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ABSTRACT In this paper, a novel adaptive asymmetrical barrier function-based vibration control law is
proposed for the nonlinear flexible cantilever beam system with obstacle restriction, model uncertainties,
and distributed disturbances. Firstly, by employing the Hamilton’s principle and the Galerkin projection
method, the dynamic of the nonlinear flexible cantilever beam with the piezoelectric actuator is constructed
in partial differential equations and simplified to nonlinear ordinary differential equations for the control law
design. Then, by introducing the fast nonsingular terminal slidingmode surface, a novel asymmetrical barrier
function based sliding mode control law is proposed, in which by means of a novel asymmetrical barrier
Lyapunov function is used to guarantee the finite time stability with the obstacle restriction. Further, to deal
with the model uncertainties, an adaptive updating law is incorporated with the fast nonsingular terminal
sliding mode control law based on asymmetrical barrier function, stability proof shows that the proposed
control law can ensure the distributed disturbance rejection and the model uncertainties compensation
simultaneously. Finally, the effectiveness of the proposed control laws is demonstrated by the numerical
simulations.

INDEX TERMS Vibration control, asymmetrical barrier Lyapunov function, fast nonsingular terminal
sliding mode surface, adaptive control, obstacle restriction.

I. INTRODUCTION
With the development of precision science, recent years have
witnessed significant requirements on the researches of spa-
tial structure, which can be applied in solar panels, robotic
arms, and optical motion detection systems. Whereas in
practice, as an important focus for flexible large lightweight
space structure, the resulting vibration phenomenon needs to
be overcome. In view of this, a tremendous amount of inter-
est has been generated regarding the researches of vibration
suppression that can improve system performance [1]–[3].

In [4], backstepping-boundary iterative learning control
was presented to tackle the vibration problem for an Euler–
Bernoulli beam system with boundary disturbance. By com-
bining with a backstepping technique, a robust sliding mode
boundary control method was proposed to suppress vibration
for a pinned–pinned Euler– Bernoulli beam in [5]. Distin-
guished from the lumped parameter systems, the flexible
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space structure vibration system is a nonlinear distributed
parameter system, which is consists of the coupled par-
tial differential equations (PDEs) and ordinary differential
equations (ODEs). Owing to the characteristics of infinite
dimension system, it is a challenge to design the control law
[6]–[8]. In the past few years, many methods and theories
have been proposed for distributed parameter system, includ-
ing the boundary control method with which is constructed
based on the original partial differential equations [9]–[11].
In [12], both the Lyapunov redesign and active disturbance
rejection control approach were employed for boundary con-
trol of a flexible rectangular plate when existing exogenous
disturbances. In [13], robust boundary control was proposed
to stabilize the beam and reject the vibration. The disturbance
observer was put forward for attenuating the effect of the
external disturbances. In [14], a flexible hose system with
varying length and input constraint based on original PDEs
was considered, backstepping method based boundary con-
trol scheme was proposed to regulate the hose’s vibration and
handle the effect of the input constraint.
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However, it can be seen that the dynamic model is com-
plicated when the nonlinearity caused by the mid-plane
stretching is considered [15]–[17]. Hence, the characteristics
of the actuator [18]–[21] play an important role in prac-
tical applications. In response to this challenge, by using
the Galerkin projection method [22], [23], the original
infinite-dimensional PDE model can be simplified to finite-
dimensional ODE [24]–[27]. In [28]–[30], for the case of
considering the nonlinear deformation and the actuator simul-
taneously, the partial differential equations of micro-scale
beam system were constructed according to Hamilton’s the-
orem, in which the PDEs were transformed into ordinary
differential equations by the Galerkin projection method, and
the mathematical model was simplified effectively. While
the model simplification may make correspondingly sys-
tem uncertainties, robust control and adaptive sliding mode
control are widely used due to their robustness and distur-
bance rejection [31]–[36]. In [37], mechanical servo systems
with mismatched time-variant uncertainties are controlled
by recursive robust integral of the sign of the error control
law, which achieve asymptotic tracking performance. In [38],
in order to deal with mismatched disturbance and time-
invariant modeling uncertainties, an extended state observer
was constructed, whose unknown parameters estimates were
updated by a novel adaptive law. Further, in [31], a flexible
beam with piezoelectric sensors and actuators was consid-
ered. Besides, a novel robust sliding mode control was pre-
sented to reject the unexpected vibration. The command input
shaping based sliding mode output feedback control was
introduced to deal with the mismatched uncertainties in the
flexible systems in [32]. However, the improved sliding mode
control law still exists singularity problems that will cause the
chattering phenomenon. In [33], to avoid singularity achieve
good control performance for nonlinear systems, the non-
singular fast terminal sliding mode control (NFTSMC) was
investigated.

The deformation constraints should also be considered
due to the complicated environment, such as the possible
obstacles in practical application. Hence, it is necessary to
drive attention to solve the control problem of constraint
systems [39], [40]. In [41], a barrier Lyapunov function based
control method was employed to prevent constraint viola-
tion for single-input single-output strict feedback nonlinear
system. In [42], the novel symmetric and asymmetric barrier
Lyapunov functions based gain technique was proposed to
guarantee that all the states do not violate their constraints
and the tracking error of the systems can be controlled to a
small neighborhood around zero.

Motivated by the aforementioned literature, this paper is
concerned to investigate vibration control problems of the
nonlinear flexible cantilever beam system under obstacle
restriction with model uncertainties and distributed distur-
bances. We consider a flexible cantilever beam system con-
sisting of nonlinear mid-plane stretching, obstacle restriction,
and time-varying disturbance scattered throughout the beam.
All the terms mentioned above complicate the system model.

Compared with the existing researches, the main contribu-
tions are summarized as follows.
(1) It proposes a novel asymmetrical barrier function-based

sliding mode control law for vibration suppression of
the nonlinear flexible cantilever beam system, where
guarantees the convergence speed while constraint the
partial maximum displacement of the flexible beam.

(2) It considers system uncertainty brought by the process of
system model simplification and approximation of par-
tial differential equations. In terms of solving this prob-
lem, an adaptive updating law is presented, by which
the model uncertainty and distributed disturbance can be
estimated and compensated.

(3) It develops a novel piecewise Lyapunov function which
combines the fast nonsingular terminal sliding mode
surface with asymmetrical barrier function, ensuring the
closed-loop system with obstacle restriction finite-time
stabilization.

The remainder of the paper is arranged as follows,
Section II introduces the PDEs dynamic model of the nonlin-
ear flexible cantilever beam system, followed by the proposed
control laws and stability analysis in Section III. Numerical
simulations and comparative analysis results are provided for
the proposed control law in Section IV. Some conclusions are
given for this paper in Section V.

Notations.The following notation given in this paper is the
unified standard form. (·)′ = ∂(·)

∂x , (·)
′′
=

∂2(·)
∂x2

, (·)′′′′ = ∂4(·)
∂x4

,
˙(·) = ∂(·)

∂t . And δ denotes the variational operator.

II. PROBLEM FORMULATIONS AND PRELIMINARIES
The dynamic analysis for the nonlinear flexible cantilever
beam system is given in this section. And some assump-
tions are assumed afterward. Some necessary lemmas are
presented for further derivation.

The vibration suppression system which is shown
in Figure 1 consists of a cantilever beam of length L with
a payload at the end and a piezoelectric actuator. The dis-
tributed disturbance d(x, t) along the beam is considered
time-varying and unknown. Consider that some particular
circumstances cannot be installed at the end of the beam,
the piezoelectric actuator is placed at the upper surface of
the flexible cantilever beam. Distance from the left edge
of the actuator to the left boundary of the beam is x = l1,
and the right edge of the actuator to the right boundary of the
beam is x = l2.
In the paper, the flexible cantilever beam is assumed to

be deformed only in the z-axis. The strain energy Ws(t) of
the nonlinear cantilever beam with mid-plane stretching is
expressed by,

Ws(t) =
1
2

∫ L

0

(
σ 0
+
EA
2L

∫ L

0

(∂ω(x, t)
∂x

)2
dx
)
ω′(x, t)2dx

+
1
2
EI
∫ L

0

(∂2ω(x, t)
∂x2

)2
dx (1)

where E is Young’s modulus. I and A are area moment
of inertia and cross-section area of the flexible beam,
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FIGURE 1. A schematic of the flexible cantilever beam with piezoelectric actuator.

respectively. σ 0 represents the initial axial force. ω(x, t) is
the lateral deformation in the z-axis, where x ∈ [0,L]. The
kinetic energyWk (t) is given by,

Wk (t) =
1
2
ρA
∫ L

0

(∂ω(x, t)
∂t

)2
dx +

1
2
m
(∂ω(L, t)

∂t

)2
dx

(2)

where ρ denotes the density of the flexible beam, m is the
mass of the payload. The piezoelectric actuator is supposed
to be thin enough that the nonlinear effects of the piezoelectric
layer can be negligible. Notice that to obtain the dynamic
model of motion, it can be considered that the dimensions of
the piezoelectric actuator are negligible. Neglecting the longi-
tude elongation of the beam, the variation of electrical energy
δWa(t) of the piezoelectric actuator layer can be characterized
as follows ( [28]),

δWa(t)=
∫ L

0

(
Yae31Aazam

K (t)
hp

∂δ(x − l2)
∂x

−Ype31APz
K (t)
hp

∂δ(x − l1)
∂x

)
δω(x, t)dxdt (3)

where Ya is the Young modulus of the piezoelectric actuator,
e31 is the piezoelectric constant, zam is the distance between
the neutral axis of the beam and the middle line of the piezo-
electric actuator. Ap and K (t) are the cross-section area of the
piezoelectric actuator and the control voltage, respectively.
δ(x) is the Dirac delta function. z represents the distance from
the neutral axis, hp denotes the height of the actuator.
The virtual work δWd (t) done by the distributed distur-

bance d(x, t) can be expressed by,

δWd (t) =
∫ L

0
d(x, t)δω(x, t)dx (4)

Through Hamilton’s principle, it has t ∈ [t1, t2] which can
make the variation of system energy equal to zero. t1 and t2
are two-time instants, and t1 < t < t2 is the operating
interval, further for the system the following equation holds,∫ t2

t1

(
δWk (t)− δWs(t)− δWp(t)+ δWd (t)

)
dt = 0 (5)

Apply variation to (1) and (2), respectively. Substituting
δWs(t), δWk (t), δWa(t), and δWd (t) into (5) and assuming the
initial axial force σ 0 to be zero. Hence, the following PDEs
of nonlinear cantilever beam system can be represented as,

EI
∂4ω(x, t)
∂x4

−

(EA
2L

∫ L

0

(∂ω(x, t)
∂x

)2
dx
)∂2ω(x, t)

∂x2

+ ρA
∂2ω(x, t)
∂t2

−

(∂δ(x − l2)
∂x

−
∂δ(x − l1)

∂x

)
γK (t)

− d(x, t) = 0 (6)

where

γ = −
Yae31Aaz

ha
(7)

Accordingly, the boundary conditions can be concluded as the
following,

EI ∂
3ω(L,t)
∂x3

−
EA
2L

∂2ω(L,t)
∂x2

∫ L
0

(
∂ω(x,t)
∂x

)2
dx

−m ∂2ω(L,t)
∂t2

= 0
ω(x, t) = 0
∂ω(x,t)
∂x = 0

∂2ω(L,t)
∂x2

= 0

(8)

where t ∈ [0,∞). The Galerkin projection method is intro-
duced to simplify the above PDEs (6) to the ODEs, which is
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FIGURE 2. A schematic of the flexible cantilever beam with obstacle
restriction.

given as below,

ω(x, t) =
∞∑
i=1

υi(t)φi(x) ≈ υ1(t)φ1(x) (9)

where υi(t) is the temporal part of the i-th mode of the
solution, φi(x) is the i-th shape of the beam which satisfy
the boundary conditions. Based on the most dominant first
mode shape, and define the sate variables z1(t) = υ1(t),
z2(t) = υ̇1(t), respectively. The nonlinear differential equa-
tion of the flexible beam system with piezoelectric actuator
can be simplified as [28],

ż1(t) = z2(t) (10)

G(φ1)ż2(t) = F(z1(t), φ1)+ u(t)+ H (φd )d̃(t) (11)

where

G(φ1) =
ρA

γ
(
φ′1(x)(l1)− φ

′

1(l2)
) ∫ L

0

(
φ1(x)

)2dx
(12)

F(z1(t), φ1) = −EIz1(t)
∫ L

0
φ1(x)φ1′′′′(x)dx

+
EA
2L

z31(t)
∫ L

0
φ1(x)

(
φ1
′(x)

)2
φ1
′′(x)dx

(13)

H (φd ) =
∫ L

0
φ1(x)φd (x)dx (14)

In practical applications, due to the complexity of the test
environments, it cannot precisely achieve the exact vibration
shape φ1(x), there still exist other vibration shapes which
may lead to undesirable redundant vibration and direct effect
the flexible beam system control performance. To explic-
itly consider the system modeling accuracy, the nonlinear
matricesG(φ1) and F(z1(t), φ1) are denoted as the following,
respectively.

G(φ1) = G0(φ1)+ G̃(φ1) (15)

F(z1(t), φ1) = F0(z1(t), φ1)+ F̃(z1(t), φ1) (16)

where G0(φ1) and F0(z1(t), φ1) are known positive definite
matrix, G̃(φ1) and F̃(z1(t), φ1) represent the unknown non-
linear uncertainty parts. Then, rewrite (11) as follows,

G0(φ1)ż2(t) = F0(z1(t), φ1)+ u(t)+ τd + H (φd )d̃(t)

(17)

with

τd = −G̃(φ1)ż2 + F̃(z1(t), φ1) (18)

where τd denotes the lumped system uncertainty defining
with the system uncertainties and the unknown disturbances.
To facilitate the analysis of the following sections, several

assumed conditions are further considered as below,
Assumption 1: The time-varying distributed disturbance

d(x, t) and its decomposition H (φd )d̃(t) are assumed to be
bounded such that |d(x, t)| ≤ dm1 and |H (φd )d̃(t)| ≤ dm2
with positive constants dm1 ∈ R+, dm2 ∈ R+. This is a ratio-
nal assumption, for the reason that the distributed disturbance
d(x, t) has finite energy and therefore bounded.
Assumption 2: The initial condition of the flexible can-

tilever beam satisfies the prescribed constraint which is ratio-
nal. That is the displacement z1(0) satisfies |z1(0)| < ε, where
ε denotes the positive constant.
Assumption 3 [43]: In the paper, we consider the weak

initial condition with ω(x, 0) and distributed external distur-
bances simultaneously. Besides, the piezoelectric actuator for
the system has no serious saturation problem. Based on the
above discussions, one can conclude that the lumped system
uncertainty is bounded,

|τd | < ξ0 + ξ1|z1(t)| + ξ2|ż1(t)|2 (19)

where ξ0, ξ1, and ξ2 denote the unknown positive constants.
Lemma 1 [44]: Assume that there exist scalars a > 0,

0 < l < 1, andψ > 0, for the nonlinear system ẋ = f (x, u) of
the controlled systems, if the smooth positive definite function
V (x) satisfies the following inequality,

V̇ (x) ≤ −aV l(x)+ ψ, t ≥ 0 (20)

then the system ẋ = f (x, u) is semi-global practical finite-
time stable.
Lemma 2 [45]: For the nonlinear system ẋ = f (x, u),

x = 0 is the equilibrium value of the system. If there exists
ε > 0 and the settling time T (ε, x0) < ∞ to satisfy
|x(t)| < ε, the nonlinear system is semi-global practical finite
time stable for all t ≥ t0 + T .

III. MAIN RESULTS
A fast nonsingular terminal sliding mode surface is first
employed in this section, which can both accelerate the con-
vergence rate and avoid the singular phenomenon. Second,
we propose the asymmetrical barrier function based sliding
mode control law for the flexible beam system. Third, based
on the obtained results, the asymmetrical barrier function
based adaptive fast nonsingular terminal sliding mode control
law is proposed via an adaptive updating law, estimating the
unknown nonlinear uncertainty parts in (15)-(16).
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A. THE FAST NONSINGULAR TERMINAL SLIDING MODE
CONTROL LAW BASED ON ASYMMETRICAL
BARRIER FUNCTION
For the later design of the asymmetrical barrier function
based sliding mode control law for flexible beam system
(10)-(11), the following sliding mode surface, namely the fast
nonsingular terminal sliding mode is presented as,

s = z1(t)+ κ1|z1(t)|α+1 + κ2z
m/n
2 (t) (21)

where κ1, α, and κ2 are all the designed positive constants;
m and n are the positive odd integers satisfying 1 < m/n < 2
and α + 1 > m/n, respectively.
If the state variables reach the sliding mode surface s = 0,

the following equation holds,

ż1(t) = −
( 1
κ2

)n/m(
z1(t)+ κ1|z1(t)|α+1

)n/m
= −

( 1
κ2

)n/m (
z1(t)+ κ1z

α+1
1 (t)sign

(
z1(t)

)α+1)n/m
= −zn/m1 (t)

[ 1
κ2

(
1+ κ1zα1 (t)sign

(
z1(t)

)α+1)]n/m (22)

To analyze the convergence time of the proposed sliding
mode surface, the time variable tc is assumed to be the time
from the initial state variable z1(0) 6= 0 to z1(tc) = 0, then
integrating the time along both sides of (22),∫ z1(tc)

z1(0)

1

zn/m1 (t)
dz1(t)

= −

∫ tc

0

[ 1
κ2

(
1+ κ1zα1 (t)sign

(
z1(t)

)α+1)]n/mdτ
≤ −

∫ tc

0

( 1
κ2

)n/m
dτ (23)

Therefore, it can be concluded from (23) that the convergence
time tc is given as follows,

tc ≤
m

(1/κ2)n/m(m− n)
z(1−n/m)1 (0) (24)

Remark 1: As can be seen from the proposed sliding mode
surface (21), when the state variables are far from the equi-
librium point, the term z1(t) in sliding mode surface smainly
affect the convergence performance, which can make the
system trajectory converge at a fast rate. On the contrary, if the
state variables are closed to the equilibrium point, the term
κ1|z1(t)|α+1 plays a major role which can also make fast con-
vergence of the state trajectory. Hence, the proposed sliding
mode surface (21) can not only satisfy the fast trajectory
convergence in the region adjacent to the equilibrium point
but also meet the global state variables in the system.
Theorem 1: Consider the flexible beam system (10)-(11)

under Assumption 1with the proposed fast nonsingular termi-
nal sliding mode surface (21), then by selecting appropriate
control parameters, the asymmetrical barrier function based
sliding mode control law is designed as,

u(t) = u1(t)+ u2(t)+ us(t) (25)

with

u1(t) = −F(z1(t), φ1)

−
n
κ2m

G(φ1)|z2(t)|2−m/nsign
(
z2(t)

)
−
(α + 1)κ1
mκ2

G(φ1)|z1(t)|α|z2(t)|2−m/nsign
(
z2(t)

)
(26)

u2(t) = −
n
κ2m

G(φ1)|z2(t)|1−m/n ·[
M (i)sz1(t)z2(t)+ c1M (i)

(
ε2 − z21(t)

) 3
2

M (i)
(
ε2 − z21(t)

)
+
(
1−M (i)

)(
ε2 − z21(t)

)2
+

c2
(
1−M (i)

)(
ε2 − z21(t)

)2
M (i)

(
ε2 − z21(t)

)
+
(
1−M (i)

)(
ε2 − z21(t)

)2 ]
(27)

u3(t) = −
n
κ2m

G(φ1)|z2(t)|1−m/n
( κ3

Φ(s)
sign(s)

+ κ4|s|θ+1sign(s)
)

(28)

where M (i) is the switching term that can be described as,

M (i) =
{
1 , z1(t) > 0
0 , z1(t) ≤ 0

(29)

Φ(s) = ϑ0+ (1−ϑ0)e−a|s|
q
, in which ϑ0 denotes the positive

offset which is satisfied ϑ0 < 1, a and q denote positive
constant and positive integer, respectively. Then, the proposed
control law can guarantee that z1(t) and z2(t) remain uni-
formly in finite time with semi-global practical finite-time
stable. Further, the displacement z1(t) can converge to the
origin without violating the output constraint ε.
Remark 2: In the paper, the deformation ω(x, t) is not

allowed reach its upper limit εmax which is a positive constant.
From (9), define the constraint ε ∈ R+ of the displacement
z1(t) at location x = l0 with the following form,

ε ≤ εmax ·
φ1(l0)
φ1(L)

(30)

Proof: From (21), one can conclude that the derivative
of the proposed sliding mode surface s is given as follows,

ṡ = ż1(t)+ κ1(α + 1)|z1(t)|αz2(t)+ κ2
m
n
|z2(t)|m/n−1ż2(t)

= ż1(t)+ κ1(α + 1)|z1(t)|αz2(t)+ κ2
m
n
|z2(t)|m/n−1 ·

×G−1(φ1)
(
F(z1(t), φ1)+ u(t)+ H (φd )d̃(t)

)
(31)

Choose the asymmetrical barrier based Lyapunov func-
tion as

V1(t) =
1
2
M (i)

s2

ε2 − z21(t)
+

1
2

(
1−M (i)

)
s2 (32)

Then taking the derivative of (32), then it follows that

V̇1(t) = M (i) s
2z1(t)ż1(t)(
ε2−z21(t)

)2 +M (i) sṡ
ε2−z21(t)

+
(
1−M (i)

)
sṡ (33)
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Substituting the proposed control law (25)-(29) and (31)
into the derivative of the Lyapunov function (32), respec-
tively, that leads to,

V̇1(t) = M (i)
s2z1(t)ż1(t)(
ε2 − z21(t)

)2 + (M (i)
s

ε2 − z21(t)

+
(
1−M (i)

)
s
)[
ż1(t)+ κ1(α + 1)|z1(t)|α ż1(t)

+ κ2
m
n
|z2(t)|m/n−1G−1(φ1)

(
F(z1(t), φ1)

+ u(t)+ τd
)]

(34)

In what follows, to simplify the writing, define the function
0 as follows,

0 = M (i)
1

ε2 − z21(t)
+
(
1−M (i)

)
(35)

One can further infer that there exist a positive constant τdm
satisfying that |τ | ≤ τdm. Then (34) can be derived that

V̇1(t) ≤ −M (i)
c1s(

ε2 − z21(t)
)1/2 − c2(1−M (i)

)
s

+0κ2
m
n
|z2(t)|m/n−1|G(φ1)|−1

(
τdms

−
κ3

Φ(s)
|s| − κ4|s|θ+1

)
(36)

It implies that there exist a positive constant Q, together
with (36), one has that,

τdms−
κ3

Φ(s)
|s| − κ4|s|θ+1 ≤ Q (37)

Afterwards, by defining Cmin = min
(√

2c1,
√
2c2
)
and

Qm = 0κ2
m
n |z2(t)|

m/n−1
|G(φ1)|−1Q, respectively, there

holds,

V̇1(t) ≤ −CminV
1/2
1 (t)+ Qm (38)

The convergent time T ∗ obtains as follows,

T ∗ =
2

µCmin

[
V 1/2
1 (0)−

Qm
(1− µ)Cmin

]
(39)

with V1(0) denotes the initial value of V1(t). On the other
hand, based on Lemma 1, for ∀t ≥ T ?, one has V 1/2

1 (t) ≤
(Qm/[(1−µ)Cmin]), then it can further obtain that the whole
closed-loop system is semi-global practical finite-time stable.
Considering that for the case ofM (i) = 1, it yields that

|z1(t)| ≤ ε
[
1− 2

( Qm
(1− µ)Cmin

)2] 1
2

(40)

Consequently, it can be derived that |z1(t)| < ε after finite
time T ?, and further the displacement of the flexible beam at
location x = l0 can be maintained in small neighborhoods
near zero. Thus, the constraint of the beam deformation are
not violated.
Remark 3. In view of the proposed control law (25)-(29),

one can conclude, the equivalent control laws u1(t) and u2(t)
achieve desired trajectory tracking alone without external
disturbances and parameter uncertainties. Moreover, when

the state variables are far from the proposed sliding mode
surface (21), the reaching control law us(t) can accelerate the
convergence rate and enhance the robustness property of the
flexible beam system.
Remark 4. For the proposed control law u2(t), when the

displacement z1(t) is far from the equilibrium point and
z1(t) > 0, the gain of barrier function affects the strength of
the barrier function. However, when the displacement z1(t) is
far from the equilibrium and z1(t) < 0, the gain of sliding
mode surface c2 affects the convergence efficiency. In order
to guarantee the vibration displacement of the flexible beam
converge to zero in finite time and minimize the chattering,
the choosing of the parameters c1 and c2 should be well-
balanced.
Remark 5. Notice that the term Φ(s) in the exponential

reaching law (28) is a positive one, the stability of the system
cannot be affected. It should be emphasized that Φ(s) will
approach to ϑ0 if |s| increases, and κ3/Φ(s) is approximately
equal to κ3/ϑ0. Therefore, κ3/Φ(s) should be increased in
the reaching phase which can accelerate the convergence
rate of the sliding mode surface. On the contrary, as |s|
decreases, the termΦ(s) will approach one, which also make
κ3/Φ(s) convergence to κ3. It is indicated that the speed of
the term κ3/Φ(s) is reduced which can alleviate the chattering
phenomenon.

B. THE ADAPTIVE FAST NONSINGULAR TERMINAL
SLIDING MODE CONTROL LAW BASED ON
ASYMMETRICAL BARRIER FUNCTION
To estimate and compensate for the distributed external dis-
turbances and the unknown uncertainties of the lumped sys-
tem, an adaptive updating law is introduced in this section.
In what follows, the stabilization analysis is given in the
following theorem.
Theorem 2: Consider the flexible beam system (10)-(11)

under Assumptions 1 and 3 with the proposed fast nonsin-
gular terminal sliding mode surface (21), design the control
law as

u(t) = u1(t)+ u2(t)+ u3(t)+ us(t) (41)

where

u1(t) = −F0(z1(t), φ1)

−
n
κ2m

G0(φ1)|z2(t)|2−m/nsign
(
z2(t)

)
−

(α + 1)κ1
mκ2

G0(φ1)|z1(t)|α|z2(t)|2−m/nsign
(
z2(t)

)
(42)

u2(t) = −
n
κ2m

G0(φ1)|z2(t)|1−m/n ·[
M (i)sz1(t)z2(t)+ caM (i)

(
ε2 − z21(t)

) 3
2

M (i)
(
ε2 − z21(t)

)
+
(
1−M (i)

)(
ε2 − z21(t)

)2 ]
(43)

u3(t) =
{ G0(φ1)

s 4 , |s| 6= 0
0 , |s| = 0

(44)
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us(t) = −
n
mκ2

G0(φ1)|z2(t)|1−m/n ·( κ3

Φ(s)
sign(s)+ κ4|s|θ+1sign(s)

)
(45)

with

4 = |s||G−10 (φ1)|
(
ξ̂0 + ξ̂1|z1(t)| + ξ̂2|ż1(t)|2

)
(46)

where ξ̂j (j = 0, 1, 2) denote the estimation values of ξj.
Further, with the following adaptive updating law as,

˙̂
ξ0 = λ00κ2

m
n
|z2(t)|m/n−1|s|G

−1
0 (φ1) (47)

˙̂
ξ1 = λ10κ2

m
n
|z2(t)|m/n−1|s|G

−1
0 (φ1)|z1(t)| (48)

˙̂
ξ2 = λ20κ2

m
n
|z2(t)|m/n−1|s|G

−1
0 (φ1)|ż1(t)|2 (49)

Then the state variables z1(t) and z2(t) of the flexible system
can remain uniformly in finite time with semi-global practical
finite-time stability, with which the displacement z1(t) is ulti-
mately bounded and can converge to a small neighborhood
of the origin.

Proof: Similar to the above proof steps in Theorem 1,
the following asymmetrical barrier based Lyapunov function
is constructed. Notion that the following equation is given as:
ξ̃j = ξ̂j − ξ̆j, j = 0, 1, 2,

V2(t) =
1
2
M (i)

s2

ε2 − z21(t)
+

1
2

(
1−M (i)

)
s2

+
1
2
ϑ−10 ξ̃20 +

1
2
ϑ−11 ξ̃21 +

1
2
ϑ−12 ξ̃22 (50)

Then, taking the derivative of (50) with respect to time,
substituting the proposed control law (41)-(46), (50) can be
further derived as,

V̇2(t) = V̇1(t)+
1
2
ϑ−10 ξ̃20 +

1
2
ϑ−11 ξ̃21 +

1
2
ϑ−12 ξ̃22

= −M (i)
cas(

ε2 − z21(t)
) 1
2

+ 0κ2
m
n
|z2(t)|m/n−1s ·

×G−10 (φ1)
(
u3(t)+ τd + H (φd )d̃(t)−

κ3

Φ(s)
sign(s)

− κ4|s|θ sign(s)
)
+

1
2
ϑ−10 ξ̃20 +

1
2
ϑ−11 ξ̃21 +

1
2
ϑ−12 ξ̃22

(51)

Therefore, based on (35) and Assumption 3, it can be
inferred that 0 > 0. Further, rewrite (51) as follows,

V̇2(t) ≤ −M (i)
cas(

ε2 − z21(t)
) 1
2

+ 0κ2
m
n
|z2(t)|m/n−1|s| ·

× |G0(φ1)|−1
(
ξ̂0 + ξ̂1|z1(t)| + ξ̂2|ż1(t)|2

)
+0κ2

m
n
|z2(t)|m/n−1s|G0(φ1)|−1

(
τd + H (φd )d̃(t)

−
κ3

Φ(s)
sign(s)− κ4|s|θ sign(s)

)
+

1
2
ϑ−10 ξ̃20

+
1
2
ϑ−11 ξ̃21 +

1
2
ϑ−12 ξ̃22 (52)

Since ˙̃ξj =
˙̂
ξj with j = 0, 1, 2, then substituting the adaptive

updating law (47)-(49) into (52), we have,

V̇2(t) ≤ −M (i)
cas(

ε2 − z21(t)
) 1
2

+0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·(

ξ̂0 + ξ̂1|z1(t)| + ξ̂2|ż1(t)|2
)

+0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·(

ξ0 + ξ1|z1(t)| + ξ2|ż1(t)|2
)

+0κ2
m
n
|z2(t)|m/n−1|G0(φ1)|−1 ·(

H (φd )d̃(t)−
κ3

Φ(s)
|s| − κ4|s|θ+1

)
+

1
2
ϑ−10 ξ̃20 +

1
2
ϑ−11 ξ̃21 +

1
2
ϑ−12 ξ̃22 (53)

By introducing the positive constants ξ̆j with j = 0, 1, 2,
then (53) further becomes,

V̇2(t) ≤ −M (i)
cas(

ε2 − z21(t)
) 1
2

+0κ2
m
n
|z2(t)|m/n−1|G0(φ1)|−1

(
H (φd )d̃(t)

−
κ3

Φ(s)
|s| − κ4|s|θ+1

)
+0κ2

m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·

×
(
ξ̂0 + ξ̂1|z1(t)| + ξ̂2|ż1(t)|2

)
+0κ2

m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·

×
(
ξ0 + ξ1|z1(t)| + ξ2|ż1(t)|2

)
+0κ2

m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·(

ξ̆0 + ξ̆1|z1(t)| + ξ̆1|ż1(t)|2
)

−0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·(

ξ̆0 + ξ̆1|z1(t)| + ξ̆1|ż1(t)|2
)

−0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1

[
λ0ϑ
−1
0 (ξ̂0 − ξ̆0)

+ λ1ϑ
−1
1 |z1(t)|(ξ̂1 − ξ̆1)+ λ2ϑ

−1
2 |ż1(t)|

2(ξ̂2 − ξ̆2)
]

= −M (i)
cas(

ε2 − z21(t)
) 1
2

+ 0κ2
m
n
|z2(t)|m/n−1 ·

× |G0(φ1)|−1
(
H (φd )d̃(t)−

κ3

Φ(s)
|s| − κ4|s|θ+1

)
−0κ2

m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·

×

[
(ξ̆0 − ξ0)+ (ξ̆1 − ξ1)|z1(t)| + (ξ̆2 − ξ2)|ż1(t)|2

]
−0κ2

m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·

× (λ0ϑ
−1
0 − 1)(ξ̆0 − ξ̂0)

−0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·

× (λ1ϑ
−1
1 − 1)|z1|(ξ̆1 − ξ̂1)

−0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1 ·

(λ2ϑ
−1
2 − 1)|ż1(t)|2(ξ̆2 − ξ̂2) (54)
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FIGURE 3. The free vibration of the flexible beam.

Define the state vectors ϕ0, ϕ1, ϕ2, and ϕ4 as follows.

ϕ0 = 0κ2
m
n
|z2(t)|m/n−1|G0(φ1)|−1 ·

×

[
(ξ̆0 − ξ0)+ (ξ̆1 − ξ1)|z1(t)| + (ξ̆2 − ξ2)|ż1(t)|2

]
ϕ1 = 0κ2

m
n
|z2(t)|m/n−1|s||G0(φ1)|−1(λ0ϑ

−1
0 − 1)

ϕ2 = 0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1(λ1ϑ

−1
1 − 1)|z1(t)|

ϕ3 = 0κ2
m
n
|z2(t)|m/n−1|s||G0(φ1)|−1(λ2ϑ

−1
2 − 1)|ż1(t)|2

(55)

Finally, by combining with (54), the following can be
concluded,

V̇2(t) ≤ −M (i)
cas(

ε2 − z21(t)
) 1
2

+ 0κ2
m
n
|z2(t)|m/n−1 ·

× |G0(φ1)|−1
(
H (φd )d̃(t)−

κ3

Φ(s)
|s| − κ4|s|θ+1

)
−ϕ0|s| − ϕ1(ξ̆0 − ξ̂0)− ϕ2(ξ̆1 − ξ̂1)− ϕ3(ξ̆2 − ξ̂2)

(56)

It can be observed from (56) that ϕ0 ≥ 0, hence, there exist
a positive constant % satisfying the following condition,

−ϕ0|s| ≤ −%
(
1−M (i)

)
|s| (57)

Then, (56) can be further written as follows,

V̇2(t) ≤ −M (i)
cas(

ε2 − z21(t)
) 1
2

− %
(
1−M (i)

)
|s|

+0κ2
m
n
|z2(t)|m/n−1|G0(φ1)|−1

(
H (φd )d̃(t)

−
κ3

Φ(s)
|s| − κ4|s|θ+1

)
− ϕ1(ξ̆0 − ξ̂0)

−ϕ2(ξ̆1 − ξ̂1)− ϕ3(ξ̆2 − ξ̂2)

= −
√
2ca

(
1
2
M (i)

s2

ε2 − z21(t)

) 1
2

−
√
2%
[
1
2

(
1−M (i)

)
s2
] 1

2

FIGURE 4. The displacement of the flexible beam at location x = l0.

FIGURE 5. The displacement of the flexible beam at location x = L.

+0κ2
m
n
|z2(t)|m/n−1|G0(φ1)|−1

(
H (φd )d̃(t)

−
κ3

Φ(s)
|s| − κ4|s|θ+1

)
−ϕ1

√
2ϑ0

[
1
2
ϑ0
−1(ξ̆0 − ξ̂0)2

] 1
2

−ϕ2
√
2ϑ1

[
1
2
ϑ1
−1(ξ̆1 − ξ̂1)2

] 1
2

−ϕ3
√
2ϑ2

[
1
2
ϑ2
−1(ξ̆2 − ξ̂2)2

] 1
2

(58)

It implies that there exist a positive constant ιm, together
with (58), one has that,

0κ2
m
n
|z2(t)|m/n−1|G0(φ1)|−1

(
H (φd )d̃(t)−

κ3

Φ(s)
|s|

−κ4|s|θ+1
)
≤ ιm (59)

Define the state vector λmin > 0 as the following form.

λmin = min
(√

2ca,
√
2%, ϕ1

√
2ϑ0, ϕ2

√
2ϑ1, ϕ3

√
2ϑ2

)
Further, applying the above definitions, (58) yields that,

V̇2(t)

≤−λmin

[(1
2
M (i)

s2

ε2 − z21(t)

) 1
2
+

(1
2

(
1−M (i)

)
s2
) 1

2

+

(1
2
ϑ0
−1(ξ̆0 − ξ̂0)2

) 1
2
+

(1
2
ϑ1
−1(ξ̆1 − ξ̂1)2

) 1
2
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FIGURE 6. The deformation of the flexible beam (a) with T-S fuzzy based state feedback control. (b) with fast nonsingular
terminal sliding mode control. (c) with asymmetrical barrier function based FNTSMC control. (d) with adaptive asymmetrical
barrier function based FNTSMC control.

+

(1
2
ϑ2
−1(ξ̆2 − ξ̂2)2

) 1
2
]
+ 0κ2

m
n
|z2(t)|m/n−1|G0(φ1)|−1

×

(
H (φd )d̃(t)−

κ3

Φ(s)
|s| − κ4|s|θ+1) ≤ −λminV

1
2
2 (t)+ ιm

(60)

In conclusion, it can be derived that the whole closed-loop
states of the flexible beam system are semi-global practical
finite-time stable, further the convergence time Td is given as
bellow,

Td =
2

µλmin

[
V 1/2
2 (0)−

ιm

(1− µ)λmin

]
(61)

whereV2(0) denotes the initial value ofV2(t), and 0 < µ ≤ 1.
Then based on Lemma 1, for ∀t ≥ T ?, V 1/2

2 (t) ≤ (ιm/[(1 −
µ)λmin]). Furthermore, for ∀t ≥ T ?, M (i) = 1 one has

|z1(t)| ≤ ε
[
1− 2

( ιm

(1− µ)λmin

)2] 1
2

(62)

Therefore, it can be concluded that the displacement of
the flexible beam at location x = l0 can be maintained
in small neighborhoods near the origin, and the proof is
completed. �
Remark 6. It can be observed that the upper bound of the

unknown parameters is estimated by the adaptive updating
law (47)-(49). The adaptive gains λi (i = 0, 1, 2) are positive
constants which have direct effect on the adaptation rate.

Further, the gains are closely related to the lumped uncer-
tainty in the flexible beam system. In other words, the greater
the uncertainty of the lumped system, the greater the value
that ensures fast adaptive estimation. In addition, when the
initial values ξ̂i (i = 0, 1, 2) select too large, it will have an
overlarge initial force.

IV. SIMULATION ANALYSIS
This section is devoted to demonstrate the effectiveness and
validate the superiority of our designed control laws. It is
necessary to note that, different from the previous researches,
the simulation in this paper is completed on the original
PDE model (8). The vibration of a flexible cantilever beam
with mid-plane stretching is designed and simulated by the
finite difference method, in which the proper temporal and
spatial step size is chosen to approximate the solution of the
PDE system (8). The obstacle restriction is considered in this
paper, the distance between the obstacle and the beam is given
by 0.02m. The unknown disturbance distributed d(x, t) across
the flexible cantilever beam is given as follows,

d(x, t) =
1
2
sin
( x
L
π t
)
+

3
10

sin
(3x
L
π t
)
+

1
10

sin
(5x
L
π t
)
(63)

The first-order mode shape φ1(x) is given approximately
for control law design, for the simulation propose, the related
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FIGURE 7. The deformation of the flexible beam in t ∈ [0, 1] (a) with T-S fuzzy based state feedback control. (b) with fast
nonsingular terminal sliding mode control. (c) with asymmetrical barrier function based FNTSMC control. (d) with adaptive
asymmetrical barrier function based FNTSMC control.

parameters of the beam are given as follows: the bending
rigidity EI and axial stiffness EA are set 15Nm2, 14Nm2,
the density is simulated as ρ = 2200kg/m2. The height hb
and the height L of the beam are set with 0.005m and 1m,
respectively. The mass of payload is denoted as m = 5kg.
Further, the initial parameters for the piezoelectric actuator is
also presented as follows, the Young modulus and piezoelec-
tric constant are denoted as Ya = 71GPa,−175×10−12C/N ,
respectively. The left disturbance and the right distance are
given by l1 = 0.5m and l2 = 0.55m. Notice that, in the paper,
we set l0 = 1/2(l1 + l2).
Under initial conditions ω(x, 0) = 2.2 × 10−2x2 and

ω̇(x, 0) = 8.82x2, the flexible cantilever beam is generated
for free vibration. The deformation of the beam in free vibra-
tion is depicted in Figure 3, from which it can be concluded
that due to the interaction of distributed disturbance and
boundary disturbance acting on the payload, significant and
continuous vibration occurs along the beam.

Next, four simulation cases are given out to validate the
effectiveness and rationality performances of the proposed
control laws (25) and (41), respectively.

I Asymmetrical barrier function based fast nonsingu-
lar terminal sliding mode control law (ABFNTSMC)

The asymmetrical barrier function based FNTSMC control
law is considered, in which the parameters are given as

κ1 = 0.1, κ2 = 0.5, α = 8/19, m/n = 19/21, c1 =
1 × 103, c2 = 1. The coefficients for Φ(s) are given as
κ3 = 50, κ4 = 800, ϑ0 = 1 × 10−5, a = 8.5, q = 1,
respectively.
From Figure 6(c), it can be observed that under distributed

interference and sensor noise, the proposed control law
can suppress beam vibration exponentially within 1 second.
Besides, the proposed control law (25) illustrate that the beam
displacement can be effectively constrained not to exceed the
bound 0.02.

I Adaptive asymmetrical barrier function based
FNTSMC control law (Adaptive ABFNTSMC)

The coefficients of the adaptive asymmetrical barrier func-
tion based FNTSMC control law is simulated with the same
parameters given in the asymmetrical barrier function based
FNTSMC control law. In addition, the parameters of the
adaptive law (47)-(49) are given as λ0 = λ1 = λ2 = 0.07,
the parameter of the asymmetrical barrier function is given as
ca = 1× 103. The initial values of the adaptive law are given
as ξi(0) = 0 with (i = 0, 1, 2).
The deformation response with the adaptive asymmet-

rical barrier function based FNTSMC control is shown
in Figure 6(d), which implies better control performance with
the model uncertainties than the asymmetrical barrier func-
tion based FNTSMC control law.
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FIGURE 8. The deformation of the flexible beam in t ∈ [7, 10] (a) with T-S fuzzy based state feedback control. (b) with
fast nonsingular terminal sliding mode control. (c) with asymmetrical barrier function based FNTSMC control. (d) with
adaptive asymmetrical barrier function based FNTSMC control.

I State feedback control law
To make a comparison, the flexible cantilever beam is simu-
lated with T-S fuzzy-based state feedback control law.

u(t) =
( z21(t)
χ2

)
Aµ1Z (t)+

(χ2
− zZ1 (t)

χ2

)
Aµ2z(t) (64)

where Z (t) = [z1(t) z2(t)]T , χ = 0.1. The corresponding
coefficients are supposed to be assigned as ( [28]),

Aµ1 = [9.354,−0.772]

Aµ2 = [9.39,−0.772] (65)

I Fast nonsingular terminal sliding mode control law
(FNTSMC)

The following fast nonsingular terminal sliding mode control
law is given to make a comparison with our proposed control
law,

u(t) = −F(z1(t), φ1)− G(φ1)
b
k1a
|z2(t)|1−a/b

(
z2(t)

+ k2α|z1(t)|α−1z2(t)
)
− k3|s|θ1sign(s)− k4|s|θ2sign(s)

(66)

Select the parameters k1 = 0.1, α = 27/19, k2 = 0.5,
a/b = 19/21, k3 = 1 × 104, k4 = 0.1, θ1 = 1.5, θ2 = 0.5,
respectively.

The deformations of the beam at location x = l0 and x = L
under four different control laws are shown in Figure 4 and
Figure 5. The four proposed control laws, including the asym-
metrical barrier function based FNTSMC control law (25),
the adaptive asymmetrical barrier function based FNTSMC
control law (41), the state feedback control law (64), and
the FNTSMC control law (66), which can all suppress the
vibration of the flexible cantilever beam. Figure 7 shows
the deformation of the beam in t ∈ [0, 1], we can see that
the deformation of the beam under the state feedback control
law (64) and the FNTSMC control law (66) has exceeded our
constraint εmax = 0.02 which may lead the beam hitting the
obstacle. The deformation of the beam in t ∈ [7, 10] is shown
in Figure 8, it can be seen that the vibration suppression of
the beam under uncertainties and distributed disturbance with
the adaptive asymmetrical barrier function based FNTSMC
control law (41) have better flatness than the other three
control laws.

Compared with the control law (25) and (41) proposed in
this paper, the state feedback control law and the FNTSMC
control law cannot guarantee that the flexible cantilever beam
will not touch the obstacle. Besides, stabilization control
accuracy and the speed of convergence are not as good as the
proposed control law in this paper. It can be observed that,
with the proposed adaptive asymmetrical barrier function
based FNTSMC control law, the deflection response ω(x, t)
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is constrained and one may notice that it can converge to near
to zero with the faster time also fewer vibrations.

V. CONCLUSION
This paper is concerned with the problem of stability control
analysis for a class of nonlinear flexible cantilever beam
vibration systems with obstacle restriction, model uncertain-
ties, and distributed disturbance. In the aspect of model anal-
ysis, employed the Galerkin projection method, the partial
differential equations of flexible beams are simplified to
nonlinear ordinary differential equations. Then, the asymmet-
rical barrier function based FNTSMC control law is given
in the light of a novel asymmetrical barrier Lyapunov func-
tion, guarantee that the convergence speed while constraint
the maximum displacement of the flexible beam. By means
of the compensation of the uncertainties caused by model
simplification and distributed disturbance, together with an
adaptive updating law, the adaptive FNTSMC control law
based on asymmetrical barrier function is proposed. Several
comparative simulation results are provided to illustrate the
superiority of the presented control laws. In our future work,
the noise effect in the velocity measurement should be con-
sidered. In addition, we will focus on the simplification and
application in future research.
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