the
compression ratio as the fraction of the size of the origi-
nal XML document over the size of the compressed docu-
ment (CompressionRatio(CR)=XMLSize/CompressedSize);
a higher compression ratio, therefore, implies a better com-
pression. The configuration of the system used for the exper-
iments comprises: an i3-4005U CPU @ 1.70 GHz processor
and a 4 GB DDR4 RAM.

1) THE FIRST BENCHMARK DATASET
The first benchmark that we compare our technique against
is the SMCA [6] method. We choose SMCA because it is the
leadingXML compression technique in terms of compression
ratio. We were unable to find an implementation of SMCA
and therefore compared the compression ratios achieved for
our proposed technique with the ratios reported in SMCA [6].
The results are included in Section IV-B. The dataset used to
compute the compression ratios of our technique is the same
used by SMCA.

The dataset used by SMCA [6] comprises 160 XML doc-
uments, 1.xml, 2.xml, and so on, divided into four groups
of 40 XMLs each, labelled ‘‘small’’, ‘‘medium’’, ‘‘large’’,
and ‘‘very large’’, to indicate four different size ranges. The
XML documents in each of these groups are then aggre-
gated to form four new XML documents, i.e., small.xml,
medium.xml, large.xml, and vlarge.xml. In addition, 16 more
XML documents, S1.xml to S16.xml, are created by com-
bining the first 10, 20, 30 and 40 XMLs of each of the
above groups; i.e., S1.xml combines the first 10 documents
of the small set, 1.xml to 10.xml. The XMLs S5.xml to
S8.xml are created by combining all 40 XMLs of the small
group and respectively the first 10, 20, 30 and 40 XMLs
of the medium group (for example: s5.xml is a combination
of the 40 XML documents of the small group and the first
10 documents of the medium group; s6.xml is a combination
of the 40 XML documents of the small group and the first
20 XML documents of the medium group and so on until
s8.xml). Similarly, S9.xml to S12.xml are combinations of all
the XMLs of the small and medium groups and respectively
the first 10, 20, 30 and 40 XMLs of the large group. Finally,

S13.xml to S16.xml are combinations of all the XMLs of the
small, medium, and large groups and respectively the first
10, 20, 30 and 40 XMLs of the vlarge group. Therefore,
in this way the first dataset contains a total of 180 XMLs. The
original 160 documents, small.xml to vlarge.xml and S1.xml
to S16.xml.

As Table 4 shows, the dataset contains XML documents
ranging from 4673 bytes to 2072248 bytes. The number of
containers in each of these XML documents depends on
the number of independent unique paths in each document.
This number (18, in this dataset) is the same in all XML
documents in spite of large variations in terms of amount
of data. For a small XML document, 18 containers have
a negative impact on compression because each container
has very little data. Therefore, the compression results of
SMCA which utilizes containers for compression is inferior
for small XML documents. The proposed technique, on the
other hand, only uses one container (i.e., XMLS ) for com-
pression and thus does much better than SMCA with small
XML documents. As the size of the XML increases, the data
content in the 18 containers used by SMCA starts to increase,
and so does the compression ratio. The 18 containers soon
become insignificant when the size of the XML becomes very
large. Conversely, the proposed technique continues to use
one container for large XML documents and its compression
ratio starts to converge with that of SMCA. Figure 3 shows a
comparison of compression ratios of the proposed compres-
sion technique with SMCA. The proposed technique maps
frequently appearing XML tags with numbers having a small
number of digits in the tag table. This further improves the
compression as tags appearing a large number of times are
represented by short numbers that take less space. In this way
the Hypotheses raised in Section I are verified.

2) THE SECOND BENCHMARK DATASET
The second benchmark dataset comprises 24 XML docu-
ments, three of which could not be downloaded. We use
21 of these documents, therefore, and the range in size from
533,579 to 137,538,931 bytes. This dataset was used to evalu-
ate an earlier generation of XML compressors [1]. We choose
the XMill XML compression algorithm from this generation
of compression algorithm. This is because XMill is widely
considered to be a standard XML compression technique
and consistently maintains a good compression ratio. Fur-
thermore, the implementation of XMill is easily available.
We downloaded the XMill implementation from the follow-
ing url: https://sourceforge.net/projects/xmill/ and compared
the compression ratios and run-times of both methods. The
results of these experiments are reported in Section IV-C.
Figure 6 shows a comparison of the proposed method and
XMill on the second dataset.

B. COMPRESSING API-RESPONSE XMLs
Certain compression techniques are specifically designed for
compression of XML documents, produced and consumed by
SOAP-based web services. Today, the state-of-the-art in such

VOLUME 9, 2021 57433

https://sourceforge.net/projects/xmill/


G. P. Tiwary et al.: Compression of XML and JSON API Responses

techniques is SMCA [6]. The paper demonstrates the efficacy
of SMCA using a dataset comprising SOAP requests and
responses from various sources. These requests and responses
are systematically aggregated to form documents of varying
sizes. The dataset is now considered a standard and several
compression algorithms have been tested against it, e.g., [15]
and [16], with SMCA leading in terms of compression ratio.

According to [6], the SMCA technique was imple-
mented using Visual Basic on an Intel(R) Xeon(R) CPU
E5-1630 v3@ 3.70 GHz, 16 GB RAM. Tables 4 and 5
include data on the performance of SMCA provided in [6].
The same tables include results on the performance of our
technique and these are based on actual execution on our
system using this dataset. The other significant compression
technique XMill, as stated earlier, was downloaded by us
on our system (configuration of our system is provided in
the previous section) using the executable file downloaded

TABLE 4. Compression ratio comparison on SMCA dataset.

TABLE 5. Time comparison (ms).

FIGURE 2. Compression ratio comparison on small, Medium, Large and
very large group (SMCA dataset).

FIGURE 3. (SMCA vs Proposed Method) compression ratio comparison on
20 XMLs of SMCA dataset.

from the sourceforge website and made to work on the same
dataset.

Table 4 provides data on the compression ratio of our tech-
nique and that of SMCA and XMill. The same table is graphi-
cally illustrated in the Figures 3 and 2. The compression ratios
of the three techniques are compared on 20 XML documents
from the dataset namely small.xml, medium.xml, large.xml,
vlarge.xml andXMLs from S1.xml to S16.xml. The compres-
sion ratio results clearly indicate that the proposed technique
outperforms both SMCA and XMill for XML documents of
all sizes except very large ones where our compression ratio
is somewhat equal to that of SMCA. Our compression ratio is
much superior when compared to SMCA for small size XML
documents but the gap progressively reduces as the size of the
XML document increases. SMCAmostly outperforms XMill
except in the case of very small XML documents.

In web services the XML documents exchanged are mostly
small in size and thus the proposed technique is the most
appropriate. SMCA, on the other hand, does not perform well
with small XML documents and hence is not suitable to be

57434 VOLUME 9, 2021

https://sourceforge.net/projects/xmill/
https://sourceforge.net/projects/xmill/


G. P. Tiwary et al.: Compression of XML and JSON API Responses

used with web-services. As both SMCA and XMill use text
compressors at the back-end, we compare their compression
results with XMLB.

In terms of the time required for compression, Table 5
shows that our technique takes longer than SMCA and XMill.
This is mainly because our technique supports parsing and
querying even in the compressed form (more precisely, pars-
ing and querying are supported until the stage that XMLS is
formed as described in the relevant section earlier). SMCA,
on the other hand, forms compressed documents that do not
support parsing and querying and hence the shorter time for
compression.

Comparison of the compression ratio of our proposed
technique with that of XMill is shown in Figure 4. The
graphs have been traced over all the 180 XML document
of the dataset. The proposed technique achieves a much
better compression ratio across the dataset. Most XML doc-
uments in the dataset are smaller than 60000 bytes and there-
fore for better visualisation and more detailed analysis we
compare the two techniques for XMLdocuments smaller than
60000 bytes in Figure 5. Such documents make up 168 of the
total 180 XML documents in the dataset and our proposed
technique is seen to perform much better than XMill.

FIGURE 4. (XMill vs Proposed Method) compression ratio comparison on
all 180 XMLs of SMCA dataset.

C. COMPRESSING DOCUMENT-STYLE XMLs
The 24XMLs used by [1] exist in two forms each, the original
documents and the structured documents. Original XML doc-
uments are full XML documents comprising both structure
and data parts. Structured XML documents, on the other
hand, consist of only opening and closing tags. These docu-
ments, therefore, only have structure information and no data
part.

We compare the compression ratios of the proposed tech-
nique with that of XMill using only the original XML doc-
uments, the ones with both structure and data parts. The
results are shown in Figure 6. It is clear that our technique
outperforms XMill in terms of compression ratio with every

FIGURE 5. (XMill vs Proposed Method) compression ratio comparison on
168 XMLs having sizes less than 60000 bytes using SMCA dataset.

FIGURE 6. Compression ratio comparison on original XML documents
(longer the bar better is the compression ratio).

XML document except two. These two documents have a
large number of tags with relatively small sized free text data
between the tags.

D. EVALUATING THE QUERYABLE FEATURE OF THE
PROPOSED TECHNIQUE
The proposed technique maintains the characteristic of being
queryable up to the stage of XMLS (the various stages of
compression are shown in Figure 1). After applying back-end
compression, however, the compressed document is no longer
queryable. The compression ratios for documents at the stage
of forming XMLS are naturally smaller than the final com-
pression ratios which also incorporate back-end compression.
The significance of the documents at this stage, as stated
earlier, is that they are queryable as opposed to the document
formed after back-end compression.

XGrind is perhaps the oldest and most significant research
endeavour in the direction of Queryable XML Compressors,

VOLUME 9, 2021 57435



G. P. Tiwary et al.: Compression of XML and JSON API Responses

TABLE 6. Compression Ratio of XMLS (proposed method) vs QRFXFreeze.

whereas QRFXFreeze [24] is a more recent technique
and outperforms most queryable compressors in terms of
compression ratio. The compression ratio of the proposed
technique, at the stage of XMLS , is compared with the com-
pression ratio of QRFXFreeze. The dataset that is used to
compare QRFXFreeze with other queryable compression
algorithms in [24] is also used here to compare the proposed
technique with QRFXFreeze. Table 6 shows this comparison
andXMLS of the proposed technique has a better compression
ratio than QRFXFreeze for four out of the five XML docu-
ments used. In [24] the compression ratio is calculated using
the formula

cr = [1−
sizeof (compressedfile)
sizeof (originalfile)

] ∗ 100

. To make this consistent with our technique we calculated

sizeof (originalfile)
sizeof (compressedfile)

=
100

(100− cr)

. Further
sizeof (originalfile)

sizeof (compressedfile)

is compared with the compression ratio of the proposed
technique.

E. EVALUATION OF JSON COMPRESSION
A JSON document also contains a data part and a structure
part as discussed in Section III-C. Therefore, the same out-
puts, XMLN (subsequently XMLS and XMLB), are generated
irrespective of whether XML and JSON representation is
used. However, as major research endeavours use XML com-
pression, we have also evaluated our research using XML.

F. SIZE, INFORMATION AND COMPRESSION ANALYSIS
XML documents may vary in their nature based on the num-
ber of characters dedicated to their data part and the number
of characters dedicated to their structure part. The structure
part of an XML comprises tags and attributes whereas the
data part is the content between tags. An XML document may
have a large data part with a large number of characters and
very few tags and attributes. Another document may have a
large number of tags and attributes with a large number of
characters dedicated to these and very few characters for data.
Certain XML documents may have a small number of tags
and attributes but the size of each tag and/or attribute may be
very large and hence a large number of characters dedicated
to the same.

Our proposed technique for XML compression varies in
its compression efficacy with different types of XML. In this
section, we seek to understand the behaviour of the technique
in this respect. To this end, we create synthetic XML docu-
ments of varying characteristics as described above. We start
with a template XML document consisting of n slots. A slot
can be filled with any one of the following elements of an
XML document: an opening tag, a closing tag, an attribute
name, a single character of an attribute value, or a single char-
acter of data content. It is important to note that irrespective
of the size of an opening tag, closing tag, and attribute value,
each occupies a single slot; whereas one character of the data
occupies a single slot. This means that if a single element of
data comprises 10 characters, 10 slots would be required to
accommodate the data element. Conversely, if an opening tag,
closing tag, or attribute name is of size 10 characters, it would
be accommodated in just 1 slot. The intent of defining slots in
this manner is to understand the varying nature of XML doc-
uments and the variation in the effectiveness of the proposed
technique with such varying documents.

We start with a document comprising only opening and
closing tags that fill all the slots, resulting in an XML of
n/2 opening and n/2 closing tags. The next XML document
is created by substituting one pair of opening and closing
tags with two data characters (as stated earlier, one slot can
accommodate an entire opening or closing tag but only one
character of data). Next another pair of opening and closing
tags is substituted with data characters. This is done with suc-
cessive pairs of opening and closing tags being replaced with
data characters until n/2 XML documents are created with
the first one comprising only tags and n/2 empty elements,
and the last one containing a single element (just one pair of
opening and closing tags) and n-2 data characters.

To understand the behaviour of the proposed technique,
we express the nature of the XML documents in terms of
Information. To do this, let us assume that an XML document
with n slots has a total of t tags with an average size of x
characters per tag, a total of a attributes with an average size
of y characters per attribute, and has a total of d characters in
the data part of the XML. Following this assumption, the total
size of an XML with n slots is (t ∗ x + a ∗ y + d) and
2t + a+ d = n as it is assumed that the n slots are filled with
the given number of tags, attributes, and data characters. The
ratio (t+a+d)/(t ∗ x+a∗ y+d) represents the information
that the XML carries and this ranges between 0 and 1. Among
XML documents with n slots, the XML that has a smaller
value of (t ∗ x + a ∗ y + d), carries more information and
we notice that such documents (that carry more information)
perform poorly in terms of compression ratio with the pro-
posed compression technique.When t and a are both 0, all the
slots in the XML document are filled with single characters
of data and exhibits the maximum information, i.e., 1. With
such documents, the proposed technique returns the worst
compression ratio. Similarly when d = 0 and t � 2t ∗ x,
a � a ∗ y, then all the n slots are filled with large tags or
attribute names and the information that the XML document

57436 VOLUME 9, 2021



G. P. Tiwary et al.: Compression of XML and JSON API Responses

carries is small, i.e., close to zero. In such cases we notice that
the proposed technique gives good compression ratios.

We seek to understand the behaviour of the proposed
technique in a little more detail by studying the variation
of its compression ratio with varying information. To do
this, three sets of XML documents are created each with the
number of slots n being set at 10000. Each set comprises
5000 XML documents created in a manner described earlier:
the first document in each set comprises only opening and
closing tags; in a document with 10000 slots, this works out
to 5000 of each opening and closing tags. For successive
XML documents, tags are replaced with data characters and
the next document has 4999 opening and closing tags and
2 characters of data. This is continued until the last (5000th)
XML document in each set has just 1 opening and closing tag
and 9998 data characters.

Each set of XML documents created through this process
is populated with tags from three different schemas. The
first set of documents is created using the ‘‘XBench-TCSD-
Normal_Structural.xml’’ document from the survey paper
[1] and comprises very small sized tags of average length
2 characters per tag. The second set is created using the
‘‘S16.xml’’ document used with SMCA [6] that comprises
medium-size tags. The average length of tags in ‘‘S16.xml’’
is 10 characters per tags. Finally the third set uses the ‘‘EXI-
factbook_Structural.xml’’ document again from the survey
paper [1] that comprises large tags with an average size
of 24.56 characters per tag.

Figure 7 demonstrates the behaviour of the proposed
compression technique. For the same value of information,
an XML with a large tag size results in a better compression
ratio. The compression ratios for the XML documents of all
three sets decrease with an increase in the value of informa-
tion. This is very apparent for the sets with large and medium
sized tags and less apparent for the documents with the set of
documents with small tags. The same relation holds true for
small tag documents but the graph appears like a straight line
because of the small compression ratios. In Figure 7, a surge

FIGURE 7. Behaviour of the proposed technique on various types of
similar XMLs (5000 XMLs in each set).

appears in the compression ratio for documents whose value
of Information is close to 1. This is because XML documents
are created for our experiments by successively reducing the
number of tags one at a time and replacing these and thus
increasing the data content of the document one character at
a time. When the number of tags is sufficiently small and the
data content sufficiently large, a further decrease in number
of tags and their replacement with data characters does not
significantly reduce the size of the new XML, while resulting
in comparable improvement in compression. This results in
what appears to be a little like a surge in the compression
ratio.

G. COMPLEXITY ANALYSIS
Decompression of compressed document is the reverse
of compression and involves the following procedure: the
back-end decompressor is first used on the XMLB document
to get XMLS ; next the nibbles from XMLS are extracted one-
by-one to get XMLN ; and finally, the symbol and tag tables
are used to get the original XML. The complexity of both the
compression and decompression processes depends on: the
number of slots in the XML document, and the complexity
of the PPM algorithm, O(n) where n is the number of bytes
in XMLS . Slots are the substitutable entities of an XML that
are substituted using symbol and tag tables. These include
tag names, attribute names, a character in data, and others.
The slots of an XML are more comprehensively described
and formally defined in Section IV-F. Both compression and
decompression involve substitution followed by PPM com-
pression or decompression. The number of slots is the same
both in plain XML and in XMLS . Therefore, the complexity
of both the compression and decompression processes is
O(s+n).

H. DISCUSSION
We compare the efficacy of our method against state-of-
the-art competitors like XMill [4], QRFXFreeze [24], and
the recent SMCA [6]. XMill is the pioneer among XML
compression techniques and continues to serve as a bench-
mark. SMCA is the latest and the state of the art in XML
compression. The Figure labeled ‘‘(SMCA vs Proposed
Method) Compression Ratio Comparison on 20 XMLs of
SMCA Dataset’’ i.e. the Figure 3 clearly indicates that our
method is superior to SMCA in terms of compression ratio
for small and medium size documents. For large docu-
ments, however, the proposed method performs similarly to
SMCA, and in some cases SMCA performsmarginally better.
Figures 2 and 5 show that our method performs better than
XMill on documents of all sizes. QRFXFreeze, unlike SMCA
and XMill, is a queryable XML compressor. The proposed
method is also queryable until the final back-end compression
stage and hence we compare the queryable form (which we
called XMLS , shown in Figure 1 of the proposed method with
QRFXFreeze. QRFXFreeze has only been tested on XML
documents of very large size and we, therefore, compare
XMLS with QRFXFreeze for such documents. We notice that

VOLUME 9, 2021 57437



G. P. Tiwary et al.: Compression of XML and JSON API Responses

XMLS comfortably outperforms QRFXFreeze in terms of
compression ratio as shown in Figure or Table 6.

Note that SMCA and XMill, as stated earlier, are
non-queryable and hence we compare their outputs with
XMLB, the final, non-queryable, output of our method, as pro-
duced by the last stage of back-end compression is done.

In Section IV-F, we try to gain some insight on the kinds of
documents that are most amenable to compression and hence
provide superior compression ratios. We find that our method
gives inferior compression ratios for XML documents with a
relatively large number of characters in the data part, as com-
pared to the structure part. On the other hand, if the structure
part of the XML documents has a large number of characters
our method works better.

It is important to remember that JSON documents, like
XML documents, are divided into structure and data parts,
hence the proposed method is equally applicable and effec-
tive on JSON documents as well. Recently, a new encoding
method, the Google Protocol Buffer [25], was introduced.
This can be used to represent messages in a format that is
shorter than JSON. In Google protocol buffer messages are
represented in a binary form, in terms of key-value pairs of
structured and free-text data. Different types of data are rep-
resented using different encoding schemes inGoogle protocol
buffer. Although the Google Protocol Buffer is an interesting
option for resource representation, but it is not as popular
and is seldom used in web services. Messages between web
services are still mostly transferred as JSON or XML.

V. LIMITATIONS
Although the proposed method performs better for small
XMLs of web-based APIs, it has some limitations.
• As the number of characters in the XML increases,
the digit count in the numbers used in the symbol tables
increases. Therefore, the effectiveness of the proposed
method in cases where a large number of characters is
required is a little suspect. An example of this is its
use for cases where non-English characters need to be
used in the data part of the XML. This would make the
compression less effective.

• When binary data is compressed with the proposed
method, the size of the binary content in the intermediate
XMLS increases by 1.33 times instead of decreasing.
The back-end compression partially compensates for
this expansion.

• The compression ratio of the proposed method on small
XML documents is better than SMCA. However, in case
of large XML documents, especially those larger than
2MB, the compression ratio of the proposed method is
mostly equal to that of SMCA.

VI. CONCLUSION AND FUTURE WORK
The key contribution of this work is a novel compression
technique for structured documents like XML and JSON. The
design is motivated by the need to improve the efficiency of
network usage during service message exchange.

The proposed technique takes advantage of the structure
of XML documents and relies on the intuition that the natural
language underlying the messages exchanged requires fewer
characters than the complete ASCII character set, under the
realistic assumption that most service APIs are based on the
English language. This, therefore, enables us to map structure
tags and characters of the data elements into a much smaller
character set. Beyond this translation step, the proposed tech-
nique further reduces the size of the document through a
byte-packing step. This results in a significantly compressed
document that importantly retains its queryable characteris-
tic. The size of the document may further be reduced using a
traditional compression algorithm but at this stage the docu-
ment loses the property of being queryable.

Our experiments demonstrate that our method comfort-
ably outperforms the current state-of-the-art compression
technique, SMCA, in terms of compression ratio on files
smaller than 1 MB (Table 4). On files larger than 1 MB,
the proposed technique returns a compression ratio on par
with that of SMCA. It is important to note that, for the most
part, XML messages generated during interactions between
ReST services are quite small. The proposed technique, there-
fore, is quite effective in improving the utilization of net-
work resources in Service-Oriented systemswhich aremostly
ReSTful in nature today, as compared to SMCA.

For document-style XML, the proposed technique outper-
forms XMill, long considered a standard compression tech-
nique for such XML documents, in terms of compression
ratio (Figure 6). In this case, however, the final form of the
compressed document using the proposed technique is non-
queryable. This is because the final stage of compression
involves utilising a traditional text-compression algorithm.

The stage of compression just before this final stage (as
shown in Figure 1) results in a document that is queryable.
The compression ratios for these queryable compressed doc-
uments are compared with the compression ratios of the state-
of-the-art query-friendly compressor XQRFFreeze [24]. The
results (Table 6) show that the proposed technique compres-
sion ratios at the queryable stage outperforms the best in
literature.

In the future, we will attempt to address the limitations
mentioned above. Better compression of the binary data
being transferred through XML or JSON can be an important
avenue for future research. In addition, the compression of
XML or JSON documents using non-English characters can
be improved.

REFERENCES
[1] S. Sakr, ‘‘XML compression techniques: A survey and comparison,’’

J. Comput. Syst. Sci., vol. 75, no. 5, pp. 303–322, Aug. 2009.
[2] J. Seward. (1996). Bzip2 and Libbzip2. [Online]. Available: http://www.

bzip.org
[3] J. Cleary and I. Witten, ‘‘Data compression using adaptive coding and

partial string matching,’’ IEEE Trans. Commun., vol. COM-32, no. 4,
pp. 396–402, Apr. 1984.

[4] H. Liefke and D. Suciu, ‘‘XMill: An efficient compressor for XML data,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 2000,
pp. 153–164.

57438 VOLUME 9, 2021



G. P. Tiwary et al.: Compression of XML and JSON API Responses

[5] P. M. Tolani and J. R. Haritsa, ‘‘XGrind: A query-friendly XML compres-
sor,’’ in Proc. 18th Int. Conf. Data Eng., Feb. 2002, pp. 225–234.

[6] N. Haroune-Belkacem, F. Semchedine, A. Al-Shammari, and D. Aissani,
‘‘SMCA: An efficient SOAP messages compression and aggregation tech-
nique for improving Web services performance,’’ J. Parallel Distrib. Com-
put., vol. 133, pp. 149–158, Nov. 2019.

[7] W3Techs—World Wide Web Technology Surveys. Accessed: Mar. 13, 2021.
[Online]. Available: https://w3techs.com/technologies/overview/
content_language

[8] M. Girardot and N. Sundaresan, ‘‘Millau: An encoding format for efficient
representation and exchange of XML over the Web,’’ Comput. Netw.,
vol. 33, nos. 1–6, pp. 747–765, Jun. 2000.

[9] G. Busatto, M. Lohrey, and S. Maneth, ‘‘Efficient memory representa-
tion of XML document trees,’’ Inf. Syst., vol. 33, nos. 4–5, pp. 456–474,
Jun. 2008.

[10] M. Lohrey, S.Maneth, and R.Mennicke, ‘‘XML tree structure compression
using RePair,’’ Inf. Syst., vol. 38, no. 8, pp. 1150–1167, Nov. 2013.

[11] M. Bousquet-Mélou, M. Lohrey, S. Maneth, and E. Noeth, ‘‘XML com-
pression via directed acyclic graphs,’’ Theory Comput. Syst., vol. 57, no. 4,
pp. 1322–1371, Nov. 2015.

[12] W. Li, ‘‘Xcomp: An XML compression tool,’’ Doctoral dissertation,
School Comput. Sci., Univ. Waterloo, Waterloo, ON, Canada, 2003.

[13] J.-K. Min, M.-J. Park, and C.-W. Chung, ‘‘XPRESS: A queriable com-
pression for XML data,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD), 2003, pp. 122–133.

[14] P. Skibiński and J. Swacha, ‘‘Combining efficient XML compression with
query processing,’’ in Proc. East Eur. Conf. Adv. Databases Inf. Syst.,
Berlin, Germany: Springer, Sep. 2007, pp. 330–342.

[15] D. Al-Shammary and I. Khalil, ‘‘SOAP Web services compression using
variable and fixed length coding,’’ in Proc. 9th IEEE Int. Symp. Netw.
Comput. Appl., Jul. 2010, pp. 84–91.

[16] A. M. Abbas, A. A. Bakar, and M. Z. Ahmad, ‘‘Fast dynamic clustering
SOAP messages based compression and aggregation model for enhanced
performance of Web services,’’ J. Netw. Comput. Appl., vol. 41, pp. 80–88,
May 2014.

[17] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki, ‘‘Xproj: A frame-
work for projected structural clustering of xml documents,’’ in Proc. 13th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2007,
pp. 46–55.

[18] A. Al-Shammari, C. Liu, M. Naseriparsa, B. Q. Vo, T. Anwar, and R. Zhou,
‘‘A framework for clustering and dynamic maintenance of XML docu-
ments,’’ in Proc. Int. Conf. Adv. Data Mining Appl. Cham, Switzerland:
Springer, Nov. 2017, pp. 399–412.

[19] D. Al-Shammary and I. Khalil, ‘‘Dynamic fractal clustering technique
for SOAP Web messages,’’ in Proc. IEEE Int. Conf. Services Comput.,
Jul. 2011, pp. 96–103.

[20] D. Al-Shammary and I. Khalil, ‘‘Redundancy-aware SOAPmessages com-
pression and aggregation for enhanced performance,’’ J. Netw. Comput.
Appl., vol. 35, no. 1, pp. 365–381, Jan. 2012.

[21] D. Al-Shammary, I. Khalil, and Z. Tari, ‘‘A distributed aggregation and
fast fractal clustering approach for SOAP traffic,’’ J. Netw. Comput. Appl.,
vol. 41, pp. 1–14, May 2014.

[22] D. Al-Shammary, I. Khalil, Z. Tari, and A. Y. Zomaya, ‘‘Fractal self-
similarity measurements based clustering technique for SOAP Web mes-
sages,’’ J. Parallel Distrib. Comput., vol. 73, no. 5, pp. 664–676,May 2013.

[23] A. Algergawy, M. Mesiti, R. Nayak, and G. Saake, ‘‘XML data clustering:
An overview,’’ ACM Comput. Surv., vol. 43, no. 4, pp. 1–41, Oct. 2011.

[24] R. Senthilkumar, G. Nandagopal, and D. Ronald, ‘‘QRFXFreeze:
Queryable compressor for RFX,’’ Sci. World J., vol. 2015, pp. 1–8,
Jan. 2015.

[25] G. Kaur andM.M. Fuad, ‘‘An evaluation of protocol buffer,’’ inProc. IEEE
SoutheastCon (SoutheastCon), Mar. 2010, pp. 459–462.

[26] S. Josefsson, The Base16, Base32, and Base64 Data Encodings, docu-
ment RFC 4648, Oct. 2006, pp. 1–18.

GYAN P. TIWARY received the B.Tech. degree
in information technology from the Birsa Insti-
tute of Technology Sindri (BIT Sindri), Dhanbad,
India, in 2010, and theM.Tech. degree in computer
applications from the IIT (Indian School of Mines)
Dhanbad, India, in 2013. He is currently pursuing
the Ph.D. degree in computer science and engi-
neering with IIT Indore, India.

From 2019 to 2020, he was awarded with the
Overseas Visiting Doctoral Fellowship by Science

and Engineering Research Board, Government of India, to work as a Visiting
Research Scholar at the University of Alberta, Canada. His research interests
include service oriented architecture, privacy and security accepts of web
services, document compression, and cryptography.

Mr. Tiwary received fellowship and grants include the Overseas Visiting
Doctoral Fellowship (Science and Engineering Research Board), the Visves-
varaya Ph.D. Scheme Fellowship during Ph.D. degree at IIT Indore, and the
GATE Fellowship during the study of M.Tech. degree at IIT (ISM) Dhanbad.

ELENI STROULIA (Member, IEEE) is currently a
Professor with the Department of Computing Sci-
ence, University of Alberta. From 2011 to 2016,
she held the NSERC/AITF Industrial Research
Chair on service systems management with IBM.
Her Flagship Project in the area of health care
is the Smart Condo in which she investigates the
use of technology to support people with chronic
conditions live independently longer and to edu-
cate health-science students to provide better care

for these clients. She has played leadership roles in the GRAND and
AGE-WELL NCEs. She has supervised more than 60 graduate students and
PDFs, who have gone forward to stellar academic and industrial careers.
Her research interests include addressing industry-driven problems, adopting
AI, and machine-learning methods to improve or automate tasks. Since
January 2020, she has been the Director of the AI4Society Signature Area.
In 2018, she received the McCalla Professorship. In 2019, she was rec-
ognized with the Killam Award for Excellence in Mentoring. In 2011,
Smart-Condo Team received the UofA Teaching Unit Award.

ABHISHEK SRIVASTAVA received the Ph.D.
degree from the University of Alberta, Canada,
in 2011. He is currently an Associate Profes-
sor with the Discipline of Computer Science and
Engineering, IIT Indore. His group at IIT Indore
has been involved in research on service-oriented
systems most commonly realized through web-
services. More recently, the group has been inter-
ested in applying these ideas in the realm of the
Internet of Things. The ideas explored include

coming up with technology agnostic solutions for seamlessly linking the
heterogeneous IoT deployments across domains. The group is also delving
into utilizing machine learning adapted for constrained environments to
effectively make sense of the huge amounts of data that emanate from the
vast network of the IoT deployments.

VOLUME 9, 2021 57439


