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ABSTRACT The aim of this study is to design a layer structure of feed-forward artificial neural networks
using the Morlet wavelet activation function for solving a class of pantograph differential Lane-Emden
models. The Lane-Emden pantograph differential equation is one of the important kind of singular functional
differential model. The numerical solutions of the singular pantograph differential model are presented by the
approximation capability of the Morlet wavelet neural networks (MWNNs) accomplished with the strength
of global and local search terminologies of genetic algorithm (GA) and interior-point algorithm (IPA),
i.e., MWNN-GAIPA. Three different problems of the singular pantograph differential models have been
numerically solved by using the optimization procedures ofMWNN-GAIPA. The correctness of the designed
MWNN-GAIPA is observed by comparing the obtained results with the exact solutions. The analysis for 3,
6 and 60 neurons are also presented to check the stability and performance of the designed scheme.Moreover,
different statistical analysis using forty number of trials is presented to check the convergence and accuracy
of the proposed MWNN-GAIPA scheme.

INDEX TERMS Pantograph, singular, artificial neural networks, genetic algorithms, neuron analysis,
interior-point algorithm.

I. INTRODUCTION
Pantograph equation is one of the specific form of the func-
tional differential system that contain proportional delays.
Ockendon and Tayler (1971) [1] introduced first time the
word ‘‘pantograph’’ by working on the project named as
a current collection using the pantograph head of an elec-
tric’’ [1]. The pantograph differential equations have many
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applications in the area of theory [2], cell-growth biolog-
ical based models [3] and control system [4]. The pan-
tograph differential equations have been solved by many
techniques, some of them are intelligent networks [5],
Chebyshev spectral scheme [6], spectral tau scheme [7],
multidimensional homotopy optimal asymptotic scheme [8],
Genocchi operational basedmatrix scheme [9], least-squares-
Epsilon-Ritz scheme [10], Taylor operation scheme [11],
Galerkin multi-wavelets scheme [12], heuristic comput-
ing approach [13], Sinc numerical scheme [14], Laplace
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transform scheme [15], spectral collocation approach [16],
multistep block method [17], Legendre Tau computational
scheme [18] and Euler–Maruyama scheme [19].

This singular study is considered very significant due to
its extensive applications in radiators cooling, dusty fluids,
classical/quantum-based mechanics, models of gas cloud and
galaxies [20]–[22]. It is not easy and always a big chal-
lenge for the research community to solve the Lane-Emden
form of the model due to singular-point at the origin. The
general form of the singular Lane-Emden equation is given
as [23]–[25]:h′′(τ )+

�

τ
h′(τ )+ g(h) = f (τ ),

h(0) = I , h′(0) = 0,
(1)

where I is a constant,� ≥ 1 represents a shape factor, the sin-
gularity arises at τ = 0. The present study is related to solve
a singular pantograph (proportional delay with parameter a)
differential model and is given as [26]:a h′′(aτ )+

�

τ
h′(aτ )+ g(h) = f (τ ),

h(0) = I , h′(0) = 0.
(2)

The above equation shows a singular form of the panto-
graph differential model, the multiple delays are noticed in
the 1st and 2nd terms.

The aim of the present study is to solve the singular
pantograph differential model of second kind by designing
a layer structure of feed-forward artificial neural networks
using the Morlet wavelet activation function, while the opti-
mization task is accomplished with the strength of global
and local search terminologies of genetic algorithm (GA)
and interior-point algorithm (IPA), i.e., MWNN-GAIPA. The
stochastic procedures have been implemented to solve vari-
ous problems like nonlinear SIR system of dengue fever [27],
prey-predator models [28], infectious disease model [29],
rotational dynamics of nanofluid flow over a stretching
sheet with thermal radiation [30], HIV infection spread
model [31], nonlinear periodic singular boundary value prob-
lems [32], forecasting of the financial market [33], nonlinear
multi-singular systems [34], singular third kind of differential
model [35], COVID-19 dynamical SITR system [36] and heat
conduction dynamics based human head system [37]. These
cited inspirations motivated the authors to present the design
of MWNN-GAIPA for solving a class of singular pantograph
differential model. Potential salient topographies of proposed
integrated heuristics of MWNN-GAIPA in terms of contribu-
tion and innovative insights are presented as follows:
• Novel design of integrated heuristic MWNN-GAIPA is
presented through layer structure of feed-forward ANNs
involving Morlet-Wavelet activation function for the
hidden neurons to solving a class of singular pantograph
differential models while the optimization is accom-
plished with the strength of respective global and local
search terminologies of GA and IPA.

• The correctness of the designed MWNN-GAIPA is con-
sistently observed by comparing the proposed and exact

solutions for solving different problems of the singular
pantograph models.

• The designed MWNN-GAIPA is implemented viably
to solve the singular pantograph models via 3, 6 and
10 neurons based networks with reasonable accu-
racy on absolute error (AE), root mean square error
(R.MSE), Theil’s inequality coefficients (TIC) and vari-
ance account for (VAF) indices on single and multiple
runs to validate the performance.

• Beside the precise results of the singular pantograph
differential model, robustness, simple understanding of
the concept, smooth processes wit implementation and
wide-ranging applicability are well-regarded perks of
integration heuristic MWNN-GAIPA.

The remaining paper is organized as: Section 2 describes
the design of MWNN-GAIPA in detail. Performance oper-
ators are described in Section 3. Simulations are performed
in Section 4. future research reports are described in the last
conclusions Section.

II. METHODOLOGY: MWNNS
The ability to design the MWNNs for providing the sta-
ble, reliable and steady solutions in various fields. The
mathematical form of the singular pantograph differen-
tial model is stated with feed-forward MWNNs in the
form of designing solutions along with their derivatives are
written as:
• The design of fitness function is presented using the
differential system and the boundary conditions.

• The optimal form of GAIPA is provided based on the
pseudocode and preliminary material.

A. MWNNS MODELING
The mathematical form of theMWNNs for solving the singu-
lar pantograph differential model is presented in this section.
In the below system, ĥ(τ ) represents the approximate form of
the results.

ĥ(τ ) =
s∑

k= 1

uk l(wkτ + vk ),

ĥ(n) =
s∑

k=1

uk l(n)(wkτ + vk ) (3)

In the equation (3), s indicates the number of neurons,
W = [u,w, v] represents the unidentified weight vector,
i.e., u = [u1, u2, . . . , us], w = [w1,w2, . . . ,ws] and v =
[v1, v2, . . . , vs]. The MWNNs are not designed nor imple-
mented before to solve the singular pantograph differential
model. The mathematical form of the MW function is given
as [38]–[41]:

l(τ ) = cos (1.75τ) e
(
−0.5τ 2

)
. (4)

The updated form of the system (3) using the above MW
function is given as (5), shown at the bottom of the next
page.
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A fitness function (E) is written as:

E = E1 + E2 (6)

where E1 and E2 represent an unsupervised error using the
differential system and boundary conditions, written as:

E1 =
1
N

N∑
k=1

(
ah′′(aτk )+

�

τk
h′(aτk )+ g(hk )− fk

)
, (7)

where hk = h(τk ), fk = f (τk ), gk = g(τk ) and τk = kh

E2 =
1
2

(
ĥ0 − I1

)2
+

1
2

(
ĥ′0
)2
. (8)

B. OPTIMIZATION PROCESS: GAIPA
In this section, the optimization procedures of the hybrid of
GA-IPAIPA to solve each problem of the singular pantograph
differential model are described.

Genetic Algorithm is known as first stochastic population-
based optimization algorithm proposed in the literature.
GA work through its well-known operators called selection,
mutation and crossover. It can be applied to optimize both
constrained and unconstrained types of problems. Recently,
GA is applied in many famous applications of heart diagnosis
system [42], nonlinear electric circuit models [43], nonlinear
astrophysics based singular system [44], Painlevé equation-II
based nonlinear optic models [45], prediction model of air
blast [46], Thomas Fermi model [47], and monorail vehicle
system [48]. These potential applications of GA inspired the
authors to solve the singular pantograph differential model to
attain the decision variables of MWNNs.

Interior-point algorithm is a local search optimization pro-
cedure work to solve stiff, complicated and convex mod-
els. Recently, IPA is implemented in image renewal [49],
state estimation of power system [50], nested-constraint
resource allocation models [51] and PDE-constrained of
risk-averse based optimizationmodels [52]. The sluggishness
and laziness of GA procedure can be controlled by using
the hybridization processes with IPA based on the optimum
performance. The hybridization detail of GAIPA is given
in Table 1.

III. PERFORMANCE PROCEDURES
The statistical performances based on R.MSE, VAF, TIC and
semi-interquartile range (S.I.R) along with global measures

of RMSE, VAF and TIC have been provided. The mathemat-
ical measures of these performances are given as:

RMSE =

√√√√1
s

s∑
i=1

(
hi − ĥi

)2
, (9)


VAF =

1−
var

(
hi − ĥi

)
var (hi)

× 100,

E-VAF = [|VAF-100|] ,

(10)

TIC =

√
1
s

s∑
i=1

(
hi − ĥi

)2
(√

1
s

s∑
i=1

h2i +

√
1
s

s∑
i=1

ĥ2i

) , (11)

S.I .R =
1
2
(q3 − q1) ,

q1 = 1st quartile, q3 = 3rd quartile.
(12)

IV. NUMERICAL PERFORMANCES
In this section, the comprehensive detail of each problem of
the singular pantograph differential model is provided.

A. PROBLEM I
Consider a singular nonlinear pantograph differential equa-
tion is obtained by taking a = 0.5 and � = 3 in equation (2)
as :

1
2
h′′(

1
2
τ )+

3
τ
h′(

1
2
τ )+ h2 = 1+ 3τ 2 + 2τ 4 + τ 8,

h(0) = 1, h′(0) = 0.
(13)

The exact solution of Eq. (13) is τ 4 + 1 and the fitness
function becomes as:

E =
1
N

N∑
m=1

 1
2
ĥ′′(

1
2
τm)+

3
τm
ĥ′(

1
2
τm)

+ĥ2m − 1− 3τ 2m − 2τ 4m − τ
8
m

2

+
1
2

(
(ĥ0 − 1)2 +

(
ĥ′0
)2)

. (14)

B. PROBLEM II
Consider a singular nonlinear pantograph differential equa-
tion with trigonometric function is obtained by taking

ĥ(τ ) =
s∑

k=1

uk cos (1.75(wkτ + vk )) e−0.5(wkτ+vk )
2
,

ĥ′(τ ) =
s∑

k=1

(
−ukwke−0.5(wkτ+mk )

2
)
(sin (1.75 (wkτ + vk))+ 1.75 (wkτ + vk) cos (1.75 (wkτ + vk))),

ĥ′′(τ ) =
s∑
i=1

−ukw2
ke
−

1
2 (wkτ+vk )

2
(
3.0625 cos (1.75(wkτ + vk ))+ 3.5(wkτ + vk ) sin (1.75(wkτ + vk ))
+
(
−1+ (wkτ + vk )2

)
cos (1.75(wkτ + vk ))

)
, (5)
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TABLE 1. Optimization process using MWNN-GAIPA for solving singular pantograph model.

α = 1/2 and � = 3 in equation (2) as:
1
2
h′′(

1
2
τ )+

3
τ
h′(

1
2
τ )+ h−2 = sec2(τ )−

3
τ
sin
(
1
2
τ

)
−

1
2
cos

(
1
2
τ

)
,

h(0) = 1, h′(0) = 0.

(15)

The exact solution of Eq. (15) is cos(τ ) and the fitness
function becomes as:

E =
1
N

N∑
m=1


1
2
ĥ′′(

1
2
τm)+

3
τm
ĥ′(

1
2
τm)

+ĥ−2m +
3
τ
sin
(
1
2
τm

)
−

sec2(τm)+
1
2
cos

(
1
2
τm

)


2

+
1
2

(
(ĥ0 − 1)2 +

(
ĥ′0
)2)

. (16)

C. PROBLEM III
Consider a singular nonlinear pantograph differential equa-
tion with exponential function is obtained by taking α = 1/2

and � = 3 in equation (2) as:
1
2
h′′(

1
2
τ )+

3
τ
h′(

1
2
τ )+ eh =

15
4
τ + e1+τ

3
,

h(0) = 1, h′(0) = 0.
(17)

The exact solution of Eq. (17) is 1 + τ 3 and the fitness
function becomes as:

E =
1
N

N∑
m=1

 1
2
ĥ′′(

1
2
τm)+

3
τm
ĥ′(

1
2
τm)+

eĥm −
15
4
τm − e1+τ

3
m


2

+
1
2

(
(ĥ0 − 1)2 +

(
ĥ′0
)2)

. (18)

The optimization of all problems based MWNN-GAIPA
for forty independent implementations to measure the system
parameter. The set of best weight vectors is accessible to
validate the solutions of the singular pantograph differen-
tial model are provided in systems (19-21) for 3 neurons,
equations (22-24) for 6 neurons and equations (25-27) for
10 neurons. The mathematical illustrations of the proposed
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system for 3, 6 and 10 neurons are provided as:

ŷP−I(τ ) = 1.1185 cos (1.75(1.8307τ − 3.3665))

×e−0.5(1.8307τ−3.3665)
2

+1.1307 cos (1.75(0.0945τ − 0.2158))

×e−0.5(0.0945τ−0.2158)
2

−8.7957 cos (1.75(−1.370τ + 3.3376))

×e−0.5(−1.370τ+3.3376)
2
, (19)

ŷP−II(τ ) = 0.9212 cos (1.75(0.7290τ + 1.3776))

×e−0.5(0.7290τ+1.3776)
2

+4.5861 cos (1.75(0.0245τ + 1.0652))

×e−0.5(0.0245τ+1.0652)
2

−6.9918 cos (1.75(0.3865τ + 1.3825))

×e−0.5(0.3865τ+1.3825)
2
, (20)

ĥP−III(τ ) = −7.6628 cos (1.75(1.2005τ − 3.0114))

×e−0.5(1.2005τ−3.0114)
2

+8.4815 cos (1.75(14.1955τ + 6.3650))

×e−0.5(14.195τ+6.365)
2

−19.999 cos (1.75(−19.997τ − 4.591))

×e−0.5(−19.997τ−4.591)
2
, (21)

ĥP−I(τ ) = −6.1962 cos (1.75(−1.384τ + 3.3573))

×e−0.5(−1.384τ+3.357)
2

−0.0340 cos (1.75(−3.419τ − 3.094))

×e−0.5(−3.4199τ−3.0948)
2

+4.0022 cos (1.75(−2.140τ − 4.492))

×e−0.5(−2.1402τ−4.4924)
2
+ . . . .

−3.9678 cos (1.75(0.0545τ + 1.2277))

×e−0.5(0.0545τ+1.2277)
2
, (22)

ĥP−II(τ ) = −6.5857 cos (1.75(4.3869τ − 7.2459))

×e−0.5(4.3869τ−7.2459)
2

−19.984 cos (1.75(−19.98τ − 4.8954))

×e−0.5(−19.984τ−4.895)
2

−3.4919 cos (1.75(0.4386τ + 1.4042))

×e−0.5(0.4386τ+1.4042)
2
+ . . . .

+5.5609 cos (1.75(−2.805τ − 6.1770))

×e−0.5(−2.805τ−6.177)
2
, (23)

ĥP−III(τ ) = 19.8820 cos (1.75(−7.531τ + 10.526))

×e−0.5(−7.531τ+10.526)
2

+19.9904 cos (1.75(−1.200τ − 2.9950))

×e−0.5(−1.200τ−2.9950)
2

+19.9904 cos (1.75(2.1789τ − 2.9950))

×e−0.5(2.1789τ−2.9950)
2
+ . . . .

+19.9904 cos (1.75(5.7162τ + 2.9950))

×e−0.5(5.7162τ+2.9950)
2
, (24)

ĥP−I(τ ) = 1.9350 cos (1.75(1.4911τ − 3.0408))

×e−0.5(1.4911τ−3.0408)
2

+1.2213 cos (1.75(0.5620τ − 1.4487))

×e−0.5(0.5620τ−1.4487)
2

+1.1784 cos (1.75(−0.801τ + 1.6328))

×e−0.5(−0.801τ+1.6328)
2
+ . . . .

+0.6803 cos (1.75(−0.935τ + 0.9500))

×e−0.5(−0.935τ+0.9500)
2
, (25)

ĥP−II(τ ) = −0.2234 cos (1.75(0.1656τ + 0.5931))

×e−0.5(0.1656τ+0.5931)
2

+0.2954 cos (1.75(0.7497τ + 0.4631))

×e−0.5(0.7497τ+0.4631)
2

+0.3447 cos (1.75(−0.246τ + 0.656))

×e−0.5(−0.2465τ+0.6560)
2
+ . . . .

+1.2298 cos (1.75(−0.065τ + 0.713))

×e−0.5(−0.0653τ+0.7138)
2
, (26)

ĥP−III(τ ) = −0.3763 cos (1.75(−1.304τ + 0.3991))

×e−0.5(−1.304τ+0.3991)
2

−3.7109 cos (1.75(−0.533τ − 1.5608))

×e−0.5(−0.533τ−1.5608)
2

−0.3684 cos (1.75(−0.560τ − 2.0094))

×e−0.5(−0.560τ−2.0094)
2
+ . . . .

−8.6956 cos (1.75(1.2298τ − 3.4399))

×e−0.5(1.2298τ−3.4399)
2
. (27)

For solving each problem of the singular pantograph differ-
ential model, the MWNN-GAIPA optimization performance
for 40 independent implementations using 3, 6 and 10 neu-
rons are provided. Fig. 1 presents the 3, 6 and 10 neurons
based on the equations (19-27) to get the best weights of the
approximate results of the MWNN-GAIPAS.

Fig. 2 shows the comparison of the obtained results with
the exact solutions for solving all problems of the singular
pantograph differential model using 3, 6 and 10 neurons. The
exactly overlapping of the results for 3, 6 and 10 neurons
enhance the performance of the designedMWNN-GAIPA for
solving singular pantograph differential model.

Table 2-4 shows the performances based on Minimum
(Min), Mean, Median (Med), standard deviation (SD) and
S.I.R values for 3, 6 and 10 neurons using the designed
MWNN-GAIPA to solve the singular pantograph differential
model. The values-based Min, Mean, Med, SD and S.I.R
for Problems I-III lie in good ranges. These observed small
values based on the mention gages for Problems I-III of
the singular pantograph differential model using 3, 6 and
10 neurons indicate the correctness of the MWNN-GAIPA
scheme.

The plots of AE for each problem of the singular panto-
graph differential model for 3, 6 and 10 neurons are drawn
in Fig. 3(a), 3(b) and 3(c), respectively. The AE values
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FIGURE 1. Best weight through MWNN-GAIPA for each problem of the singular pantograph differential model using 3, 6 and 10 neurons (a)-(i).

TABLE 2. The statics performances of MWNN-GAIPA for the singular prediction differential model using 3 neurons.

are observed for 3 neurons for problems I, II and III lie
around 10−03-10−05, 10−05-10−06 and 10−04-10−06, respec-
tively. For 6 numbers of neurons, the AE values for prob-
lems I, II and III lie around 10−03-10−06, 10−05-10−06 and

10−04-10−07, respectively. For 10 neurons, the values of AE
for problems I, II and III found around 10−04-10−08, 10−04-
10−06 and 10−04-10−07, respectively. One can observe on the
behalf of AE for each problem of the singular pantograph
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FIGURE 2. Result comparison based on best and exact solutions through MWNN-GAIPA for each problem of the singular pantograph
differential model using 3, 6 and 10 neurons (a)-(i).

TABLE 3. The statics performances of MWNN-GAIPA for the singular prediction differential model using 6 neurons.

differential model that lie in good ranges to consider 3,
6 and 10 neurons. It is also noticed that the results based on
10 neurons are more accurate as compared to 3 and 6 number

of neurons. The performance indices based on the Fitness
(FIT), ‘R.MSE’, ‘EVAF’ and ‘TIC’ are plotted in subfig-
ures 4(a), 4(b) and 4(c) using 3, 6 and 10 neurons. It is clear in
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TABLE 4. The statics performances of MWNN-GAIPA for the singular prediction differential model using 10 neurons.

TABLE 5. Global operator performances for each problem of the singular pantograph model using 3 neurons.

TABLE 6. Global operator performances for each problem of the singular pantograph model using 6 neurons.

TABLE 7. Global operator performances for each problem of the singular pantograph model using 10 neurons.

subfigure 4(a), which is based on 3 neurons that the FIT best
values for Problems I, II and III lie in the range of 10−04 to
10−06, 10−08 to 10−10 and 10−06 to 10−08, respectively. The
R.MSE best values for Problems I, II and III lie around 10−02

to 10−04, 10−04 to 10−06 and 10−04 to 10−05. The EVAF best
values for Problems I, II and III lie around 10−04 to 10−06,
10−08 to 10−10 and 10−06 to 10−08. The TIC best values for
Problems I, II and III lie around 10−07 to 10−08, 10−08 to
10−10 and 10−07 to 10−09, respectively. The subfigure 4(b),
which is based on 6 neurons that the FIT best values for
Problems I, II and III lie in the range of 10−06 to 10−08,

10−09 to 10−10 and 10−08 to 10−09. The R.MSE best values
for Problems I, II and III lie around 10−03 to 10−04, 10−05

to 10−06 and 10−04 to 10−05. The EVAF best values for
Problems I, II and III lie around 10−05 to 10−06, 10−09 to
10−10 and 10−08 to 10−09. The TIC best values for Problems
I, II and III lie around 10−07 to 10−08, 10−08 to 10−09 and
10−08 to 10−09, respectively. The subfigure 4(c), which is
based on 10 neurons that the FIT best values for Problems I,
II and III lie in the range of 10−07 to 10−10, 10−10 to 10−11

and 10−07 to 10−08. The R.MSE best values for Problems I,
II and III lie around 10−02 to 10−04, 10−04 to 10−05 and
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FIGURE 3. AE for each problem of the singular pantograph differential model using 3, 6 and 10 neurons.

10−03 to 10−04. The EVAF best values for Problems I, II
and III lie around 10−06 to 10−07, 10−08 to 10−09 and 10−06

to 10−07. The TIC best values for Problems I, II and III
lie around 10−06 to 10−08, 10−09 to 10−10 and 10−08 to
10−09, respectively. These attained numerical results confirm
the good tendency of performance to solve each problem

of the singular pantograph differential model using 3, 6 and
10 neurons.

Statistics graphs of the MWNN-GAIPA for ‘FIT’,
‘R.MSE’, ‘EVAF’ and ‘TIC’ measures for solving each prob-
lem of the singular pantograph differential model are plotted
in Figs. 5-8 using 3, 6 and 10 neurons. Fig. 5 shows the
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FIGURE 4. Performance values to solve each problem of the singular pantograph differential model using 3, 6 and
10 number of neurons.

performance of FIT for 40 executions to solve the problem
of the singular pantograph differential model using 3, 6 and
10 neurons. It is observed that the best trials lie about 10−01

to 10−03, 10−04 to 10−10 and 10−02 to 10−6 for solving each
problem of the singular pantograph differential model using
3 neurons. The FIT performance for 6 neurons is depicted in
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FIGURE 5. Statistical performances through FIT using MWNN-GAIPA for each problem of the singular pantograph
differential model taking 3, 6 and 10 neurons.

subfigure 5(b), the best trials lie about 10−01 to 10−06, 10−04

to 10−10 and 10−02 to 10−08. While the FIT performance for
10 neurons is depicted in subfigure 5(c), the best trials found
around 10−02 to 10−08, 10−04 to 10−12 and 10−03 to 10−08.
Fig. 6 shows the performance of R.MSE for 40 executions to

solve problem of the singular pantograph differential model
using 3, 6 and 10 neurons. It is observed that the best trials lie
about 10−01, 10−02 to 10−04 and 10−02 to 10−06 for solving
each problem of the singular pantograph differential model
using 3 neurons. The R.MSE performance for 6 neurons is
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FIGURE 6. Statistical performances through RMSE using MWNN-GAIPA for each problem of the singular
pantograph differential model taking 3, 6 and 10 neurons.

depicted in subfigure 6(b), the best trials lie about 10−01 to
10−03, 10−02 to 10−05 and 10−01 to 10−04. While the R.MSE
performance for 10 neurons is depicted in subfigure 6(c),

the best trials found around 10−01 to 10−04, 10−01 to 10−05

and 10−01 to 10−04. Fig. 7 shows the performance of EVAF
for 40 executions to solve problem of the singular pantograph
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FIGURE 7. Statistical performances through EVAF using MWNN-GAIPA for each problem of the singular pantograph
differential model taking 3, 6 and 10 neurons.

differential model using 3, 6 and 10 neurons. It is observed
that the best trials lie about 10−01 to 10−02, 10−02 to 10−07

and 10−02 to 10−05 for solving each problem of the singular

pantograph differential model using 3 neurons. The EVAF
performance for 6 neurons is depicted in subfigure 7(b),
the best trials lie about 10−01 to 10−05, 10−02 to 10−08 and
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FIGURE 8. Statistical performances through TIC using MWNN-GAIPA for each problem of the singular pantograph
differential model taking 3, 6 and 10 neurons.

10−02 to 10−06. While the EVAF performance for 10 neu-
rons is depicted in subfigure 7(c), the best trials found
around 10−01 to 10−04, 10−02 to 10−08 and 10−02 to 10−06.

Fig. 8 shows the performance of TIC for 40 executions to
solve problem of the singular pantograph differential model
using 3, 6 and 10 neurons. It is observed that the best trials lie
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about 10−02 to 10−05, 10−03 to 10−09 and 10−03 to 10−08 for
solving each problem of the singular pantograph differential
model using 3 neurons. The TIC performance for 6 neurons
is depicted in subfigure 8(b), the best trials lie about 10−03 to
10−07, 10−04 to 10−09 and 10−04 to 10−08. While the EVAF
performance for 10 neurons is depicted in subfigure 8(c),
the best trials found around 10−04 to 10−08, 10−05 to 10−09

and 10−04 to 10−08. One can easily understand that by taking
three numbers of neurons the scheme performance is getting
better by enlarging the number of neurons.

The global operators via MWNN-GAIPA to solve each
problem of the singular pantograph differential model for
40 trials using 3, 6 and 10 neurons are given in Table 5-7.
The statistical measures of the global FIT, EVAF, TIC and
R.MSE operators based on Min and S.I.R gages for 3, 6 and
10 neurons have been tabulated. The calculated optimum
smaller values based on these statistical measures authen-
ticate the accuracy as well as precision of MWNN-GAIPA
scheme.While with increase in number of neuron the compu-
tational time complexity of the proposed integrated heuristic
MWNN-GAIPA increases i.e., 15±5 for 3 neurons models,
34±7 for 6 neuron models and 71±12 for 10 neuron models.
One can observe that by taking a larger number of neurons
the performance of the scheme is better as compared to
lesser number of neurons but at the cost of relatively more
computations.

V. CONCLUSION
The present study is related to design a Morlet wavelet
neural network for solving the singular pantograph differ-
ential model. The singular pantograph differential model is
one of the important kind of functional differential model.
The hybridization of the global and local search operators,
i.e., GA-IPA is used in the optimization process. To observe
the correctness of the MWNN-GAIPA, the numerical results
have been compared with the exact solutions for each prob-
lem of the singular pantograph differential model. In order to
check the accuracy of the designed MWNN-GAIPA scheme,
the neuron analysis based on 3, 6 and 10 neurons have been
provided for 40 trials using different statistical measures. It is
observed that the performance of the scheme for 3 neurons
is better, but performance is calculated slightly better for
6 and 10 neurons. It is also observed that the matching of
the obtained and exact results has been performed for all
the neurons. Moreover, statistical performances using the
operators Min, SD, Med, mean and S.I.R authenticate the
trustworthiness and accurateness of the proposed MWNN-
GAIPA scheme. The global EVAF, TIC and R.MSE further
validate the performance of the designed MWNN-GAIPA
scheme to solve each problem of the singular pantograph
differential model. There are various traditional schemes that
do not work to solve the singular models. The singular pan-
tograph model becomes stiffer and not easy to handle using
the conventional schemes. So MWNN is the best choice to
solve such complicated models using the global and local
search terminologies GAIPA. In future, MWNN-GAIPA can

be implemented to solve the fluid dynamic nonlinear systems,
biological nonlinear systems, singular higher order differen-
tial systems, fractional processing, direction of arrival estima-
tion, power and eneggy systems [53]–[62].
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