
IEEE POWER & ENERGY SOCIETY SECTION

Received March 30, 2021, accepted April 10, 2021, date of publication April 13, 2021, date of current version April 20, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072841

Harmonic Vector Error Analysis Based on
Lagrange Interpolation
ZHAOYUN ZHANG 1, (Senior Member, IEEE), QITONG WANG1,2, AND ZHI ZHANG 1
1College of Electronic Engineering and Intelligence, Dongguan University of Technology, Dongguan 523808, China
2School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Corresponding author: Zhaoyun Zhang (18927491998@163.com)

This work was supported in part by the Guangdong Science and Technology Foundation of China under Grant 2017A010104023.

ABSTRACT With the development of smart substations and the promotion of 61850 standards, sampling
values based on IEC61850-9-2 have become an important part of smart substation construction. With the
popularization and application of the sample value (SV), the interpolation algorithm has been increasingly
used in protection, measurement, control, wave recorder and power quality applications. However, the error
in the interpolation algorithm poses a challenge to its use. This paper describes the basic methods of linear
Lagrange and parabolic Lagrange interpolation and presents maximum theoretical values for the interpola-
tion error when Lagrange linear and second-order approximations of sinusoidal signals are performed. The
single-point error of each sampling point is analyzed using the remainder equation, and the harmonic error
of the Fourier transform after interpolation is strictly mathematically derived. Finally, the accuracy of the
theory is verified by real measurement data, and suggestions for the application of the interpolation method
are introduced.

INDEX TERMS Intelligent substation, Lagrange interpolation, error analysis, harmonic.

I. INTRODUCTION
Harmonic measurement and vector calculation are impor-
tant tasks in substations, utilities and users [1]. In the early
substations, there was a situation of asynchronous sampling,
and it was necessary to calculate all channels to the same
time value through a certain method. Among them, Lagrange
interpolation is the most widely used method. With the con-
struction of smart substations, it has been more than ten
years since the construction of smart substations, and there
is currently a consensus on sampling values, i.e., the use of
IEC 61850-9-2 [2]. Reference [3] presented a 10-bit 600MS/s
4-channel time-interleaved successive approximation register
analog-to-digital converter (ADC). A background calibra-
tion algorithm using Lagrange polynomial interpolation was
introduced to calibrate the timing skew. In digital substations,
it is necessary to correct the time sequence of the measur-
ing device, so the application of Lagrange in the intelligent
substation is of great significance.

At present, the measurement of electrical quantity in
smart substations is mostly point-to-point synchronous sam-
pling, but the point-to-point sampling method has no time
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scale. It is necessary to interpolate the collected electri-
cal quantity before the time synchronous electrical quantity
can be measured. The current commonly used interpolation
methods include linear Lagrange interpolation (first-order
Lagrange interpolation), parabolic Lagrange interpolation
(second-order Lagrange interpolation), Newton interpolation,
and Hermite interpolation [4]–[6]. The advantage of the
Lagrange interpolation method is that it does not require solv-
ing linear equations, it can effectively reduce the rounding
error for a large amount of data, and the calculation effect
is much better than that of power series interpolation [7].
The Lagrange error must be minimized. This algorithm is
used in the interval, and the interpolation accuracy increases
within a certain range by increasing the number of interpola-
tion points [8]. Reference [9] introduced an effective digital
calibration algorithm based on Lagrange interpolation for
the phase shift factor of electronic meters, which reduces
the phase shift of static meters. Reference [10] presents a
filter design technique based on quasi multiple resonators that
approximates the exact multiple resonators technique. The
design is simpler thanks to usage of the Lagrange interpo-
lation technique. Reference [11] introduced a new method
to construct linear-phase Lagrange interpolators using an
odd number of base points. In [12], a fractional delay filter
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designmethod based on the impulse response of the truncated
Lagrange interpolation filter was proposed. Reference [13]
proposed a new Lagrange interpolation filter structure with
linear complexity. The design of this structure is not only
efficient but also has dynamic update characteristics.

Fundamental and harmonic analysis and calculation are
the basic functions of recorders, measurement devices, power
quality analysis devices, etc. [14]–[16]. The most commonly
used analytical method is fast Fourier transform (FFT) anal-
ysis. Most of the harmonic calculations are based on the FFT
algorithm. For example, in reference [17], because of the
limitation of the FFT due to the fence effect and spectral
leakage, the accuracy of the harmonic analysis is low; there-
fore, a characteristic harmonic analysis algorithm based on
spectral refinement and interpolation was proposed. Refer-
ence [18] proposed a newmethod for the harmonic analysis of
industrial power systems based on a windowed FFTwith high
accuracy, fast calculation speed and easy implementation.
These algorithms are implemented based on FFT, and the FFT
algorithm forms the basis for the analysis of the fundamental
wave and harmonics of the power grid.

After we interpolate the original waveform and imple-
ment the FFT algorithm, the resulting amplitude produces
an increased error, as identified in previous studies. Refer-
ence [19] also proposed a new algorithm of polynomial cosine
window interpolation for the FFT error for harmonic analysis
and amended the FFT results. In reference[13], it was noted
that the FFT has a large error in asynchronous sampling, so it
cannot obtain accurate harmonic parameters during motor
testing. To reduce the effect of asynchronous sampling on
FFT to improve the accuracy of harmonic analysis in motor
testing, this paper improves the original algorithm by adding
windows and interpolation. Reference [19] analyzed the error
of a single sampling point during linear Lagrange interpo-
lation. However, in the current article, we do not perform
impact analysis of various interpolation algorithms on the
results of the FFT algorithm (maximum error estimation).

Most of the previous studies have analyzed only the point-
to-point error after interpolation and combined the Lagrange
interpolation method with power electronics to measure
the wave and analyze the error [20]. In reference [21],
to resolve the spectral leakage caused by asynchronous sam-
pling, a Hilbert reactive power calculation method based on
data preprocessing was proposed. In this paper, only the
point-to-point error was studied, and the theoretical error
analysis after the FFT as not included. Only by simulating
the image method can we obtain an approximate error range.
At present, there is no literature on the maximum theoretical
value of the interpolation error for the Lagrange linear and
second-order approximation of sinusoidal signals. Therefore,
this paper aims to analyze the effect of the first- and second-
order Lagrange interpolation algorithms on the results of
the FFT algorithm, present maximum theoretical values for
the interpolation error when Lagrange linear and second-
order approximations of sinusoidal signals are performed,
estimate the maximum error, provide a theoretical basis for

the monitoring and measurement of intelligent substations,
and verify the accuracy of the analysis with a practical case.

II. BASIC ALGORITHM OF HARMONIC ANALYSIS
This paper needs to analyze the various harmonics in the
signal separately, the basis of the analysis in this paper is
the basic algorithm of harmonic analysis. For convenience of
analysis, the original input signal is assumed to be

x(t) = A sin(2π fmt) (1)

where f is the fundamental frequency (50 or 60 Hz for most
power grids). This paper selects 50 Hz for analysis; A is the
signal amplitude, which is 1 in this paper. Depending on the
nature of the signal, its unit is changeable, so its unit is not
discussed in this paper; and m is the harmonic number. The
fundamental wave corresponds to m = 1, and t is the time.
The process of obtaining the final harmonic amplitude

according to the sampling value includes the following steps:

A. SAMPLING
In the power system measurement device, power analysis
device, and recorder, the original signal is first regularly
sampled, and N points are sampled at equal intervals in a
fundamental period to obtain the original sampling points;
the interval is written as N-point sampling. The data after
sampling at equal intervals are recorded as:

x0, x1 . . . xn−1

For the convenience of analysis, 80-point sampling is used in
the example, i.e., the sampling period is 250 us. The analysis
methods described later are also applicable to other sampling
rates.

B. INTERPOLATION
At present, the communication protocol used in smart sub-
stations is mainly based on IEC61850-9-2. The point-to-point
mode without time stamp requires the receiver to synchronize
according to the received time and data, so interpolation is
needed for synchronization.

Interpolation is used mainly to restore all channels to
the values of the same time for the sampled sequence.
Generally, interpolation is only interpolated and not extrapo-
lated. For example, channel 1 receives data at 0 µs, 250 µs,
500 µs. . . over a second; channel 2 receives data at 100 µs,
350 µs, 600 µ. . . over a second; and channel 3 receives data
at 200 µs, 450 µs, 700 µs. . . over another second. In some
applications, the values must be restored to the same time. For
example, if channel 1 is used as the reference, channel 2 must
be traced back to 100 µs, and channel 3 must be traced back
to 200 µs. In this case, interpolation is required.
There are manymethods of interpolation. At present, linear

Lagrange interpolation and parabolic Lagrange interpolation
are often used. Corresponding to the 500 µs moment of
channel 1, if linear Lagrange interpolation is used, channel 2
must use the 350 µs and 600 µs data for interpolation, and
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channel 3 must use the 450 µs and 700 µs data for interpo-
lation; if parabolic Lagrange interpolation is used, channel 2
must use 100 µs, 350 µs and 600 µs data for interpolation.
Channel 3 must use 200 µs, 450 µs and 700 µs data for inter-
polation. This article describes specific methods in the third
and fourth parts of this process; finally, we simultaneously
calculate the values of all channels.

C. FAST FOURIER TRANSFORM (FFT)
The final step of harmonic analysis is to obtain the ampli-
tude of the harmonics from the sampling points. Generally,
the FFT is used to calculate the real and imaginary parts of
the sinusoidal signal.

Here, the simultaneous engraved points in step B are sub-
jected to the Fourier algorithm, and the amplitude is obtained
according to [22]. The real part is:

a1 =
1
N

[
2
N−1∑
k=1

xk sin
[
k
2π
N

]]
(2)

where N is the number of sampling points.
The imaginary part is:

b1 =
1
N

[
x0 + 2

N−1∑
k=1

xk cos
(
k
2π
N

)
+ xN

]
(3)

D. AMPLITUDE CALCULATION

Ẋ1 =
1
√
2
(a1 + jb1) (4)

In the existing literature, analysis of the error caused by
interpolation generally analyzes only the error of step 2 (i.e.,
the single-point error caused by interpolation) and not the
error of step 3 (i.e., the final harmonic error). However, for
most electric power workers, the final harmonic error is of
interest. This article provides a practical method to solve this
problem: linear Lagrange interpolation.

III. LINEAR LAGRANGE INTERPOLATION
A. INTERPOLATION METHOD
Linear Lagrange interpolation, which is also known as first-
order Lagrange interpolation, is currently the most widely
used interpolation algorithm.

According to the sampling principle, the device regu-
larly samples and sequentially obtains two sampling points
(xk−1, yk−1), (xk , yk), where x is the sampling time and
y is the sampling value at that moment. According to
the Lagrange interpolation principle, an approximate func-
tion L1(x) is constructed, so L1(x) passes through points
(xk−1, yk−1) and (xk , yk); then:

L1(x) = yk
x − xk−1
xk − xk−1

+ yk−1
x − xk

xk−1 − xk
(5)

According to the principle that the interpolation algorithm
only interpolates, the sample value corresponding to xk−1 ≤
x ≤ xk can be calculated using this equation. For exam-
ple, as mentioned, corresponding to the 500 µs moment

of channel 1, channel 2 uses 350 µs and 600 µs data to
interpolate according to the above formula, and channel 3
uses 450 µs and 700 µs data to interpolate according to
equation (5).

B. SINGLE-POINT ERROR
The sampling point obtained by interpolation function L1(x)
is a kind of ‘‘observed value’’ relative to the value given by
the original signal curve, and there is a certain error from the
‘‘true value’’ on the original signal curve. This part studies
the maximum error between the ‘‘true value’’ and ‘‘observed
value’’ of a single point. According to Lagrange interpolation,
from a to b the residuals are:

R1(x) = f (x)− L1(x)

=

∣∣f ′′(ξ )∣∣
2!

(x − xk )(x − xk+1) ξ ∈ (a, b) (6)

The derivation of R1(x) shows that when x = xk+xk+1
2 ,

the single-point error is the largest, and the maximum value
is:

R1max = A

∣∣m2 sin(ξ )
∣∣

2!
×

1
4
×

(
2π
N

)2

= A4.93∗
m2

N 2 | sin(ξ )| (7)

where N is the number of sampling points,
A is the amplitude of the signal,
m is the number of harmonics.
These parameters have the same meaning as here in the

following sections.
Equation (7) shows that the maximum error varies with the

interpolation time.

C. ERROR ANALYSIS AFTER FFT
Based on the single-point error, this article focuses on the
error analysis of the harmonics after the FFT.

Equation (7) shows the range of the single-point error. The
error range is different at different interpolation positions.
From the equation, the maximum error function of each
point and the original signal function are sinusoidal functions,
so they can be directly superimposed on each other. At this
time, there are two situations in the error analysis:

1) CASE 1
The value of the original signal curve is increased in the same
direction by error value R1max, i.e., increased away from the
coordinate axis based on the true value, as shown by the point
of the observed value b-curve in Figure 1 (Figure 2 shows a
partial magnified view of Figure 1); the error function at this
time is:

R1max = A4.93
m2

N 2 sin(ξ ) (8)

2) CASE 2
The value of the original signal is increased by an error value
in the opposite direction of R1max, i.e., increased near the
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FIGURE 1. Harmonic figure error of m = 10 after FFT application.

FIGURE 2. Figure error of m = 10 harmonic part waveform after FFT
application.

TABLE 1. Theoretical calculation error of each harmonic when N = 80.

coordinate axis based on the true value, as shown by the point
of the observed value c-curve in Figure 1 (Figure 2 shows
Figure 1 with local magnification). The error function at this
time is:

R1max = −A4.93×
m2

N 2 sin(ξ ) (9)

These two cases are the maximum probability of error.
In these two cases, a vector with the same modulus

A4.93
(m
N

)2 in the same direction is superimposed on the
previous points of the original signal, so the calculated errors
are identical: A4.93

(m
N

)2.
Therefore, according to the calculation, when the ampli-

tude A of the original signal a is 1 and the sampling point
N is 80, the errors of different harmonic orders are shown
in Table 1.

If the sampling points N is 200 the errors of different
harmonic orders is shown in Tables 2.

IV. PARABOLIC LAGRANGE INTERPOLATION
A. INTERPOLATION METHOD
The parabolic Lagrange interpolation method, which is also
known as the second-order Lagrange interpolation method,

TABLE 2. Theoretical calculation error of each harmonic when N = 200.

is different from the linear interpolation method: 3 sampling
points are selected by the parabolic interpolation method.
This interpolation method is also widely used.

Similar to linear interpolation, according to the sampling
principle, the equipment samples at fixed time to obtain three
sampling points: (xk−2, yk−2), (xk−1, yk−1), (xk , yk), where
x is the sampling time and y is the sampling value at that
time. According to the construction characteristics of linear
interpolation polynomials, a quadratic function li(x)(i =
k, k − 1, k − 2) is constructed for each sampling point xi to
satisfy:

li(xi) = 1, lj(xj) = 0, (i 6= j), i, j = k, k − 1, k − 2

where:

lk =
(x − xk−1)(x − xk−2)
(xk − xk−1)(xk − xk−2)

(10)

lk−1 =
(x − xk )(x − xk−2)

(xk−1 − xk )(xk−1 − xk−2)
(11)

lk−2 =
(x − xk )(x − xk−1)

(xk−2 − xk )(xk−2 − xk−1)
(12)

Equations (10), (11) and (12) are interpolation basis functions
of the parabolic Lagrange interpolation. Finally, an approx-
imate function is constructed according to the principle
of Lagrange interpolation so that the crossing points of
(xk−2, yk−2), (xk−1, yk−1), and (xk , yk) are as follows:

L2(x) = lk (x)yk + lk−1(x)yk−1 + lk−2(x)yk−2

=
(x − xk−1)(x − xk−2)
(xk − xk−1)(xk − xk−2)︸ ︷︷ ︸

lk (x)

yk

+
(x − xk )(x − xk−2)

(xk−1 − xk )(xk−1 − xk−2)︸ ︷︷ ︸
lk−1 (x)

yk−1

+
(x − xk )(x − xk−1)

(xk−2 − xk )(xk−2 − xk−1)︸ ︷︷ ︸
lk−2(x)

yk−2 (13)

According to the principle of the interpolation algorithm with
only interpolation, the corresponding sampling value can be
calculated using equation xk−1 ≤ x ≤ xk . For example, at
500 µs for channel 1, channel 2 uses the 100 µs, 350 µs and
600 µs data for interpolation according to the above formula,
and channel 3 uses the 200 µs, 450 µs and 700 µs data to
interpolate according to equation (13).
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According to interpolation equation (13), 250 µs of data
can also be calculated by using 100 µs, 350 µs and 600 µs in
channel 2. However, the 250 µs data are obviously delayed
in data alignment at this time, which is not recommended.

B. SINGLE-POINT ERROR
The value given by a point relative to the original signal curve
is an ‘‘observed value’’, which has a certain error relative to
the ‘‘true value’’ on the original signal curve. This part studies
the maximum error between the ‘‘true value’’ and ‘‘observed
value’’ of a single point.

Similar to linear interpolation, the sample value obtained
by the parabolic Lagrange interpolation function is the
‘‘observed value’’, which has an error compared to the ‘‘real
value’’ on the original signal curve, so the maximum error
must be further analyzed. According to Lagrange interpola-
tion, the remainder of the terms are as follows:

R2(x)= f (x)− L2(x)

=
f ′′′(ξ )
3!

(x−xk−2)(x−xk−1)(x−xk ) ξ ∈ (xk−1, xk )

(14)

Let the polynomial part of remainder equation (14) be:

g (x) = (x − xk−2)(x − xk−1)(x − xk ) ξ ∈ (xk−1, xk )

The derivative of g(x) is obtained; when x is ± 2
√
3π

3N + xk−1,
g(x) is maximal.

As mentioned, only the interpolation between xk and xk−1
is considered; then, when x = 2

√
3π

3N +xk−1 has the maximum
error, the maximum value of g(x) is

g (x)max = −0.3849
(
2π
N

)3

(15)

The maximum error is obtained by substituting (14):

R2(max)=A0.512 |cos(ξ )| (
mπ
N

)3, ξ ∈ (xk−1, xk) (16)

In the linear Lagrange interpolation, the interpolation error is
maximal when the interpolation point is in the middle of xk
and xk−1, i.e., when x = π

N + xk−1 is adopted; if parabolic
interpolation is used, the interpolation error can be expressed
as follows:

R2(x) = A0.512 |cos(ξ )| (
mπ
N

)3 (17)

Through the error equations (16) and (17), we observe the
largest difference in error equation (7), which is obtained
by linear Lagrange interpolation, and the sine function in
the equation becomes a cosine function in the parabolic
Lagrange interpolation. Similarly, the maximum error func-
tion obtained by parabolic Lagrange interpolation changes
with time transformation.

C. ERROR ANALYSIS AFTER FFT
As in Section III, it is necessary to further study the final anal-
ysis error of each harmonic through the Fourier transform.

Similar to linear interpolation, the error range of different
interpolation positions is shown in equations (16) and (17).
Since the single-point error is an absolute value, we must
discuss it according to different situations. Equation (17)
shows that the error function is a cosine function, which is
different from the error function in linear interpolation, which
is a sine function. Therefore, because the true value = the
observed value ± the error value, the discussion is divided
into three situations. Take m = 10 as an example, i.e., the
harmonic number is 10.

1) CASE 1
Based on the real value, an amount close to the coordinate
axis is added; i.e., error R(1)2 max is added in the direction
opposite to the original curve direction, and a maximum
negative error is obtained. The point is described by the
b-curve of the observed value in Figure 3 (Figure 4 shows
a local magnified view of Figure 3).

In this case, the error function R(1)2 can be written as
follows, and its function image is shown in Figure 5.

R(1)2 (t) =



-A0.512 cos(mωt)(
mπ
N

)3 2kπ ≤ mωt

≤ 2kπ +
π

2
A0.512 cos(mωt)(

mπ
N

)3 2kπ +
π

2
≤ mωt

≤ 2kπ + π

-A0.512 cos(mωt)(
mπ
N

)3 2kπ + π ≤ mωt

≤ 2kπ +
3π
2

A0.512 cos(mωt)(
mπ
N

)3 2kπ +
3π
2
≤ mωt

≤ 2kπ + 2π
(18)

The continuous function is used to calculate the error. The
real part and imaginary part of the error function R(1)2 and
the original signal function are calculated. In addition, for the
convenience of analysis, the constant part of R(1)2 is separated,
and function g(1)2 (x) is obtained:

g(1)2 (t) =



− cos(mωt) 2kπ ≤ mωt ≤ 2kπ +
π

2
cos(mωt) 2kπ +

π

2
≤ mωt ≤ 2kπ + π

− cos(mωt) 2kπ + π ≤ mωt ≤ 2kπ +
3π
2

cos(mωt) 2kπ +
3π
2
≤ mωt ≤ 2kπ + 2π

(19)

We have:

R(1)2 (t) = A0.512g(1)2 (t)(
mπ
N

)3 (20)

Here, g(1)2 (x) is a piecewise function. The number of segments
is related to the number of harmonics. The error function
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FIGURE 3. Harmonic figure error of case 1 with m = 10.

FIGURE 4. Figure error of m = 10 harmonic partial cycle amplification in
case 1.

FIGURE 5. Curve of error function R(1)
2 at m = 10.

of the m-th harmonic is divided into 4 m segments. The
real part and imaginary part of g(1)2 (x) are obtained by an
integral transformation of the real part and imaginary part of
the Fourier transform. Without loss of generality, when m =
1, i.e., the fundamental wave is selected, the error function
integral transformation is performed; the other harmonics
only must increase the number of integral segments. The real
part and imaginary part of the corresponding error function
integral are calculated using equations (2) and (3).

The real part after the g(1)2 (x) error function transformation
is:

1
π

∫ 2π

0
g(1)2 (t) sin tdt

=
1
π

(
−

∫ π
2

0
cos t sin tdt+

∫ π

π
2

cos t sin tdt

−

∫ 3π
2

π

cos t sin tdt+
∫ 2π

3π
2

cos t sin tdt

)
= −

2
π

(21)

FIGURE 6. Harmonic figure error of case 2 with m = 10.

The imaginary part after the g(1)2 (x) error function transfor-
mation is:

1
π

∫ 2π

0
g (t)(1)2 cos tdt

=
1
π

(
−

∫ π
2

0
cos t cos tdt+

∫ π

π
2

cos t cos tdt

−

∫ 3π
2

π

cos t cos tdt+
∫ 2π

3π
2

cos t cos tdt

)
= 0 (22)

The real part of the original signal function is:

1
π

∫ 2π

0
sin t sin tdt = 1 (23)

The imaginary part of the original signal function is:

1
π

∫ 2π

0
sin t cos tdt = 0 (24)

From the calculation, in this case, the imaginary part of the
original signal and the error signal are both 0, one of the real
parts is positive, and the other is negative, so they are vectors
with completely opposite directions. Then, the maximum
relative error of each harmonic is equal to:

R(1)2 max=−2
A0.512
π

(mπ
N

)3
=−A10.105

(m
N

)3
(25)

2) CASE 2
Based on the real value, an amount far away from the coor-
dinate axis is added, i.e., error is increased in the direction of
the original curve, and a maximum positive error is obtained.
The points are as described in the c-curve of the observed
value in Figure 6 (Figure 7 is a local enlarged view of
Figure 6).
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FIGURE 7. Figure error of partial cycle amplification of m = 10 harmonic
in case 2.

In this case, error function R(2)2 can be written as:

R(2)2 (t) =



A0.512 cos(mωt)(
mπ
N

)3 2kπ ≤ mωt

≤ 2kπ +
π

2
-A0.512 cos(mωt)(

mπ
N

)3 2kπ +
π

2
≤ mωt

≤ 2kπ + π

A0.512 cos(mωt)(
mπ
N

)3 2kπ + π ≤ mωt

≤ 2kπ +
3π
2

-A0.512 cos(mωt)(
mπ
N

)3 2kπ +
3π
2
≤ mωt

≤ 2kπ + 2π
(26)

In this case, the error calculation is similar to that in the first
case, except the error signal and original signal have the same
direction, and the relative error of each harmonic is exactly
identical.

R(2)2 max = −A10.105
(m
N

)3
(27)

3) CASE 3
The error function is a simple cos(ξ ) function:

R(3)2 (t) = A0.512 cos(t)× (
m× π
N

)3

OrR(3)2 (t) = -A0.512 cos(t)× (
m× π
N

)3 (28)

At this time, the phase difference π
2 between the error signal

and the original signal function is the maximum calculated
phase-angle error. The points are described in the d-curve of
the observed values in Figure 8 (Figure 9 is a local enlarged
view of Figure 8).

In this case, a vector perpendicular to the original vector
is superimposed. In this case, the original vector and error
vector can be combined using the parallelogram rule.

After Fourier transformation, the real part is 0, and the
imaginary part is −A0.512(mπN )3. The calculation results
show that the error function and original signal are perpen-
dicular to each other, so the synthesis of the two vectors

FIGURE 8. Harmonic figure error of case 3 with m = 10.

FIGURE 9. Figure error of the partial cycle amplification of m =

10 harmonic in case 3.

TABLE 3. When N = 80, the theoretical error value of each harmonic in
the three cases.

should follow the parallelogram rule. The modulus of the
synthesized vector, i.e., the maximum relative error of each
harmonic analysis in the third case, is:

R(3)2 max =

√
1+ [A0.512(

mπ
N

)3]2 (29)

The angle also changes. According to the above calculation,
when the original signal amplitudeA is 1 andN is 80, the error
of different harmonic times is as shown in Table 3.

If the sampling points N is 200 the errors of different
harmonic orders is shown in Tables 4.

According to the above calculation, the maximum error
occurs in mode 1 and mode 2. The main error is found to
be mode 1 in practice. Furthermore, it can be proven that
the error calculation method is also applicable to different
harmonic orders m and sampling numbers N.
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TABLE 4. When N = 200, the theoretical error value of each harmonic in
the three cases.

FIGURE 10. Thirteenth harmonic interpolation accuracy.

V. PRACTICAL VERIFICATION
A. SIMULATION
Through MATLAB simulation, interpolation analysis is per-
formed for points at different times within a cycle. After
interpolation, the interpolation accuracy of the 13th harmonic
is as shown in the figure. The abscissa represents the time (in
period) between the position of the interpolation point and the
previous data point, and the ordinate is the amplitude signal
after Fourier transform in one period (the original signal
amplitude is 1):

This simulation experiment aims to study the amplitude
changes of the two interpolation methods after calculation
within a period T. Figure 10 shows the minimum amplitudes
of the two interpolation methods calculated in period T and
the amplitudes of the two interpolation methods at 0.5T and
0.7T. When the interpolation time is 0.5T, the minimum
amplitude calculated by linear interpolation is 0.8725, and the
error is 0.1175. In addition, the amplitude after the parabola
interpolation calculation is 0.9784, and the error is 0.0216.
When the interpolation time is 0.7T, the minimum amplitude
calculated by the parabolic interpolation method is 0.9711,
and the error is 0.029.

Similarly, the interpolation accuracy diagrams of the 15th,
20th, and 25th harmonics can be obtained, as shown in
Figures 11, 12 and 13.

Figure 13 shows that for the 25th harmonic, the minimum
amplitude after linear interpolation at time 0.5T is 0.5556, and
the error is 0.4444. At the same time, the amplitude calculated
by the parabolic interpolation method is 0.8010, and the error
is 0.199. At 0.7T, the calculated amplitude after parabolic
interpolation has the smallest amplitude, the smallest ampli-
tude is 0.7226, and the error reaches 0.2774. Therefore,

FIGURE 11. Fifteenth harmonic interpolation accuracy (N = 80).

FIGURE 12. Twentieth harmonic interpolation accuracy (N = 80).

FIGURE 13. Twenty-fifth harmonic interpolation accuracy (N = 80).

whether it is at the same time or simply comparing the min-
imum error, the parabolic interpolation method has obvious
advantages over the linear interpolation method. Based on the
same analysis of the 15th and 20th harmonics, conclusions
can be drawn.

The minimum amplitude, maximum error and theoretical
error of each harmonic in period T under the two interpolation
methods are shown in Tables 5 and 6.

Similarly, the interpolation accuracy of 20th and 60th har-
monics can be obtained when n= 200, as shown in Figure 14
and Figure 15.
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TABLE 5. Analysis of harmonic error of linear interpolation when N = 80.

TABLE 6. Harmonic error analysis of parabolic interpolation when N = 80.

FIGURE 14. Twentieth harmonic interpolation accuracy (N = 200).

FIGURE 15. Sixtieth harmonic interpolation accuracy (N = 200).

If the sampling points N is 200, the minimum amplitude,
maximum error and theoretical error of each harmonic is
shown in Tables 7 and 8.

TABLE 7. Harmonic error analysis of linear interpolation when N = 200.

TABLE 8. Harmonic error analysis of parabolic interpolation when N =

200.

FIGURE 16. 25th harmonic device test waveform.

The charts show that the data of this simulation experi-
ment (N = 80 and 200) is completely consistent with the
theoretical calculation data. In the simulation experiment
in Tables 5 and Table 7, the harmonic errors of each harmonic
of the linear interpolation method are all smaller than the
theoretical errors, and there is not much difference.Moreover,
the maximum error of the parabolic interpolation method
in this simulation experiment in Table 4 and the parabolic
interpolation error at 0.5T are both within the theoretical
maximum error range. This simulation experiment confirms
that the theoretical error calculation of the aforementioned
harmonics after the two interpolation methods is correct.

B. DEVICE TEST
The power system fault recorder is a typical recording and
measuring device that can record the sampling value of the
current and voltage of the power grid in real time when
a fault occurs. Therefore, this device is used to verify the
scheme of this article. The current and voltage are input from
one channel each, and the time difference between the two
external samplings is 125 µs.
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TABLE 9. Actual error of each harmonic under two interpolation methods.

On the basis of simulation analysis, the interpolation char-
acteristics are tested by device. The following 16 shows the
test results of the real device.
Ua and Ia are all fundamental waves superimposed with

20% of the 25th harmonic, in which the voltage does not add
a delay and does not need interpolation; however, when the
current needs to add 125 µs delay, it needs to be interpolated.
The result shows that the 25th harmonic of the voltage is
still close to 20%, but the 25th harmonic of the current
after interpolation is significantly reduced, only 16.1% of the
fundamental wave; the error reaches 19.5%.

Based on the same analysis, various interpolation errors of
the 13th, 15th, and 20th harmonics at 0.5T are obtained. The
data are completely consistent with the simulation analysis
data.

Table 9 shows the error of each harmonic manufacturer
(the interpolation time is 125 µs) during a wave recorder
experiment at Cape Laboratory.

The abovementioned measured data and simulation anal-
ysis verified the accuracy of the aforementioned theoretical
calculation results.

C. TEST CONCLUSION
Compared with the actual test results and theoretical analysis
results, the following conclusions can be drawn:

1) All real test values are within the theoretical calculation
range.

2) In the linear interpolation, the actual value is very close
to the real value. For example, for the 25th harmonic,
the measured error is 44%, and the theoretically calcu-
lated value is 48%.

3) For the parabolic interpolation, the actual value is close
to the real value. For example, the theoretical value of
the 15th harmonic is 6%, and the measured value is 3%,
which is a very good result. However, with the increase
in harmonic number, there is still a certain gap. For
example, for the 25th harmonic, the measured error is
19%, and the theoretically calculated value is 30%; the
reason for this difference is that the maximum value
calculated in this paper is the worst-case maximum
value, but not all points in the actual interpolation
encounter this situation.

4) Both interpolation methods can satisfy the require-
ments for the fundamental and second harmonics.
However, parabolic interpolation has much better accu-
racy than linear interpolation for wave recorders, power

quality analyzers and watt hour meters. For example,
for the 13th harmonic, the error of linear interpolation
is 13% (the actual error is 12%), but the theoretical
error of the parabolic interpolation is 4% (the actual
error is 2%). Therefore, parabolic interpolation should
be selected as much as possible if the conditions permit
its selection.

The interpolation accuracy is related to the number of
sampling points. According to the above theoretical anal-
ysis, when the number of sampling points is doubled, the
maximum error of the first-order interpolation is reduced to
1/4 of the previous value, and the maximum error of the
second-order interpolation is reduced to 1/8 of the previous
value.

VI. CONCLUSION AND RESEARCH PROSPECTS
This paper comprehensively presents maximum theoretical
values for the interpolation error when Lagrange linear and
second-order approximations of sinusoidal signals are per-
formed and compares it with real test data to verify the
correctness.

The maximum theoretical error of linear interpolation is:

R1max = A× 4.93×
m2

N 2

The maximum theoretical error of the parabola error is:

R2max = A× 10.105×
(m
N

)3
The actual error of the linear interpolation is very close to
the theoretical error, and the actual error of the parabolic
interpolation is close to the theoretical error.

The focus of this article is to minimize the error value of
the harmonics. Traditional research analyzes only the error
after interpolation in the form of point-to-point analysis. Fur-
thermore, the conclusion of this paper has a guiding role for
intelligent substation harmonic analysis and measurement,
which must use the interpolation algorithm.

In addition to the fixed error caused by interpolation,
the harmonic error is also closely related to the noise at the
time of sampling; therefore, the analysis should be carried
out according to the actual situation. According to our con-
clusion, we can select the appropriate interpolation algorithm
and sampling period to improve the harmonic measurement
accuracy of the substation.
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