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ABSTRACT Compressor fault diagnosis requires expert knowledge. Using the sequence labeling
technology, this expert knowledge can be automatically extracted from compressor maintenance log sheets.
Previous studies indicate that sequence labeling methods often need a substantial amount of annotation data
for knowledge extraction, Unfortunately, the annotation data are very scarce in the field of compressor fault
diagnosis. In this paper, we introduce a benchmark dataset for extraction of knowledge suitable for air com-
pressor fault diagnosis. First, we collected 11,418 pieces of information from air compressor maintenance
log sheets. Fault description, service requests, causes and troubleshooting solutions were stored in a dataset
for data preprocessing and masking. In addition, 6196 valid text pairs were developed after the ‘‘noises’’ in
the raw dataset were cleaned. Second, five kinds of entities and sequences, such as equipment, faults, service
requests, causes and troubleshooting solutions, were annotated by three subject experts. The annotation
consistency was assessed with F1 scores. Furthermore, our proposed baseline model (or the BERT-BI-
LSTM-CRF model) was compared against other five sequence labeling models (BI-LSTM-CRF, Lattice
LSTM, BERT NER, ZEN, and ERNIE). The BERT-BI-LSTM-CRF model gives superior performance in
extracting expert knowledge from the subject dataset. Although the baseline model is not the most cutting-
edge model in the sequence labeling and named entity recognition fields, it indeed presents a great potential
for compressor fault diagnosis. The dataset is available at https://github.com/chentao1999/CFDK.

INDEX TERMS Compressor fault diagnosis, dataset, named entity recognition, sequence labeling.

I. INTRODUCTION
Faults diagnosis, as a key component in modern manufac-
turing processes, plays a significant role in the reliability
and safety of modern industrial systems. As numerous mon-
itoring data are generated and deep learning technology is
increasingly applied in manufacturing systems, engineers
and researchers have captured significant attention to data-
driven fault diagnosis over the past decade. The current
deep learning methods used for fault diagnosis are normally
supervised and thus require expert knowledge (such as fault
types, equipment information, and fault causes) in real world

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhe Xiao .

industrial applications. This expert knowledge varies among
manufacturing systems. An effective fault diagnosis approach
therefore would require a massive set of expert knowledge
which can be extracted from various maintenance log sheets
of manufacturing systems.

A maintenance log sheet is a text-based document describ-
ing failures and pertaining findings, as well as numerical
indicators related to resource consumption [1]. During the
lifetime of a system, operators and maintenance experts
address a wide range of malfunctions which may lead to the
loss of productivity or create safety hazards. The interactions
between the operators/experts and the system often result in
numerous pieces of field experience or knowledge which are
hidden in log sheets. These pieces of expert knowledge can be
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automatically learned or extracted through natural language
preprocessing (NLP) technology, especially sequence label-
ing (SL) technology.

Sequence labeling, such as part-of-speech tagging, chunk-
ing, and named entity recognition (NER), is a category
of fundamental tasks in NLP [2]. NER, which gets more
attention from engineers and researchers, aims to locate and
classify named entities mentioned in unstructured texts into
predefined semantic types such as person names, organiza-
tions, locations, time expressions, quantities, monetary val-
ues, and percentages [3]. Entities are usually composed of
nouns or noun phrases, while sequences are usually com-
posed of one or more clauses. Sequence labeling can rec-
ognize sequences which are generally longer than entities.
For fault diagnosis as an example, the semantic types we
focus on are most likely equipment, faults, service requests,
causes, and troubleshooting solutions. The current dominant
technique for addressing sequence labeling problems con-
sists of deep learning approaches and models which extract
knowledge with successful case studies or applications [4].
Most deep learning-based sequence labeling models require
a significant set of big annotated data in training.

In this paper, we use the sequence labeling technology
to extract expert knowledge from maintenance log sheets
for compressor fault diagnosis. We introduce a new dataset
entitled the Compressor Fault Diagnosis Knowledge (CFDK)
dataset. To our knowledge, this dataset is the first large-scale
sequence tagging mass collected for mechanical fault diag-
nosis. The CFDK dataset contains 6,196 text pairs with more
than 36k annotated entities and sequences, namely, equip-
ment, faults, service requests, causes, and troubleshooting
solutions. Figure 1 shows a sequence labeling example within
the CFDK dataset. It is noted that references to equipment are
entities (nouns or noun phrases), while other references, such
as fault, service request, cause, and troubleshooting solutions
are sequences (clauses or sentences).

FIGURE 1. A CFDK data record (Chinese) and its translation (English)
documenting equipment (bold font), fault (blue font), service request (red
font), cause (yellow font), and troubleshooting solutions (green font) in a
reference.

We also propose a deep learning model based on
Bidirectional Encoder Representations from Transformers
(BERT) [5] and Bidirectional Long Short-TermMemory with
a Conditional Random Field layer (BI-LSTM-CRF) [6] for
sequence labeling on the CFDK dataset. BERT is well known
for its unique feature which pre-trains deep bidirectional
representations from unlabeled texts by jointly conditioning
on both left and right contexts in all layers. As a result,

pre-trained BERT models can be fine-tuned with just one
additional output layer to create good results for a wide
range of NLP tasks [5]. In this paper, we decide to use
the BI-LSTM-CRF model to fine-tune the pre-trained BERT
model, because the BI-LSTM-CRF model is proven to be
efficient in using both past and future input features, as well as
sentence-level tag information [6]. The experimental results
on the CFDK dataset indicate that the proposed BERT-
BI-LSTM-CRF model achieves F1 measures of 91.25%,
62.55%, 76.44%, 49.44% and 42.15% on the equipment
NER, fault, service request, cause, and troubleshooting solu-
tion sequence labeling tasks, respectively.

The main contributions of our work are summarized
below:

1) We introduce a new dataset1 collected from a com-
pressor plant and manually annotated the dataset with
equipment, fault, service request, cause, and trou-
bleshooting solution labels. To the best of our knowl-
edge, the annotated dataset is the first large scale one
which can support the development and evaluation of
compressor fault diagnosis systems. This dataset can be
considered as a benchmark dataset for compressor fault
diagnosis. It is noted that benchmark datasets are crit-
ical to assessing various systems and models in man-
ufacturing industries. Using maintenance log sheets to
build up a scalable benchmark dataset supports an AI
way of extracting expert knowledge and establishing
a common and reproducible base to compare state-of-
the-art knowledge acquiring methods and algorithms.

2) We have conducted extensive experiments on the
proposed dataset and found that compressor fault
knowledge can be acquired by the proposed BERT-BI-
LSTM-CRF model. The model is proven to be effec-
tive in extracting expert knowledge from text-based
log sheets, diagnosing potential faults, and providing
solutions to the potential faults. This model is lan-
guage independent and can be easily applied to extract
knowledge from maintenance log sheets in other lan-
guages. Additionally, the model indicates that knowl-
edge extraction from massive maintenance log sheets
paves a new direction of acquiring and using expert
knowledge for fault diagnosis.

3) At present air compressor maintenance log sheets
are only stored in various companies, without any
standardized specifications. We provide an annotation
specification to build a benchmark dataset from these
log sheets. This benchmark dataset will play a com-
mon reference in the future to assess feasibility and
rationality of compressor fault knowledge extraction
models. In the end, this annotation specification will
help engineers and researchers prove that the use of
air compressor maintenance log sheets in Chinese and
any other languages for fault diagnosis is feasible and
effective.

1Available at https://github.com/chentao1999/CFDK
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The rest of this paper is organized as follows:
Section 2 describes previous research work relative to com-
pressor fault diagnosis and sequence labeling based expert
knowledge extraction. With a good understanding of the
state-of-the-art practice in knowledge extraction and fault
diagnosis, we present our CFDK dataset in Section 3.
Section 4 explains a set of sequence labeling methods and the
BERT-BI-LSTM-CRFmodel withwhich the CFDKdataset is
used to pre-train and fine-tune the expert knowledge extrac-
tion process. The experimental setup and evaluation results
of the BERT-BI-LSTM-CRF model and other models are
reported in Section 5. The paper is concluded in Section 6 by
summarizing the contributions of the research work and
outlining the future research directions.

II. LITERATURE REVIEW
Compressor fault diagnosis (CFD) is a part of intelli-
gent fault diagnosis (IFD) which refers to applications of
machine learning theories in machine fault diagnosis [7].
CFD approaches can be divided into traditional machine
learning approaches and deep learning approaches. Tradi-
tional machine learning approaches apply machine learn-
ing theories, such as support vector machine (SVM) [8],
artificial neural network (ANN) [9], hidden Markov model
(HMM) [10], hybrid method [11] etc. The above research has
achieved certain results, but due to the complex structures of
compressors, the diagnostic performance of these methods
is not ideal [12]. The diagnosis accuracy is a concern since
these traditional machine learning methods are not applicable
to the increasingly growing data which require high gener-
alization [7]. Furthermore, the traditional machine learning
approaches are labor-intensive and time-consuming. They
often involve three steps, i.e., data collection and preparation,
artificial feature extraction, and health state recognition.

In recognizing the drawbacks of the traditional machine
learning CFD approaches, researchers have recently explored
deep learning CFD approaches to automatically capture,
to some extent, useful features from collected raw data, and
achieved good performances in compressor fault diagnosis.
According to the structures of neural networks used in feature
extraction, deep learning CFD approaches can be divided
into convolutional neural network (CNN) approaches [12],
deep belief network (DBN) approaches [13], stacked
auto-encoder (AE) approaches [14], self-attention network,
ResNet approaches, etc. Among all these approaches,
the CNN and DBN approaches prevail in CFD applications.
For example, Guo et al. [15] proposed a one-dimensional
convolutional neural network (1DCNN) based compressor
fault diagnosis model which took the differential pressure
and temperature of each compressor stage as the input
of 1DCNN. Using the characteristics of the CNN, the model
automatically extracted features and classified various faults.
Experimental results showed that the fault recognition rate
of 1DCNN was very high. In addition, Tran et al. [13]
presented a DBNs based approach to implement vibration,
pressure, and current signals for fault diagnosis of the valves

in reciprocating compressors. The experiments on the signals
from a two-stage reciprocating air compressor under different
valve conditions demonstrated that the proposed approach
was highly reliable and applicable in fault diagnosis of indus-
trial reciprocating machinery.

Most of the deep learning approaches predict possible
faults according to the monitoring data or vibration data
generated when compressors are running. Some researchers
use data mining to evaluate the values in maintenance records
to identify hardware failures and significant energy losses
[16], [17]. There is still a lack of methods of using the natu-
ral language processing technology to automatically identify
expert knowledge from text documents and use expert knowl-
edge for real time fault prediction, detection, and diagnosis.
In this paper, we propose a benchmark dataset and a base-
line model for mining compressor fault diagnosis knowledge
from maintenance log sheets based on the natural language
processing technology, such as sequence labeling and NER.
The extracted expert knowledge will form a foundation for
future real time compressor fault diagnosis.

Sequence labeling is commonly recognized as a basic area
in empirical NLP and refers to the automatic extraction of
mentions in texts and the formation of predefined semantic
types such as person, location, organization, time, event,
clinical procedure, biological protein, and adverse drug reac-
tions mentions [18]. Approaches to SL and NER are broadly
classified into four main streams [4]:

1) Rule-based approaches, which rely on hand-crafted
rules derived from domain-specific gazetteers and
syntactic-lexical patterns [19].

2) Unsupervised and bootstrapped approaches [20],
which mainly rely on clustering or boosting-based
algorithms to extract named entities from similar clus-
tered groups in texts.

3) Traditional supervised learning approaches, which rely
on annotated data samples, carefully designed features
and supervised machine learning algorithms (such as
HMM [21], decision trees [22], maximum entropy
models [23], SVM [24], conditional random fields
(CRF) [25]) to train a model to recognize similar pat-
terns from unseen data.

4) Deep learning approaches, which save significant
efforts on designing features. The models developed
from deep learning approaches can be trained from raw
inputs in an end-to-end paradigm [26], [27].

According to the context encoder architectures of neu-
ral networks, deep-learning SL or NER approaches can
be divided into CNN approaches [28], recurrent neu-
ral networks (RNN) approaches [29], attention based
approaches [30], [31], transformer and pre-trained model
based approaches [5], [32], etc. BERT, as mentioned before,
is a transformer and pre-trained model designed to pre-train
deep bidirectional representations from unlabeled text and
process words in relation to all the other words in a sentence.
It considers the full context of a word by looking at the words
that are before and after it. Devlin et al. [5] applied BERT to
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the CoNLL-2003 NER task [33] by extracting the activations
from one or more layers without fine-tuning any parameters
of the BERT model. The experimental results show that
the BERT method performs competitively with other state-
of-the-art methods. The advantage of the BERT method is
its unsupervised pre-training ability in handling large scale
unstructured text by various NLP tasks. The drawback of the
BERT model is that it requires a lot of computing resources.
In fine-tuning a BERT model, a large amount of annotated
data is required.

Most of these approaches are supervised learning
approaches, which need a large amount of labeled data.
Although some approaches, such as transfer learning, unsu-
pervised or semi-supervised approaches can reduce the
dependence on labeled data, they are not the mainstream
approaches in practical applications. Therefore, it is nec-
essary to develop a sequence labeling benchmark dataset,
especially in the field of compressor fault diagnosis, for
supervised learning.

III. CFDK DATA COLLECTION, PREPARATION,
AND DATASET
In this section, we describe the process used to collect,
prepare, and annotate the CFDK dataset.

A. DATA COLLECTION AND PREPARATION
A total of 11,418 raw records which documented the history
of handling reciprocating compressors in maintenance log
sheets from CIMC Intelligent Technology Co., Ltd. (whose
parent company is a world leading supplier of logistics
and energy equipment) were collected to build the CFDK
dataset. These records were manually entered by engineers
during the maintenance of compressors. Each record includes
45 columns, namely primary key, customer request informa-
tion, record time, device information, operator information,
fault description, cause analysis, troubleshooting solutions,
work order number, etc. Most of them are in Chinese. The
maintenance log sheets were saved in CSV format.

The raw records contained many pieces of incomplete,
incorrect, coarse, abnormal or noise information about main-
tenance cases of compressors. The ‘‘noises’’ had to be pre-
treated and the information was required to be filtered before
it was considered as ‘‘knowledge’’. The first thing we did was
to remove noises by extracting useful information from the
raw data. After consulting with domain experts in the CIMC
Corporation, we selected 4 columns, namely fault descrip-
tion, service request, cause, and troubleshooting solution.
Considering the fact that the fault description and cause fields
were empty in some records and the service request field
contains information about fault description, the research
team thus combined the service request information and the
fault description in the same record into one text. Following
the same procedures, the team also merged the cause and the
troubleshooting solution into another text. As a result, two
texts were integrated to form a text pair, separated by a new
line character.

The set of text pairs was further cleaned to ensure that
each text pair fully contains necessary information for later
use in the sequence labeling models. For example, if the
first text of a text pair was empty or did not contain any
meaningful information, the entire text pair was removed
from the set. If the second text was empty or lacked any
meaningful information, the text pair was kept. However,
the second text was replaced by ‘‘None’’. The set of text pairs
also went through a privacy check. Considering the privacy
of people or companies, the research team replaced all the
actual names of people and companies in the corpus by the
words ‘‘person’’ and ‘‘company’’, respectively. At end, a total
of 6196 text pairs were created.

A Chinese word segmentation system2 was executed over
the desensitized corpus or the text pairs and a set of segmented
words for the CFDK dataset were generated. The segmented
words were further proofread manually, and the wrong seg-
mentations were fixed.

It is noted that the above data collection and preparation
can be conducted if maintenance log sheets are in other
language. The only required language-specific software is the
one for segmentation of words. NLTK3 is a popular one for
English word tokenization.

B. ANNOTATIONS ON THE CFDK DATASET
Before we started the annotations on the CFDK dataset,
we did a literature review of NER annotations. We found
that there have not been any applicable annotation specifi-
cations available for named entities or sequence labeling in
the compressor fault diagnosis field. Most NER annotation
specifications have been focused on common entity types,
such as people, organizations, and locations [33], [34]. Some
specifications have been related to symptoms, drugs, dis-
eases, and other entities in the context of clinical applications,
geopolitical entities in political science, and financial entities
in business products. We developed our own specifications in
this study for the CFDK applications. We believe that these
specifications (described below) can be considered as the
benchmark specifications:

1) Entities pertaining to equipment are primarily compres-
sors, compressor components, and related supporting
parts, such as crude oil engine, air supply line, etc.

2) Multiple devices in a series are annotated as one
equipment entity. For example, ‘‘ ’’
(or ‘‘compressor’s fan motor’’) is annotated as one
device rather than three.

3) Devices with brackets are annotated as one equip-
ment entity. For example, ‘‘ ’’
(or ‘‘safety valve (secondary safety valve)’’) is anno-
tated as one device rather than two.

4) Individual device numbers or models are annotated
as one equipment entity. A device followed with
an equipment number or model is annotated as

2Jieba was used for segmentation: https://github.com/fxsjy/jieba
3Available at https://www.nltk.org/
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TABLE 1. Statistics of the final corpus.

one equipment entity. Equipment number or model
followed by a device is also annotated as one
equipment entity. For example, ‘‘0107001’’, ‘‘v457’’,
‘‘v457 ’’ (‘‘v457 compressor’’ in English)
and ‘‘ 14151002’’ (or ‘‘cooler 14151002’’ in
English) each is annotated as one device, respectively.

5) Faults, service requests, causes, and troubleshooting
solutions are independent text sequences which are not
overlapping each other. When a fault description is
embedded in a service request, the fault description is
considered for annotation. For example, within the sen-
tence of ‘‘ ’’
(or ‘‘the user needs the company to send someone
to deal with the air leakage problem’’ in English),
the ‘‘ ’’ (or ‘‘air leakage problem’’) is anno-
tated as a fault description, and the whole sentence is
not annotated as a service request.

6) Equipment entities may exist in the four types of
sequences. In other words, equipment entities can be
nested within the sequences of faults, service requests,
causes, and troubleshooting solutions.

7) Fault description and service request always appear in
the first part of a text pair. Cause and troubleshooting
solution are always in the second part of the text pair.

8) Questions from customers are not annotated as service
requests. Service requests with more than 100 words
are annotated as multiple service requests. Fault
descriptions, causes, and troubleshooting solutions fol-
low the same rule.

The annotations on the CFDK dataset were completed by
three expert annotators in this research following the above
mentioned specifications and using a sequence labeling anno-
tation tool.4 The process of annotation involved two itera-
tions. In the first iteration, the corpus was annotated by two
annotators independently. In the second iteration, the third
annotator integrated the results of the preceding iteration to
create the final corpus. Inter-annotator consistency tests were
performed to ensure that the annotation results have accept-
able reliability. F1 score was used to evaluate the consistency
of two annotators. The F1 score is defined as follows:

Precision =
Na1&a2
Na1

(1)

4Available at https://brat.nlplab.org

Recall =
Na1&a2
Na2

(2)

F1score =
2× Precision× Recall
Precision+ Recall

(3)

where Na1&a2 refers to the number of identical annotations
from both annotator a1 and annotator a2; Na1 and Na2 refers
to the number of annotations from annotator a1 and annotator
a2, respectively.
Table 1 shows statistics of the final corpus and the annota-

tion consistency between any two annotators. Where F1ai&aj
refers to the F1 score calculated based on the annotation
results of annotator ai and aj. It is noted from the table that
the consistency of annotator 1 and 2 is not high, especially in
the cause and troubleshooting solution sequences and both
F1 scores are less than 50%. Annotator 3 carries out the
final integration on the annotations from the former two.
The consistency with annotator 2 is very high, but that with
annotator 1 is low.

It is also noted from Table 1 that the annotation consistency
(F1) of equipment is very high (more than 86%) for all three
annotators, and that of faults, service requests, causes, and
troubleshooting solutions is relatively low. One possible rea-
son is that the equipment entities are nouns or noun phrases,
while the other four types of sequences are clauses or sen-
tences. The average length of equipment is much shorter than
that of the other four types of sequences. In the final corpus,
the average length of equipment, faults, service requests,
causes and troubleshooting solutions is 4.57, 12.64, 18.28,
17.09, and 17.84 characters, respectively.

Figure 2 shows a portion of the annotated CFDK dataset
in the BioNLP’11 shared task standoff format5 (or the tab-
delimited format) for the text pair. It is noted that each
line in Figure 2 contains one annotation (with a given ID,
a TAB character, and the body of the annotation) extracted
from the CFDK data record as shown in Figure 1. The body
of the annotation is further formed by a SPACE-separated
triple combination (that is, sequence type, starting position of
sequence, and the ending position of sequence). For example,
the second annotation (as shown on the third line) consists of
T2 (or the annotation ID), a TAB character, and the body of
the annotation. The body of annotation is made of the fault
sequence type, SPACE characters, 1, and 19. The English

5http://2011.bionlp-st.org/home/file-formats
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FIGURE 2. A portion of the CFDK dataset in the BioNLP’11 shared task standoff format.

FIGURE 3. The architecture of the baseline model or the BERT-BI-LSTM-CRF model. The dotted line at the top of the
figure indicates that the NER task and the sequence labeling tasks for fault, request, cause, and solution (or the SL
tasks) are carried out separately.

translation in brackets is not part of the annotation. In this
study, a total of 19218 equipment entities, 5909 fault descrip-
tions, 6595 service requests, 588 fault causes, and 2786 trou-
bleshooting solutions were created and stored in 310 separate
files.

IV. BASELINE MODEL
Deep learning based sequence labeling models have become
dominant and successively advanced their state-of-the-art
performance for several years [6], [28], [29]. Recently, pre-
trainedmodels, such as ELMo [35], ULMFiT [36], BERT [5],
GPT-3 [32] followed by fine-tuning on NER tasks have
demonstrated substantial gains [37]. In this paper, we build
our baseline model by using BERT for pre-training and BI-
LSTM-CRF for fine-tuning the knowledge extraction process
from the CFDK dataset.6 An overview of the architecture of
the baseline model is shown in Figure 3.

It is noted from Figure 3 that the pre-trained BERT
module, siting at the bottom of the baseline model, uses
a token sequence as input. A special classification token
[CLS] is inserted at the beginning of the text sequence and
a [SEP] token is inserted at the end of the text sequence [5].

6The source code for the baseline model (or the BERT-BI-LSTM-CRF
model) is available at: https://github.com/yumath/bertNER

The pre-trained BERT module has a multi-layer bidirectional
transformer [38] encoder stack. In each layer of the stack,
the number of transformer encoder nodes is equal to the
length of the input tokens. Each node fully connects with
every transformer encoder node in the upper layer. The final
hidden vector for the ith input token (or Ti) is used as the input
to the BI-LSTM-CRF model.

The BI-LSTM-CRF module is further divided into two
sub-modules: the BI-LSTM network and the CRF network.
The BI-LSTM network utilizes a bidirectional LSTM net-
work to capture both left-to-right and right-to-left context
features. The CRF network is a statistical modeling method
whichmakes use of context information in predicting targeted
tags. The BI-LSTM-CRFmodule is the most popular sequen-
tial labelingmodel before the rise of deep learning. Themodel
outputs the most probabilistic BIO tag for each input token.

In this study, the fault entity recognition task (or the NER
task in Figure 3) and the sequence labeling tasks for fault,
service request, cause, and troubleshooting solution (or the
SL task in Figure 3) were carried out separately. The CFDK
dataset was converted from the BioNLP’11 shared task
standoff format into the CoNLL-2002 shared task BIO for-
mat [39]. In the BIO format, all the input tokens are presented
one Chinese character per line, while the end of the token
sequence is presented by an empty line. Additionally, each
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FIGURE 4. Two examples of the CFDK dataset in the CoNLL-2002 shared
task BIO format.

line contains a tag which states whether its related token is
inside a named entity or not. The tag also encodes the type of
the named entity. Figure 4 is an example token sequence in the
BIO format. Each Chinese character in the example sequence
is tagged with other (O) or one of five entity/sequence types:
Equipment (EQU), Fault (FAU), Service Request (REQ),
Cause (CAU), and Troubleshooting Solution (SOL). The
B-tag and I-tag indicate the beginning and the intermediate
token of a named entity, respectively, while the O-tag indi-
cates that this token is not part of a named entity.

Considering that equipment entities can exist in the
sequence of fault, request, cause, and solution and the base-
line model (or the BERT-BI-LSTM-CRF model) cannot deal
with overlapping labels, we stored all the fault entities in the
CFDK dataset in one BIO file and the other four sequences
in another BIO file. The back-propagation through time
(BPTT) [40] was used in this study to train the BI-LSTM-
CRF model. The training error was back-propagated to fine-
tune the parameters of the BERT module.

The baseline model, at its testing stage, produces the
BIO label of each token in the input sequence. Take
‘‘ ’’ (or ‘‘The drain valve is
inconsistent with the pressure.’’ in English) as example,
the equipment entity recognition task of the baseline model
generates the BIO sequence of ‘‘B-EQU I-EQU I-EQU O O
O O O O O O O O’’, while the fault sequence labeling task
creates the BIO sequence of ‘‘B-FAU I-FAU I-FAU I-FAU
I-FAU I-FAU I-FAU I-FAU I-FAU I-FAU I-FAU I-FAU O’’.

V. EXPERIMENTS
In this section, we describe the performance of differ-
ent sequence annotation methods on the CFDK dataset.
Other common datasets (such as CoNLL2003, BC2GM,
CoNLL2000, PTB POS, Cora, etc.) could be used for assess-
ing the performance of the baseline model against other
sequence annotation models. However, these datasets are not
specific to compressor fault diagnosis. We thus concentrate
our focuses on the benchmark dataset and develop a most
feasible and effective knowledge extraction model for fault
diagnosis.

A. EXPERIMENTAL SETTINGS
A total of 6196 text pairs within the CFDK dataset were ran-
domly divided into a training set and a test set. The statistics
of the two sets are shown in Table 2.

TABLE 2. Statistics of the training and test sets for the baseline model.

Precision (P), recall (R), and F1 measure are computed as
follows to evaluate the performance of the sequence labeling
and NER tasks.

P =
TP

TP+ FP
(4)

R =
TP

TP+ FN
(5)

F1 =
2× P× R
P+ R

(6)

where TP refers to entities or sequences that are correctly
identified; FP refers to the entities or sequences that are
wrongly identified by the sequence labeling task or the NER
task; FN refers to the entities or sequences not correctly
identified in the test set. All of these metrics are calculated
in terms of the whole entity or sequence, rather than the label
of a single character. It is noted that F1 measure in Eq (6) and
F1 score in Eq (3) are same in terms of its structure, but they
represent different context.

The training and test sets were further used in this study
to compare the baseline model against the following five
sequence labeling models for compressor fault diagnosis
knowledge extraction. These models are conventional meth-
ods and have achieved good results in NER or SL fields.
• BI-LSTM-CRF [6]: It combines a bidirectional LSTM
network and a CRF network for sequence labeling.
It relies on the bidirectional LSTM to keep track of
dependencies in input sequences by efficiently working
with both past and future input features or entities. It also
takes advantage of the CRF network to do label predic-
tions through its probabilistic graphical model.7

• Lattice LSTM [41]: It encodes a sequence of input char-
acters as well as all potential words matching a lexicon.
The application of this model for Chinese NER indi-
cates that Lattice LSTM does not suffer from segmen-
tation errors when it is compared with other word-based
methods.8

7Source code is available at https://github.com/Determined22/
zh-NER-TF

8Source code is available at https://github.com/jiesutd/LatticeLSTM
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TABLE 3. System results of equipment NER task and SL task for fault, request, cause, and solution sequence (% is omitted for conciseness. The best
results are highlighted in boldface and the second best results are in italics).

• BERT NER [5]: It places a full connection layer on the
top of the final hidden layer of the BERT encoder to
fine-tune the pre-trained model for NER and sequence
labeling tasks.9

• ZEN [42]: It is a BERT-based Chinese text encoder
enhanced by N-gram representations, where differ-
ent combinations of characters are considered during
training. The potential word or phrase boundaries are
explicitly pre-trained and fine-tuned with the BERT’s
character encoder.10

• ERNIE 1.0 [43]: It uses named entity-level and phrase-
level masking strategies to enhance language represen-
tation models. Entity-level strategy masks entities which
are usually composed of multiple words. Phrase-level
strategy masks phrases and combines words (which
stand together in each phase) to form a conceptual unit.11

A single NVIDIA GeForce GTX 2080Ti GPU with 11 GB
of RAM was employed for training the above models. For
the BERT pre-trained purpose, we used the ‘‘chinese_L-12_
H-768_A-12’’12 model for the Chinese NER and sequence
labeling tasks. This model has 12 layers, 768 hidden nodes,
12 heads, and 110M parameters. For the fine-tuning pur-
pose, we set the maximum sequence length and the training
batch size to be 128 and 32, respectively. For other model
parameters, we adopted the default settings provided from the
BI-LSTM-CRF and BERT specifications.

B. MODEL COMPARISONS
Precision, recall, and F1 measure of the five benchmark
models and the BERT-BI-LSTM-CRF model (proposed by
this study) are shown in Table 3. These metrics are the system

9Source code is available at https://github.com/xuanzebi/BERT-CH-NER
10Source code is available at https://github.com/sinovation/ZEN
11Source code is available at https://github.com/PaddlePaddle/ERNIE
12https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-

12_H-768_A-12.zip

results obtained from the equipment NER task and the SL
tasks for fault, request, cause, and solution sequences. It is
noted that the baseline model or the BERT-BI-LSTM-CRF
model has the best performance.

The BERT-BI-LSTM-CRF model, in comparison with
BERT NER model, improves the F1 measure by 3.38%,
1.30%, 2.38%, and 3.41% on the SL task for the fault,
request, cause, and solution sequences, respectively. This
implies that using the BI-LSTM-CRFmodule to fine-tune the
BERT pre-trainedmodule is effective in sequence labeling for
CFDK extraction. With regards to the equipment NER task,
the BERT-BI-LSTM-CRF model achieves its F1 measure
of 91.25%, which is 0.26% lower than the best F1 measure
in Table 3 and outperforms the other four models by a good
margin. It indicates that using the pre-trained BERT module
can improve the performance of NER. This also demon-
strates that using the BI-LSTM-CRF module to fine-tune
the BERT pre-trained module may not necessarily improve
the performance of the baseline model. One reason for this
finding may be that the named entities within the CFDK
dataset are typically shorter than the sequences. In the CFDK
dataset, the average length of the equipment entities is only
4.57 characters, while the average length of the fault, request,
cause, and solution sequences is 12.64, 18.28, 17.09 and
17.84 characters, respectively. This is also the reason why
the precision, recall, and F1 measure of the models in the
equipment category are much higher than the findings for the
fault, request, cause, and solution categories. For all the mod-
els in Table 3, the shorter the sequence length, the better the
effect of the models. Compared with the other five models,
the BERT-BI-LSTM-CRF model performs better on longer
sequences.

The BERT-BI-LSTM-CRF model, in comparison with the
traditional deep learning NER model, namely the BI-LSTM-
CRF model, improves the F1 measure by 6.57%, 9.36%,
3.39%, 4.29%, and 5.05% on all the five tasks, respectively.
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This indicates that using the pre-trained BERT model can
improve the performance of the traditional deep learning
NER model.

When we compare the BERT-BI-LSTM-CRF model with
the Lattice LSTM model for CFDK extraction, we can con-
clude that the Lattice LSTM model, although it is improved
from the BI-LSTM-CRF model, only performs well in the
NER task, but not in the sequence labeling tasks. The ZEN
and ERNIE models do not perform well for the CFDK
dataset.

It is also noted from Table 3 that the sequence labeling (SL)
task for the request sequence performs well by all the models
when we compare with the SL task for other sequences.
A possible reason could be that the sentence patterns in the
request sequence are less diversified. In addition, the perfor-
mance of the SL task for the fault sequence is higher than that
for the cause and solution sequences. This could be caused by
the fact that the fault sequence is shorter than the cause and
solution sequences.

C. COMPARISON OF EQUIPMENT ENTITIES
OF DIFFERENT LENGTHS
In order to investigate the influence of entity length on NER,
we have also conducted the equipment NER task with differ-
ent entity lengths. The equipment entities in this sensitivity
study were divided into three subsets according to the length
of the entities: short entities (entities with ≤5 characters),
medium entities (entities with >5 characters and ≤10 char-
acters) and long entities (entities with>10 characters). Using
the three subsets, the BERT-BI-LSTM-CRF and the five other
models produced the F1 measure as shown in Figure 5.

FIGURE 5. Comparisons of the equipment entities of different lengths
(F 1 Measure).

It is noted from Figure 5 that the longer the equipment
entities, the worse the performance of the entity named recog-
nition from all the models. When we look at the long entity
set, the BERT-BI-LSTM-CRF model achieves an F1 mea-
sure of 79.73%, which is 2.97% higher than the second best
F1 measure (from the BERT NERmodel) and 18.71% higher

FIGURE 6. Comparison of fault description sequences of different clause
numbers.

TABLE 4. Recognition results of a complex equipment entity.

than the worst F1 measure (from the ZEN model). This
finding indicates that the BERT-BI-LSTM-CRF model has
a very good recognition effect on long entities. For the short
andmedium entities, fine-tuning the BERT pre-trainedmodel
through a complex NER model does not improve the NER
performance. This may be caused by the fact that the BERT
pre-trained models are designed to be large enough to absorb
information during the pre-training process first, and fine-
tune on very narrow task distributions second [32].

D. COMPARISON OF FAULT SEQUENCES OF
DIFFERENT CLAUSE NUMBERS
Different from the equipment entities which are composed of
noun or noun phrase, the fault sequences contain multiple
phrases, clauses, and even sentences. Each fault sequence
normally has a long and complex list of characters, which
imposes significant challenges on the NER and SL tasks.
The research team assessed the recognition effect of the
BERT-BI-LSTM-CRF model on the fault sequences. Two
subsets (one with single clauses and the other one with
multiple clauses) were formed in this study from the fault
sequences. For example, ‘‘ ’’ (or ‘‘air leak-
age of safety valve’’) is a single clause fault sequence,
while ‘‘ , ’’
(or ‘‘valve springs and valve plates are frequently damaged,
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TABLE 5. Recognition results of a multiple clauses fault sequence.

especially the third stage intake and exhaust valves’’) is a
multiple clause fault sequence. We have tested the BERT-
BI-LSTM-CRF and five other models on these two datasets.
The results are shown in Figure 6.

All the models yield F1 measure over 50% from the single
clause sequences and less than 50% from the multiple clause
fault sequences. This shows that the number of clauses has
a significant impact on the models. The BERT-BI-LSTM-
CRF model gives its superior performance on both the single
clause and multiple clause sequences. This indicates that the
BERT-BI-LSTM-CRF model has a very good recognition
effect on single clause and multiple clause sequences.

E. CASE STUDY
In order to further examine the recognition effect of the
baseline model, in this section, we introduce two typical
cases for compressor fault diagnosis knowledge extraction
from the CFDK dataset. Two text sequences, one containing
a complex equipment entity and one containing a multiple
clauses fault sequence, are entered into the above six models.
The recognition results of these models are shown in Table 4
and Table 5, respectively.

‘‘ (ic65N-D/3P+ iOF A9F19310+A9A26
924)’’ (or ‘‘circuit breaker(ic65N-D/3P+iOF order No. A9F1
9310+)’’ in English) is a long and complex equipment entity
in the CFDK dataset. It contains a total of 39 Chinese char-
acters, English characters, numbers and a variety of symbols.
Table 4 shows the recognition results of the BERT-BI-LSTM-
CRF and five other models. It can be seen from the table
that only the BERTNER and BERT+BiLSTM+CRFmodels
correctly identify the entity. The BI-LSTM-CRF and Lattice
LSTM models do not correctly identify the English and dig-
ital parts, while the ZEN model only recognizes the initial
Chinese word ‘‘ (circuit breaker)’’.

Table 5 shows the recognition results of a multiple clauses
fault description sequence: ‘‘ ,

,
(or ‘‘After the replacement of the new four stage piston

ring, the displacement has increased, but there is still a gap
of about 10% with the technical requirements’’ in English).

It can be seen that only the BERT-BI-LSTM-CRF model
accurately identifies the fault description, other models iden-
tify only a part of it. This shows the superiority of the BERT-
BI-LSTM-CRF model in identifying long sequences.

VI. CONCLUSION AND FUTURE WORK
Considering that most deep learning approaches predict com-
pression faults through monitoring data or vibration data
generated when compressors are running, this paper provides
a new direction for compression fault diagnosis. The nat-
ural language processing (NLP) technology is explored in
this study to automatically identify expert knowledge from
text documents and use the expert knowledge for future real
time fault prediction, detection, and diagnosis. In this paper,
we propose a benchmark dataset and a baseline model for
mining compressor fault diagnosis knowledge from mainte-
nance log sheets based on the Sequence labeling (SL) and
Named Entity Recognition (NER) technologies.

This paper presents the benchmark dataset developed from
compressor maintenance log sheets. This dataset, to our
knowledge, is the first one for compressor fault diagnosis
knowledge extraction. In this dataset, 19218 equipment enti-
ties, 5909 fault sequences, 6595 service request sequences,
1588 cause sequences, and 2786 solution sequences are
annotated under new annotation specifications customized
for compressor diagnosis. The annotation method and the
specifications used in this paper are applicable to those for
maintenance log sheets in other languages.

The BERT-BI-LSTM-CRFmodel and the other five bench-
mark models (that is, the BI-LSTM-CRF, Lattice LSTM,
BERT NER, ZEN, and ERNIE models) were used in this
study to assess the model performance in named entity recog-
nition and sequence labeling. The experiment results show
that the BERT-BI-LSTM-CRF model (or the baseline model)
is the best one in extracting expert knowledge from the sub-
ject dataset. The experiment results also demonstrate that the
BERT-BI-LSTM-CRF model gives superior performance on
sequence labeling tasks. The results also demonstrate that
the baseline model is suitable for the benchmark dataset in
knowledge extraction. Although the baseline model is not
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the most cutting-edge model in the sequence labeling and
NER fields, it indeed presents a potential for compressor fault
diagnosis.

The expert knowledge extracted from the maintenance log
sheets using the natural language processing (NLP) technol-
ogywill form a foundation for the future real time compressor
fault diagnosis. There is still a long way to go to make the
baseline model adopted by the compressor industry. As the
NER and SL methods considered in this paper use the fine-
tuning mechanism to update the weights of a pre-trained
model by training on a supervised dataset specific to the
desired task, they need a large dataset for every task [32].
In the future, a massive set of maintenance log sheets should
be collected and significant efforts in annotating the log
sheets should be considered to train the baselinemodel. Even-
tually, the baseline model can be employed as the industry
standard model for real time prediction and diagnosis of
compressor faults.

As discussed in the Model Comparisons section, the pre-
cision, recall, and F1 measure of the models on long and
complex sequences especially in the cause and solution cat-
egories is very low (less than 50% in F1 measure). One
possible solution is to use more powerful sequence models,
such as FLAT [44] and Soft Lexicon (LSTM) + BERT [45]
to fine-tune larger pre-trained models, such as RoBERTa-
wwm-ext-large13 and ELECTRA-large.14 Another potential
solution is to use large-scale compressor maintenance corpus
to train a domain special pre-trained model, but this method
requires hundreds of millions of compressor maintenance
corpus, which is difficult to obtain.

In addition, the knowledge from domain experts is usu-
ally more useful than knowledge extracted from log sheets.
We plan to develop a hybrid mechanism to integrate the two
domains of knowledge for fault diagnosis.
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